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Abstract Quantification of mass and heat transport in
fractured porous rocks is important to areas such as
contaminant transport, storage and release in fractured
rock aquifers, the migration and sorption of radioactive
nuclides from waste depositories, and the characteri-
zation of engineered heat exchangers in the context
of enhanced geothermal systems. The large difference
between flow and transport characteristics in fractures
and in the surrounding matrix rock means models of
such systems are forced to make a number of sim-
plifications. Analytical approaches assume a homoge-
neous system, numerical approaches address the scale
at which a process is operating, but may lose individual
important processes due to averaging considerations.
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Numerical stability criteria limit the contrasts possi-
ble in defining material properties. Here, a hybrid
analytical–numerical method for transport modeling in
fractured media is presented. This method combines
a numerical model for flow and transport in a hetero-
geneous fracture and an analytical solution for matrix
diffusion. By linking the two types of model, the advan-
tages of both methods can be combined. The method-
ology as well as the mathematical background are
developed, verified for simple geometries, and applied
to fractures representing experimental field conditions
in the Grimsel rock laboratory.
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1 Introduction

The profound understanding of flow and transport
processes in fractured rock is often essential to the
performance assessment of subsurface facilities, and
robust models describing the transport of solutes and
thermal energy in highly heterogeneous conductivity
fields are of great interest, e.g., in geotechnical and
geothermal engineering. In fractured rock, this prob-
lem is complicated by the combination of typically
advective dominated transport in the rock fractures
with diffusive dominated transport in the rock matrix
surrounding the fractures.

Several key processes have been investigated nu-
merically and experimentally regarding their impact on
flow and transport properties in fractured media [1]. In
a fractured rock mass, the distribution of fractures with
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variable average permeability and orientation has a
significant impact on the often anisotropic permeability
and transport properties of a rock mass [2, 3]. Within
the fractures themselves, channeling due to preferential
flow pathways has a large influence on both flow and
transport processes [4–6]. Permeability and velocity
contrasts at the scale of both a rock mass and within an
individual fracture can lead to the frequently observed
tailing in solute breakthrough curves [7]. Often, the
rock matrix surrounding a fracture has a much lower
permeability than the fracture itself, but may strongly
influence transport by acting as a reservoir into which
solutes can diffuse and sorb. Diffusion and sorption in
the matrix also cause tailing effects, and it can be diffi-
cult to distinguish the effects of variable velocity fields
from those of matrix diffusion and sorption, particularly
if both processes are operating in the same system at the
same time [8].

Frequently, modelers use different processes to ex-
plain the observed tailing phenomena [9], and it can
be quite difficult to devise a model that can adequately
simulate both small-scale but large-magnitude perme-
ability contrast within a fracture while also representing
the diffusion and sorption of dissolved substances into
the adjacent rock in a computationally efficient manner.
By attempting to explain concentration breakthrough
curves by invoking only matrix diffusion combined with
advection and dispersion in an effective medium, there
is a substantial risk of falsely characterizing the nature
of transport processes in a given system, leading to
incorrect predictions of the future behavior [10].

Researchers have developed analytical solutions for
transport in fractured media based on the concept of
matrix diffusion. Grisak and Pickens [11] presented
an analytical model for advective solute transport in
a planar fracture coupled with diffusive transport in
the adjacent rock. Tang et al. [12] also demonstrated a
solution for flow and transport in a planar fracture, but
went further than Grisak and Pickens [11] by account-
ing for diffusion in the fracture, sorption processes, and
radioactive decay. Subsequently, Sudicky and Frind
[13] and Barker [14] developed solutions for matrix
diffusion in an array of parallel planar fractures. These
solutions have been applied for both fitting of field
data and code verification during the development of
numerical models, but they all share a common con-
straint. In order to obtain a purely analytical solution,
it is necessary to neglect the effects of non-uniform
aperture distributions within the fracture. This is prob-
lematic as it ignores the possibility that tailing effects
are caused by heterogeneity as well as the evidence that
spatial characteristics of the flow field influence matrix
diffusion [15].

To achieve greater flexibility in the representation
of physical processes that can be investigated in re-
garding their effect on transport in fractured systems,
many investigators have turned to numerical models
[9]. Several approaches for simulating heat and mass
transport in fractured rock have been developed. Cur-
rent trends are discussed in Neuman [16] and Berkowitz
[7]. Although numerical techniques allow for the rep-
resentation of irregular fracture geometry, which is
not possible using a purely analytical technique, nu-
merical simulations are truncated and can fail due to
accuracy and stability problems. This is especially true
where large differences in material parameters result-
ing in different dominant processes are present in the
model and the equation solver can fail to converge.
In fractured rock, the movement of solutes is charac-
terized by advective dominated transport in the frac-
tures and diffusive dominated transport in the matrix.
Time-dependent solutions of advective and diffusive
processes are controlled by different stability criteria.
The optimal time-step lengths and elemental sizes to
satisfy the Courant and Neumann stability criteria in
advective dominated regions and diffusive dominated
regions are quite different [17].

