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GRASSMANNIAN FREQUENCY OF SOBOLEV DIMENSION DISTORTION

ZOLTÁN M. BALOGH, PERTTI MATTILA, AND JEREMY T. TYSON

In memory of Frederick W. Gehring

Abstract. Let f be a supercritical Sobolev map from a domain Ω in Rn into a complete separable
metric space. For a fixed integer m, 0 < m < n, and α > m, we estimate from above the Hausdorff
dimension of the set of elements V in the Grassmannian G(n,m) (equipped with a Riemannian
metric) such that f(V ∩Ω) has positive α-dimensional Hausdorff measure. The proof relies heavily
on the homogeneous structure of both G(n,m) and the Stiefel manifold O(n,m) of orthogonal
injections of Rm into Rn. A novel feature of the proof is a Morrey–Sobolev type embedding theorem
on the product manifold O(n,m)×Rm, valid for Sobolev maps which factor through the evaluation
map Φ : O(n,m)× Rm → Rn, Φ(π, x) = π(x).

2010 Mathematics Subject Classification. Primary: 46E35; Secondary: 28A78, 46E40, 30L99, 31B15,
51M35, 53C30.

Keywords and Phrases. Hausdorff dimension, Sobolev mapping, potential theory, Grassmannian man-
ifold, Stiefel manifold.

1. Introduction

This article contributes to a recent series of papers [3], [4], [5], [15], [7] on the quantitative
dimension distortion of Sobolev maps acting on generic members in parameterized families of
subsets of their domain.

The historical origins of this research program lie in the theory of quasiconformal mappings, and
especially, in the foundational work done by Frederick Gehring in the 1960’s. Gehring’s signature
theorem on the ACL property of quasiconformal maps, [9], is largely responsible for the extensive
development which has subsequently occurred, both in the internal theory of quasiconformal maps
on Euclidean space and in general metric contexts, as well as in the striking external applications
of that theory in areas such as Riemannian geometry, geometric group theory, and dynamics.

The absolute continuity of Euclidean quasiconformal maps, or more generally of Sobolev maps,
along lines implies that the image under such a map f of almost every line parallel to a given
direction v ∈ Sn−1 is (locally) rectifiable and hence has Hausdorff dimension at most one. Here
“almost every” refers to the Lebesgue measure on the orthogonal complement v⊥, or equivalently,
to the Hausdorff (n− 1)-measure on v⊥.

In [11], Gehring and Väisälä gave sharp, quantitative bounds for the distortion of dimension by
quasiconformal maps. The precise formula for these bounds involves the exponent p(n,K) of higher
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2 ZOLTÁN M. BALOGH, PERTTI MATTILA, AND JEREMY T. TYSON

integrability for K-quasiconformal maps and reads as follows: for a subset E of a domain Ω ⊂ Rn,
n ≥ 2, and a K-quasiconformal map f : Ω→ Rn, one has

(
1− n

p(n,K)

)(
1

dimE
− 1

n

)
≤ 1

dim f(E)
− 1

n
≤
(

1− n

p(n,K)

)−1( 1

dimE
− 1

n

)
,

or equivalently,

(1.1) 0 <
(p(n,K)− n)s

p(n,K)− s ≤ dim f(E) ≤ p(n,K) dimE

p(n,K)− n+ dimE
< n .

According to Gehring’s celebrated higher integrability theorem [10], the quantity

p(n,K) := sup{p : every K-quasiconformal f between domains in Rn is in W 1,p
loc }

is strictly greater than n, for each n ≥ 2. The exact value of p(n,K) remains a well-known open
problem in dimensions n ≥ 3; when n = 2 the value p(2,K) = 2K/(K − 1) was obtained by Astala
[2], with concomitant implications for dimension distortion.

It is nowadays well understood that the requirement of quasiconformality is unnecessary for
the upper bound in (1.1), which indeed holds for arbitrary supercritical Sobolev mappings. More
precisely, if E ⊂ Ω ⊂ Rn has σ-finite s-dimensional Hausdorff measure for some s < n and f is a
W 1,p mapping with p > n defined on Ω, then f(E) is a null set for the (ps)/(p−n+ s)-dimensional
Hausdorff measure. See Kaufman [17] for a proof of this fact as well as results demonstrating its
sharpness.