When discretely modeling flow and diffusion pro-
cesses in fractured media, the time-step control of the
diffusion-dominated matrix processes is often several
orders of magnitude greater than that necessary for the
stable solution of the advective dominated transport in
the fracture. Solving this problem requires a very fine
discretization near the fracture–matrix interface [9, 17].
Such mesh refinement significantly increases compu-
tational requirements, and may require consideration
of grid adaptation algorithms; for example, see Kaiser
et al. [18] and Haefner and Boy [19].

An alternative approach avoiding the need for a
discrete fracture modeling is the equivalent porous
medium concept. The flow in fractures is considered to
occur within a clearly defined continuum in contact with
a second continuum representing the matrix. Various
exchange terms are required to describe the interaction
of the continua with each other. Based on this con-
cept, Pruess and Narasimhan [20] presented the double
porosity concept, encapsulated in the modeling method
MINC, “Multiple INteracting Continua”. Pruess [21]
states that “MINC can only be applied to media in
which the fractures are sufficiently well connected so
that a continuum treatment of flow in the fracture
network can be made”. Several further developments
on this approach have been documented, particularly
Zimmerman et al. [22] presented a method of linking
the matrix storage with the flow in the fractures via
a source term in the flow equation which allows the
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description of transient exchange processes. Dual con-
tinua approaches have also been successfully applied
in Karst and contaminant hydrology (e.g., Teutsch [23],
Birkholzer [24]).

In many circumstances, definition of equivalent pa-
rameters to describe the exchange between the matrix
blocks and the fractures provides a powerful tool for
the evaluation of large-scale problems such as geother-
mal fields. However, in a number of cases, applying
equivalent exchange parameters to model and predict
flow and transport may be missing vital processes such
as the effect of channeling. Therefore, the ability to dis-
cretely represent the fracture planes allows the effects
of different fracture surface profiles to be investigated
on the transport signal and key processes to be identi-
fied and characterized more accurately.

In this paper, we present a hybrid numerical and ana-
lytical model which uses the advantages of both numer-
ical and analytical techniques to analyze flow, transport,
and the effects of heterogeneity (roughness) as well as
matrix diffusion in a real fracture. The advective dom-
inated transport in the fracture is solved numerically
allowing the heterogeneous aperture distribution to be
represented. The matrix diffusion is solved analytically
and communicates with the numerical advection dom-
inated solution through the use of source/sink terms.
The discrete representation of the fracture plane allows
the effects of different fracture surface profiles to be in-
vestigated. In particular, the effects of increased chan-
neling on matrix diffusion are assessed. The analytical
solution for matrix diffusion allows species-dependent
chemical and physical parameters to be accounted for
and also includes linear sorption. This hybrid numerical
and analytical approach, requiring only the fracture to
be discretely defined geometrically, allows problems to
be solved with significantly less computational cost than
standard approaches where both the matrix and the
fracture require geometrical definition.

For simplified fracture geometries, the approach has
been verified against the analytical matrix diffusion
code PICNIC [25] and compared to a numerical so-
lution for two intersecting fractures in a 20 cm block.
The method is then demonstrated on two fracture
planes representing experimental field conditions in the
Grimsel rock laboratory (Switzerland).

2 Modeling approach

The model described here has been integrated into the
scientific GeoSys/Rockflow code [26, 27], a standard
Galerkin finite element solver [28]. In the fracture,

steady state fluid flow is represented by Eq. 1 for a unit
volume (e.g., Freeze and Cherry [29])

∇T (K∇h) = q (1)

where K denotes the hydraulic conductivity tensor
[m·s−1], h is the hydraulic head [m], and q is source/sink
vector [s−1]. This equation is valid for a saturated,
non-deforming porous medium with heterogeneous hy-
draulic conductivity. The solution of Eq. 1 using the
finite element technique is covered in standard works
such as Istok [30] and Lewis and Schrefler [31].

Because fluid flow in the fracture is approximated
as classical Darcy flow, hydraulic conductivity is cal-
culated using the well-known cubic law [32]. This law
states that for laminar flow between smooth parallel
plates separated by an aperture e [m], the hydraulic
conductivity is given by

Ki = e2
i ρg

12μ
(2)

where ρ is the fluid density [kg·m−3], g represents
gravitational acceleration [m·s−2], and μ is the dynamic
viscosity of the fluid [kg·m−1·s−1]. Here, the hydraulic
conductivity Ki and the aperture ei are indexed to
indicate that we are using the local cubic law, applying
the cubic law at the level of individual fracture elements
i. This expression typically overestimates the hydraulic
conductivity of rough fractures to some degree, but
it provides a first order approximation of the corre-
spondent permeability distribution given a particular
aperture distribution [33–35]. We assume this as an
approximation as the main focus of this work is not
the distribution of flow in a rough fracture, but rather
the combination of an analytical solution for matrix
diffusion with a numerical solution for flow in an un-
evenly distributed conductivity field. Using statistical
data for the fracture aperture distribution and the au-
tocorrelation, multiple synthetic aperture fields have
been generated [36]. The fracture plane is discretized
into individual elements, and an aperture ei is mapped
to each element (Fig. 1). From this, the corresponding
elemental permeability can be calculated.

Solving Eq. 1 provides the hydraulic head at each
node in the finite element model which can be used
to calculate the elemental flow velocities. The flow
velocities are then used to derive the solution of the
transport equation

∂C
∂t

= −∇T (D∇C) − v · ∇C + Cs (3)
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Fig. 1 Geostatistical aperture distribution mapped to fracture
plane

where C is the concentration [kg·m−3], D is the disper-
sion tensor [m2·s−1], v is the advective velocity [m·s−1],
and Cs is a concentration source/sink [kg·m−3·s−1]. This
solution is equally applicable to thermal transport in a
fracture, for Eq. (3) and all the following key equations
concerning equivalent expressions for thermal trans-
port may be found in the Appendix.

The preceding equations describe flow and transport
within the fracture. In the surrounding, relatively im-
permeable rock matrix, different processes dominate
the transport of solutes and thermal energy. In the
matrix, the transport is largely diffusive rather than
advective. If advection can be neglected, matrix trans-
port can be described analytically and linked to the

transport in the fracture through source/sink terms. If
we assume that the diffusive flux from a fracture is
normal to the direction of advective flow, the diffusion
profile can be represented by the second order unsteady
state diffusion equation, i.e., Fick’s second law (4) [37].
Here, the coordinate direction z is the normal to the
fracture plane as shown in Fig. 2. The standard solution
to this equation for a concentration at a time t and
distance z from the source is Eq. 5 [37]. The matrix is
assumed to extend to infinity in the region z > 0.

∂C
∂t

= D∗ ∂2C
∂z2

(4)

C (z, t) = C0er f c
[

z√
4D∗t

]
(5)

In Eq. 4, D∗ represents the apparent diffusion coeffi-
cient [m2·s−1] [38]. In Eq. 5, C0 is the boundary concen-
tration at z = 0 or, for the purposes of this model, the
solute concentration in the adjacent fracture.

Equation (6) represents the superimposition of two
equal but oppositely signed inputs offset in time.

C (z, t) = C0er f c
[

z√
4D∗ (t − t0)

]

−C0er f c
[

z√
4D∗ (t − t1)

]
(6)

This expression gives the concentration profile at time t,
for a pulse of boundary concentration C0 at coordinate
z = 0, starting at time t0 and ending at a time t1 where
t > t1 > t0 [39]. Generalizing Eq. 6 for n = 1, 2, 3, . . .

pulses gives

C (z, tn) = Cner f c

[
z√

4D∗ (tn − tn−1)

]

+
n−1∑
j=1

⎧⎨
⎩C j

⎡
⎣er f c

⎡
⎣ z√

4D∗ (
tn − t j−1

)
⎤
⎦

− er f c

⎡
⎣ z√

4D∗ (
tn − t j

)
⎤
⎦

⎤
⎦

⎫⎬
⎭ (7)

Fig. 2 Local coordinate system for matrix diffusion
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where Cn is the boundary (fracture) concentration in
time step n (i.e., between times tn−1 and tn), and C j is
the boundary (fracture) concentration between times
t j−1 and t j. This formulation also assumes steady state
conditions within each time step.