The following result from [3] extends the preceding observations to subspaces of arbitrary dimen-
sion and to the full spectrum of Hausdorff measures. Here and henceforth in this paper, for integers
0 < m < n we denote by G(n,m) the Grassmannian manifold consisting of all m-dimensional linear
subspaces of Rn. For a point a in the orthogonal complement V ⊥ of V ∈ G(n,m), we denote by
Va = V +a the affine subspace parallel to V and passing through a. See section 4 for the definition
of the metric space-valued Sobolev space W 1,p(Ω : Y ).

Theorem 1.1. Let f ∈W 1,p(Ω, Y ) be a Sobolev map from a domain Ω ⊂ Rn to a complete separable
metric space Y , where p > n. Let V ∈ G(n,m) for some m with 0 < m < n. For each α such that

(1.2) m < α ≤ pm

p− n+m

we have

(1.3) Hα(f(Va ∩ Ω)) = 0

for Hβ-almost every a ∈ V ⊥, where

(1.4) β = β(p, α) = (n−m)− (1− m

α
)p.

The value of β(p, α) in Theorem 1.1 is best possible. Note that β(p, α) = 0 if and only if
α = pm/(p − n + m); recalling that H0 is the counting measure, one observes that Theorem 1.1
recovers the universal dimension upper bound discussed previously.

The proof of Theorem 1.1 takes advantage of the rectilinear product structure inherent to its
formulation, to wit, the decomposition Rn = V ⊕ V ⊥. This simple geometric structure greatly
simplifies the analysis. For instance, the fibers Va are disjoint and hence no interference between
fibers arises in the control of the dimensions of their images under f . Moreover, the rigid product
structure is perfectly adapted to the decomposition of Rn into dyadic cubes, and the proof runs
efficiently via the sharp Morrey–Sobolev embedding theorem for cubes and the equivalence of
Hausdorff and dyadic Hausdorff measures.

In this paper we address the following problem, which was explicitly posed in [3, Problem 6.1].
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Question 1.2. Given n, m, p and α as in the statement of Theorem 1.1, how large can be a
collection of subspaces in G(n,m), all of whose dimensions are increased to α by a W 1,p Sobolev
mapping?

The Grassmannian G(n,m) is a smooth manifold of dimension m(n−m). It admits a transitive
action by the orthogonal group O(n), leading to the standard representation of G(n,m) as a
homogeneous space:

(1.5) G(n,m) ' O(n)/O(m)×O(n−m).

In addition to its standard Riemannian metric, G(n,m) admits several geometrically natural, mu-
tually comparable metrics, with respect to each of which O(n) acts by isometries. We can make
Question 1.2 more precise by asking for estimates for the Hausdorff dimension of that collection
of subspaces with respect to any one of these mutually comparable metrics. We review metrics on
Grassmannians in section 2.

We now state our main theorem.

Theorem 1.3. Let f ∈W 1,p(Ω, Y ) be a Sobolev map from a domain Ω ⊂ Rn to a complete separable
metric space Y , where p > n. Let m be an integer with 0 < m < n and let α satisfy (1.2). Then
the Grassmannian exceptional set

Eα := {V ∈ G(n,m) : HαY (f(V ∩ Ω)) > 0}
is a null set for the γ-dimensional Hausdorff measure on G(n,m), where

(1.6) γ = γ(p, α) = m(n−m)− (1− m

α
)p.

Observe that the value for γ in (1.6) is analogous to that for β in (1.4), giving an improved
bound relative to the dimension of the parameterizing space (n − m = dimV ⊥ in Theorem 1.1;
m(n−m) = dimG(n,m) in Theorem 1.3). In the case m = 1, the Grassmannian G(n, 1) coincides
with the real projective space Pn−1

R , and the values of β and γ agree. In fact, Theorem 1.3 follows

immediately from Theorem 1.1 in the special case m = 1 by working in charts on Pn−1
R .

For m ≥ 2 we cannot derive Theorem 1.3 directly from Theorem 1.1 as the parameterizing
Grassmannian G(n,m) has dimension strictly larger than n−m. Instead, we lift the problem from
G(n,m) to the Stiefel manifold O(n,m) of orthogonal injections of Rm into Rn. This is done via the
representation G(n,m) ' O(n,m)/O(m), where O(m) acts on O(n,m) by precomposition. The
various metrics on G(n,m) described above lift to O(n) invariant metrics on O(n,m), and Theorem
1.3 follows directly from

Theorem 1.4. Let f ∈ W 1,p(Ω, Y ), m and α be as in Theorem 1.3. Then the Stiefel exceptional
set Fα := {π ∈ O(n,m) : HαY (f(π(Rm) ∩ Ω) > 0} is a null set for the (γ + dimO(m))-dimensional
Hausdorff measure on O(n,m), where γ is defined as in (1.6).