The term source/sink term Cs in Eq. 3 provides the
link between the two-dimensional advective–dispersive
transport in the fracture and the one-dimensional dif-
fusive transport in the matrix. This term represents
the rate of solute mass transfer between the fracture
and the matrix divided by the volume of a given local
fracture element (or nodal patch). Using Fick’s first law
of diffusion [37] for steady state conditions, it provides
the following expression for Cs

Cs = − D∗ Ai

Vi

∂C
∂z

= − D∗

ei

∂C
∂z

(8)

where Ai is the area of the fracture wall occupied by el-
ement i and Vi is the volume of element i. This is assum-
ing the concentration gradient remains the same for the
discretized time step chosen in the model simulations.
This expression represents the source term contribu-
tion matrix via the fracture wall to the fracture. Where
the contribution of two fracture walls to the fracture
element is required, this expression can be multiplied
by 2. The term ∂C/ ∂z represents the gradient of the
concentration in the matrix forming the fracture wall.
Flux into and out of the fracture is controlled by this
gradient. This term is found by partially differentiating
Eq. 7 with respect to z. As we are only interested in the
concentration gradient at the interface, the formulation
for ∂C/ ∂z can be simplified by setting the coordinate z
equal to zero, providing the following expression

∂C (z = 0, tn)
∂z

= −Cn√
π D∗ (tn − tn−1)

+
n−1∑
j=1

⎧⎨
⎩

−C j√
π D∗ (

tn − t j−1
)

+ C j√
π D∗ (

tn − t j
)
⎫⎬
⎭ (9)

Depending on the terms included in the calculation
of the diffusive term D∗, it is possible to examine
both the effects of matrix diffusion alone and matrix
diffusion combined with sorption processes. Following
Grathwohl [38], diffusion in the matrix is defined ac-
cording to

D∗ = Daq

Rτ
(10)

where Daq is the aqueous diffusion coefficient [m2·s−1],
R is the retardation factor [–], and τ is the tortuosity
factor of the porous rock matrix [–]. The tortuosity
factor cannot be measured independently, but is often
estimated from the porosity ε, i.e., τ = ε1−m, where m ≈
2 [40]. If one wishes to consider matrix diffusion alone,
then R is set equal to one. To assess the effects of
sorption, the variable R can be expressed as

R = 1 + Kdρ

ε
(11)

where Kd is the solute distribution coefficient [m3·kg−1]
(i.e., the ratio of sorpted to dissolved concentrations)
and ρ is the bulk density of the rock matrix [kg m−3].
Equations (10) and (11) assume a linear sorption
isotherm, instantaneous equilibrium sorption, and that
the proportion of dead end or blind pores is negligible.
For non-linear sorption calculations, Kd is not constant,
and the depth-dependent concentration of the chemical
species in the fracture wall is required. It is possible
to calculate this concentration profile from Eq. 7, but
the solution of non-linear sorption would require addi-
tional computational resources, and is beyond the scope
of this work. A more detailed consideration of sorption
phenomena can be found in Grathwohl [38].

In addition to the Courant and Neumann stability
criteria discussed in Section 1, one further stability cri-
terion must be satisfied for the stability of the numerical
component of this hybrid model. Known as the “well
criterion”, this condition expresses the fact that within
one time step a source term may not take more mass, or
energy, from a nodal patch or element than is present
at the start of the time step [41]. For the source terms
Cs, the well stability criterion is

�mass
mass

= CsVi�t
CiVi

= −2D∗∂Ci
/
∂z

eiCi
�t ≤ 1 (12)

It is possible to violate this criterion if either D∗ is very
large, ei is very small, or the time-step length �t is large.
For the purposes of this work, the problem of small ei

values is most significant. When the measured statistics
of the fracture aperture distribution are represented
explicitly, it is inevitable that some of the elements
comprising the fracture must have small apertures. The
smaller the aperture of the fracture, the smaller is the
amount of mass actually present in the correspond-
ing fracture element, and therefore the smaller is the
amount of mass which can be removed in any given
time step.

The problem arises because the concentration gra-
dient at the fracture–matrix interface, ∂C / ∂z is cal-
culated from the previous time step and it is used to
predict the fracture–matrix diffusive exchange in the
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current time step. In reality, this gradient, ∂C / ∂z,
will go to zero before the concentration in the fracture
becomes zero or negative. In this model, we apply a
time discretization and assume constant gradient within
each time step. This is a reasonable assumption for most
cases where the concentration reached at the start of
the next time step is not known. However, in the case
where all the mass in an element could be removed, we
know that the lower limit of concentration is going to be
the value of concentration in the fracture that ensures
the gradient ∂C / ∂z in the fracture wall is zero at the
end of the time step. Expressing this in other terms: As
the mass is diffusing into the matrix, the concentration
in the fracture will drop until the concentration in the
fracture and the matrix is equal and no further.

Using Eq. 7, it is possible to define the concentration
in the fracture at which there will be no more flux into
or out of the matrix for the current time step (Cg).
Defining H as

H =
n−1∑
j=1

⎧⎨
⎩

−C j√
π D∗ (

tn − t j−1
) + C j√

π D∗ (
tn − t j

)
⎫⎬
⎭ (13)

allows us to express this concentration as

Cg = H
√

π D∗ (tn − tn−1) (14)

therefore, the maximum change in concentration which
could occur, �C, is from the current concentration Ct to
Cg. Given the boundary condition of the system for this
time step and element is known, i.e., the concentration
in the matrix, we can apply a 1D analytical solution
to determine how much mass actually will enter the
element in the given time step. This solution allows for
the fact that the gradient will be changing significantly
in the given time step. Applying the 1D analytical
solution, we see that for a Dirac pulse at z = 0

C (t) = M

2
√

π Dt
(15)

Setting t = 1 and the normalized concentration at C(t =
1) = 1, then the concentration at time t + �t is given by

C(�t) = 1√
1 + �t

�C (16)

Using this approach, the mass to be removed from the
cells can be calculated as Ct − Ct+�t multiplied by the
volume represented by the node.

Examining Eq. 9, one can see that, to complete the
summation, past concentration information is required
for every preceding time step at every node. For large
fracture networks with many elements, and long-term

tests with many thousands of time steps, the data re-
quirements can become substantial. To mitigate this
problem, two facts can be considered. First, as the time
difference between the current time and the initiation
time of a preceding matrix diffusion pulse increases, the
influence of the older pulse becomes less significant. If
one assumes a constant time step length, an expression
for the relative absolute contribution of a pulse to the
concentration gradient at the interface can be derived
from Eq. 9 to yield

relative_contribution =
(

1√
k

− 1√
k + 1

)
k = 1, 2, . . .

(17)

where k is the number of time steps since the end of
the pulse. From this, we see that after ten time steps,
the contribution of a pulse to the gradient is only 1.5%
of its initial value, after 100 time steps the relative con-
tribution is less than 0.05%, and after 1,000 time steps
the relative contribution is less than 0.002%. Thus, it
is possible to cap the required computational resources
while maintaining a sufficient level of accuracy. The
second option to control the computational require-
ments is to reduce the resolution of the pulse history.
The frequency at which Cs is recalculated must not
necessarily be the same as the time-step frequency. It
was found that the pulse history could be averaged over
several time steps without affecting the integrity of the
results, as long as the characteristics of the pulse were
captured. In terms of implementation, we introduced
a resolution, indicating that the concentration source
term should only be recalculated at every nth time
step. The required sampling resolution depends largely
on the rate at which the concentration in the fracture
element is changing and on other factors such as the
length of tracer injection pulses.

3 Verification

In order to verify the computational model, numeri-
cal simulations using the hybrid analytical–numerical
scheme implemented in GeoSys/Rockflow were com-
pared to predictions produced by the transport code
PICNIC (PSI/QuantiSci Interactive Code for Networks
of Interconnected Channels) [25]. The latter code has
been developed within the framework of the Swiss
Radionuclide Retardation Programme for the assess-
ment of radionuclide migration. The underlying con-
ceptual model for PICNIC envisions flow in a fractured
rock mass as occurring within a network of legs which
interact only at the junctions. Within the legs, which
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Table 1 Geometry and material properties used for the verification calculations in both the hybrid model (GeoSys/Rockflow) and the
analytical model (PICNIC)

Symbol Description Value Hybrid scheme PICNIC

L [m ] Distance between injection
boundary and observation transect 2.5 X X

αT [m] Transverse dispersion 0.1 X
ρ [kg m−3] Bulk matrix density 2,670 X X
e [m] Fracture aperture 0.55 × 10−3 X X
v[m s−1] Fluid velocity 7.05 × 10−4 X X
αL [m] Longitudinal dispersion 0.1 X
Pe [–] Peclet number (PICNIC only) 25 X
ε [–] Matrix porosity 0.3 X X
D∗ [m2 s−1] Diffusion constant in rock matrix 7.4 × 10−11 X X