The Stiefel manifold O(n,m) is an O(m) bundle over G(n,m). In particular, O(n,m) has
dimension equal to

N := dimG(n,m) + dimO(m) = m(n−m) + 1
2m(m− 1).

In order to derive Theorem 1.3 from Theorem 1.4, we use the bundle structure of O(n,m) over
G(n,m) to show that Fα = Eα ×O(m) (locally), and hence dimFα = dimEα + dimO(m).

In Theorem 1.4 the role of the rectilinear decomposition Rn = V ⊕ V ⊥ and the foliation of Rn
by the fibers Va, a ∈ V ⊥, has been replaced by the product space O(n,m) × Rm and the fibers
π(Rm), π ∈ O(n,m). Note, however, that the overall dimension dimO(n,m) + dimRm = N + m
is typically much larger than n. Thus Theorem 1.1, which was formulated in the supercritical case
p > n, cannot be directly applied.



4 ZOLTÁN M. BALOGH, PERTTI MATTILA, AND JEREMY T. TYSON

In the framework of Theorem 1.1, the subcritical case (p < n) was previously addressed by Hencl
and Honźık [15]. In [15, Theorem 1.1], a weak form of the conclusion of Theorem 1.1 is obtained in
the case α ≤ p < n. To wit, the Hausdorff measure statement in (1.3) is replaced by the dimension
estimate dim f(Va ∩ Ω) ≥ α, and the conclusion about vanishing Hβ measure is similarly replaced
by a dimension estimate. The result of Hencl and Honźık can be applied towards Theorem 1.4 by
working in charts on O(n,m), yielding the stated conclusion at the level of Hausdorff dimension.
We obtain a slight improvement by deriving results on the level of the Hausdorff measures. It does
not appear that such improvement can be obtained using the methods of [15] (see, for example,
the discussion in the second paragraph following the statement of Theorem 1.1 in that reference).

Our proof of Theorem 1.4 is rather different from the argument of Hencl and Honźık, relying
heavily on the homogeneous structure of the Grassmannian and Stiefel manifolds. In particular,
we make a careful analysis of the evaluation mapping Φ : O(n,m)× Rm → Rn, defined by

(1.7) Φ(π, x) = π x.

We obtain a new Morrey–Sobolev-type embedding theorem for Sobolev maps which factor through
the evaluation map (valid even in the ‘subcritical’ case p < N +m) by applying the coarea formula
and estimates for the Jacobian of Φ. We believe that such estimates, and especially the tools
used to obtain them, are of independent interest. In order to obtain the desired precise statement
about Hausdorff measure, we also need a strong form of the Morrey-Sobolev embedding with the
same domain on both sides of the inequality. To this end, we show that the images of cubes in
O(n,m)× Rm under the evaluation map are John domains.

It is natural to inquire about the sharpness of the estimates in Theorem 1.3 and 1.4. The
estimate in Theorem 1.1 is optimal for all choices of the data n, m, p and α, cf. Theorem 1.4 in [3].
In particular, as previously mentioned, it is well-known that

dim f(E) ≤ mp

p− n+m

whenever f ∈ W 1,p(Ω, Y ) and E ⊂ Ω satisfies dimE = m. Note that β(p, α) = 0 if and only if
α = mp

n−m+p , where β(p, α) is defined in (1.4). On the other hand, the value

(1.8) γ

(
α,

mp

p− n+m

)
= (n−m)(m− 1) = dimG(n− 1,m− 1).

is suggestive. Intuitively we could think that if f blows up even a single lower dimensional subspace
U then this would yield a rather large exceptional set in G(n,m), because then all m dimensional
spaces V containing U will be also blown up. Although we are unable to completely implement
this idea to obtain a sharp example for all choices of the data, we can give an example valid for
W 1,p maps with p in some range (n, n+ ε0) which is asymptotically sharp as p→ n. See Example
5.1. The following question remains.

Question 1.5. Is the value γ = γ(p, α) in Theorem 1.3 best possible?