represent individual fractures, flow and matrix diffu-
sion equations are solved analytically using Laplace
transformation as described by [14] and [12]. In the
PICNIC model, advective–dispersive transport in the
fracture is calculated based on a constant fluid veloc-
ity within the fracture and a dispersion length cor-
responding to a Peclet number of 25. As previously
stated, fluid flow in the porous matrix is disregarded and
only the diffusion into the pore space and retardation
caused by a linear sorption isotherm are considered.
In the experiment, a tracer was injected into the frac-
ture system at a constant rate for the first 50 s. The
breakthrough of the tracer was observed at a distance
of 2.5 m downstream. The experimental system was
set up such that the downstream transport boundary
was sufficiently distant that it did not influence the
tracer breakthrough. This was done because, unlike
the hybrid model, the analytical solution used by PIC-
NIC assumes that the fracture has an infinite down-
stream extent. The input parameters used in both the
GeoSys/Rockflow and PICNIC simulations correspond
to the parameters published by Kosakowski and Smith
[42] and are presented in Table 1. Figure 3 illustrates
the breakthrough curves calculated by the two codes
for advective–dispersive transport in the fracture (AD),
for advective–dispersive transport with matrix diffusion
(AD MD), and for advective–dispersive transport with
matrix diffusion and linear sorption in the matrix (AD
MD Sp). The agreement between the two models is
very good.

4 Comparison to a numerical model

To enable a comparison of the implementation of the
hybrid method to purely numerical methods, solute
transport through a discretely fractured block of dimen-
sions 20 × 20 cm was simulated. The block contains two
fractures which join in the middle. Here, the fracture

is represented by discrete elements whose thickness
is related to the fracture permeability. These may be
obtained from experimental data or may be generated
using a statistical approach (e.g., Walsh et al. [43]).
Figure 4 illustrates the model setup and the geomet-
rical comparison between the purely numerical and
the hybrid approach. The numerical models consists
of 161,309 triangle elements in order to discretize the
fracture intersection; the hybrid analytical–numerical
model requires 5,709 triangle elements. The analytical–
model presented in this paper is a 1D model assuming
infinite extent of the matrix continuum, and therefore

Fig. 3 Comparison of breakthrough curves for the verification
test case calculated using the hybrid model (GeoSys/Rockflow)
and analytical model (PICNIC). Results are (1) for advective–
dispersive transport only (AD), (2) for AD and matrix diffusion
(MD), and (3) for AD with MD and linear sorption (Sp)
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Fig. 4 Comparison of a numerical and hybrid analytical and
numerical approach to modeling fluid flow in two intersecting
fractures in a block 20 × 20 cm

in the vicinity of the fracture intersection this condi-
tion breaks down. In further work, the development
and implementation of hybrid models to cover such
circumstances will be discussed. However, this model

geometry is deliberately chosen to demonstrate the
flexibility of the approach, examine differences in the
modelling results, and to illustrate that the combination
of the analytical and numerical methods provides an
excellent alternative as a tool for understanding the
behavior of the fracture systems. Figure 5 gives the
comparison of the results, and it can be seen that
the curves are almost identical. The computational ex-
pense of the hybrid approach, however, is almost a
factor of 10 less in comparison to the purely numerical
method for this case.

5 Demonstration example

Having verified that the hybrid method is able to repro-
duce the results of the analytical solution to a sufficient
degree of accuracy, the hybrid model is now applied to
heterogeneous fractures. This type of problem cannot
be handled using analytical solutions; however, a pure
numerical solution for both the advective dominated
transport in the fractures and the matrix diffusion in
the rock is complicated due to the extremely differ-
ent length scale of both processes. A numerical solu-
tion would require extremely fine meshes for accuracy.
Therefore, the hybrid approach is an appropriate solu-
tion method for this type of multi-scale problem [44].

Mettier et al. [36] presents the results of aperture
measurements from a 5.2-m section of the shear zone
at the Grimsel site. The geostatistical parameters of
the fractures surfaces are reported as being a minimum
of aperture of 1 × 10−5 m and a maximum aperture
of 0.02 m, representing a permeability distribution of
8 × 1012 m2 to 3 × 10−5 m2, and a standard deviation
of 0.8 for the log10 of the apertures with an average
aperture size of 4 × 10−4 m. Using a fracture generator

Fig. 5 Comparison of the results of a numerical and hybrid
analytical and numerical approach to modeling solute transport
in two intersecting fractures in a block 20 × 20 cm



Comput Geosci (2009) 13:349–361 357

discussed in Walsh et al. [43] based on a fractal rep-
resentation of the fracture plane, we generated two
artificial fracture surfaces with apertures ranging from 1
× 10−5 m to 0.008 m, representing a permeability range
of 8 × 10−12 m2 to 6 × 10−6 m2. We achieved a standard
deviation for the log10 of the apertures of 0.36 with an
average aperture of 3 mm. A larger variance as sug-
gested by Mettier et al. [36] could only be achieved with
the fractal generator by increasing the average aperture
width significantly beyond the field values. The two
fractures with slightly different statistical properties are
presented in Table 2.

The artificial fracture surfaces measured 0.5 × 2.00 m
at a resolution of circa 4 mm resulting in a 65,000-
element grid. The hydraulic boundary conditions were
set to mimic a realistic flow situation along the 2 m
length of the fracture under field conditions. The upper
boundary, deemed the “outflow edge” of the fracture,
was set as constant zero hydraulic head, and the “in-
flow edge” of the fracture was given a minimal head
of 0.1 mm, i.e., seepage conditions were represented.
These simple boundary conditions ensure a steady state
hydraulic flux from the bottom of the fracture to the
top. Tracer is injected as a 180 s pulse of constant
concentration at the base of the fracture. The hydraulic
outflow edge was left to default as a zero gradient mass
transport boundary. The breakthrough curves were
recorded as a flux-weighted response across the outflow
edge of the fracture, as would be measured in seepage
across the outcropping width of the fracture under field
conditions.

In order to compare the influence of the heterogene-
ity and the effect of matrix diffusion [1], we performed

Table 2 Fracture plane statistics used for demonstration of
methodology

High Low
variance variance

Fracture surface statistics
Fractal dimension [–] 2.5 2.5

Standard deviation
surface roughness [mm] 15.0 15.0
Mismatch wavelength [mm] 10.0 10.0
Maximum degree of correlation
between top and bottom
surfaces [–] 0.97 0.98

Aperture statistics
Average [mm] 3.08 2.90
Standard deviation [mm] 1.34 1.24
Contact ratio [–] 0.012 0.011

Permeability statistics
Average [m2] 9.41E-07 8.28E-07
Standard deviation [m2] 7.25E-07 6.33E-07
Variance of log10 [permeability] [–] 0.52 0.49

the exact same realizations twice, once with and once
without the analytical solution for matrix diffusion for
both fracture planes. Such methodology could be ex-
panded to investigate the use of a single effective matrix
diffusion coefficient to predict breakthrough curves in a
fractured formation as discussed by Zhang et al. [5] but
is beyond the scope of this work.

6 Results and discussion

The breakthrough curves for the two fracture plane
realizations with and without matrix diffusion are il-
lustrated in Fig. 6 for two cases; a lower (LV) and a
higher variance (HV) of fracture surface statistics. In
Fig. 7, the time-dependent distribution of the pulse for
the higher variance fracture can be seen with and with-
out matrix diffusion. Here, we note that the modeling
conditions are identical apart from the aperture distrib-
utions on the fracture planes. Based on this demonstra-
tion example, we note a number of significant features
discussed below.

Comparing first the non-matrix diffusion (MD)
curves of the simulations (Fig. 6), flow in the slightly
higher variance fracture (HV) results in more pro-
nounced channeling and the development of pref-
erential flow paths. The flow in the slightly lower
variance fracture (LV) demonstrates a smoother, more
homogeneous breakthrough curve. The higher variance

Fig. 6 Breakthrough curves for a heterogeneous fracture real-
ization. HV Higher variance, LV lower variance, MD matrix
diffusion
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Fig. 7 Time series of a tracer
cloud moving through the
higher variance realization of
the fracture, with (top) and
without (bottom) matrix
diffusion

curve demonstrates a double peak arrival due to flow
channeling. The first peak arrival of the higher variance
curve is 150% earlier than that of the peak in the
lower variance curve, although the arithmetic average
hydraulic conductivity is only 15% more than the lower
variance fracture. This trend would be as expected
when considering the effects of increasing roughness
and the development of channeling. What is also of
interest is the long tailing developed in the higher
variance fracture in comparison to the lower variance
fracture. This is due to slow movement of tracer in low
conductivity channels of the fracture. In reality, such an
effect could be mistaken as matrix diffusion.

Examining now the matrix diffusion-influenced
curves, matrix diffusion both retards the arrival of
the tracer at the outflow boundary and smoothes the
curves. In the higher variance case, the retardation is
less for the more rapid flow in the preferential flow

channels in comparison to lower variance fracture;
through smoothing of the curve, the double peak, i.e.,
the clear demonstration of preferential flow paths, is
lost. Comparing the higher variance and lower variance
fractures with matrix diffusion, the difference between
the signals becomes little more than a difference in
the long-term tailing, although the flow and trans-
port processes are significantly different due to the
channelling.

Should such curves have been retrieved from the
field, fitting by application of general dispersion/
diffusion parameter and equivalent matrix diffusion pa-
rameters would not necessary indicate that the details
of the flow and transport processes have been properly
determined. Should sorption also be included, then a
further intermixing of the processes and their individ-
ual signals will occur. Exactly these matrix diffusion
processes and sorption processes need to be accurately
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characterized when matrix diffusion forms an impor-
tant part of engineered design.

7 Conclusions

A new hybrid analytical and numerical modeling tech-
nique is presented which combines the advantages of
analytical and numerical approaches to model mass
transport in heterogeneous fractures. The numerical
model solves flow and mass transport in the fracture
and the analytical model represents the continuum-
based matrix diffusion process. Through the use of
source/sink terms, the diffusive flux in and out of the
matrix is included. Using this approach, there is no need
to conform strictly to the Neumann stability criteria in
the matrix and there is also no necessity of the three-
dimensional mesh representation of the matrix with
the accompanying intensive computational demands.
The stability criteria controlling the size of the source
terms, the “well criteria”, is adhered to by constantly
monitoring the size of this term and applying either
a steady state solution where the end boundary con-
ditions are not known or a non-steady state solution
where the boundary conditions are known, i.e., the
concentration/energy in the fracture equals the concen-
tration/energy in the fracture wall. Only the advective
flow in the fractured rock defines the limits of the
numerical solution. This allows the discrete features of
the fractures to be represented numerically as a two-
dimensional aperture and permeability distribution.

The analytical solution for matrix diffusion is de-
veloped for mass transport of contaminants, and can
be applied to both conservative and linearly sorbing
species. The application of the same solution to heat
transport is given in the Appendix. The solution pro-
cedure has been verified against an analytical solution
for simple fracture–matrix geometry, and compared to
a numerical solution for two intersecting fractures in a
20 cm block.

To demonstrate the use of the modeling approach,
two fracture planes, 2 × 0.5 m, were generated based
on experimental data from a Grimsel shear zone. The
effect of the variance (related to roughness) and the
effect of matrix diffusion on the flow and mass transport
in these fractures were demonstrated by simulating the
movement of a tracer pulse through the fractures due
to seepage. The predicted tracer breakthrough curves
were such that had they been retrieved from the field
and fitted by application of general dispersion/diffusion
and equivalent matrix diffusion parameters, the details
of the flow and transport processes would not have
been properly determined. Had sorption been included

in the simulation, the individual process signals would
have been further mixed. However, exactly these ma-
trix diffusion and sorption processes need to be accu-
rately characterized when they form an important part
of engineered design.

This modeling approach reduces the computational
power needed to investigate the long-term effects of
matrix diffusion. Additionally, the discrete analysis of
the fracture surfaces allows species and porosity varia-
tions to be modeled individually rather than requiring
the introduction of general effective parameters.

Currently, the matrix diffusion term assumes an un-
limited depth of penetration in the matrix blocks. How-
ever, further development of the analytical solution will
allow different scenarios to be addressed.

The hybrid analytical–numerical technique pre-
sented here is a useful tool for the investigation of
complicated fracture systems and the interaction of
several coupled processes.
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Appendix: Thermal equations

Nomenclature

c Heat capacity (J/kg K)
ρ Density (kg/m3)

λ Thermal conductivity (J/K m s)
D∗ Energy diffusion dispersion tensor (m2/s)
Ts Heat source (J/m3 s)
t Time (s)
T Temperature (K)
v Velocity (m/s)
z m in z direction

Superscripts

m Equivalent value for porous medium
w Water

Energy balance equation cρ dT
dt = λm∇2T − cwρwv ·

∇T − Ts

Diffusion of a temperature pulse T (z, t) =
T0er f c

[
z√

4D∗(t−t0)

]
− T0er f c

[
z√

4D∗(t−t1)

]
Definition of thermal diffusion coefficient D∗ = λm

ρmcm
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Analytical matrix diffusion term

T (z, tn) = Tner f c

[
z√

4D∗ (tn − tn−1)

]

+
n−1∑
j=1

⎧⎨
⎩T j

⎡
⎣er f c

⎡
⎣ z√

4D∗ (
tn − t j−1

)
⎤
⎦

−er f c

⎡
⎣ z√

4D∗ (
tn − t j

)
⎤
⎦

⎤
⎦

⎫⎬
⎭

Calculation of source term Ts = − 2D∗ Ai
Vi

∂T
∂z =

− 2D∗
ei

∂T
∂z ρmcm

Transient analytical solution for stability criteria

T(�t) = 1√
1 + �t

�T
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