We conclude this introduction with a brief outline of the paper. In section 2 we recall several well
studied metrics on the Grassmannian and Stiefel manifolds. The mutual comparability of these
metrics is well known, but we provide a short proof for the sake of completeness. In section 3 we
develop a series of technical tools used in the proofs of our main results. In particular, we describe
the metric and analytic properties of the evaluation mapping Φ. Section 4 contains the proofs of
Theorem 1.4 and its corollary, our main Theorem 1.3. In the concluding section 5 we present an
example related to Question 1.5 as discussed in the preceding paragraph.
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2. Background on Grassmannian and Stiefel manifolds

In this section we describe several geometrically natural metrics on the Grassmannian manifold

G(n,m) = {V : V an m-dimensional linear subspace of Rn}
and the (compact) Stiefel manifold1

O(n,m) = {π : Rm → Rn : 〈πx, πy〉 = 〈x, y〉 ∀x, y ∈ Rm}
= {π ∈ Rn×m : πTπ = idm} .

Here we write 〈·, ·〉 for the standard Euclidean inner product and we identify linear maps Rk → R`
with `× k matrices.

2.1. Homogeneous structure of Grassmannian and Stiefel manifolds. The group O(n) acts
on O(n,m) by postcomposition, and the stabilizer of a point π ∈ O(n,m) identifies with O(n−m)
(acting on the orthogonal complement im(π)⊥ of the image of π, im(π)). Thus

O(n,m) ' O(n)/O(n−m).

The group O(m) acts on O(n,m) by precomposition, and the orbit of π ∈ O(n,m) under this action
identifies with im(π) ∈ G(n,m). Thus

G(n,m) ' O(n,m)/O(m) ' O(n)/(O(m)×O(n−m)).

Note that when π ∈ O(n,m) with V = im(π), the map ππT coincides with the orthogonal projection
PV : Rn → V .

In what follows, we denote by ||A||F =
√

tr(ATA) the Frobenius norm on matrices and by ||A||
the operator norm. We recall the estimates ||A|| ≤ ||A||F ≤

√
m ||A|| for an n×m matrix A. Note

that ||π|| = 1 for all π ∈ O(n,m).

2.2. Metrics on Stiefel manifolds. We first introduce the Frobenius metric

(2.1) dF (π, ρ) := ||π − ρ||F , π, ρ ∈ O(n,m).

Under the standard identification of n ×m matrices with Rn×m, dF coincides with the standard
Euclidean metric.

The metric dF is well suited to study metric properties of the evaluation map (1.7). However,
the internal structure of O(n,m) in this metric is not so clear. For instance, it is not clear whether
or not (O(n,m), dF ) is a quasiconvex metric space, or whether balls are connected. For this reason
we will also work with a Riemannian distance function dg on O(n,m). Recalling that the tangent
space to O(n,m) at a point π0 is

(2.2) Tπ0O(n,m) = {B ∈ Rn×m : πT0 B +BTπ0 = 0} ,
we fix the Riemannian metric g on O(n,m) given by

gπ0(B1, B2) := tr(BT
1 B2), π0 ∈ O(n,m), B1, B2 ∈ Tπ0O(n,m).

Note that under the identification described above, this corresponds to the induced Riemannian
tensor from the ambient Euclidean space Rn×m.

In order to ensure that our conclusions in Theorem 1.4 are well stated, we need to know that
this metric is comparable to dF . This is the content of the following proposition.

Proposition 2.1. There exists a constant C > 0 so that C−1dF ≤ dg ≤ CdF .

1The Stiefel manifold is usually defined as the space of orthonomal m-frames in Rn. This space is canonically
identified with O(n,m) via the bijection π ↔ (π(e1), . . . , π(em)), where e1, . . . , em denotes the standard basis in Rm.
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Proof. Since O(n,m) is compact, it suffices to prove that these two metrics are equivalent on small
scales, e.g., to prove that there exists δ > 0 so that the ratio dg(π, ρ)/dF (π, ρ) is bounded away from
zero and infinity for 0 < d(π, ρ) ≤ δ. This is proved in Proposition II.1 of [16] under the restriction
m ≤ n/2. An easy modification of the proof addresses the remaining case m ≥ n/2.2 �

2.3. Metrics on Grassmannian manifolds. We describe three mutually comparable metrics
on the Grassmannian G(n,m). Each of these metrics admits an explicit formula in terms of the
so-called principal angles between two m-dimensional subspaces. We first recall this concept.

Fix elements V,W ∈ G(n,m). Choose unit vectors v1 ∈ V and w1 ∈ W such that 〈v1, w1〉 =
min〈v, w〉 where the minimum is over all unit vectors v ∈ V , w ∈ W . Next, choose unit vectors
v2 ∈ V and w2 ∈ W such that 〈v2, w2〉 = min〈v, w〉, where this time the minimum is over all unit
vectors v ∈ V with 〈v, v1〉 = 0 and w ∈W with 〈w,w1〉 = 0. Continuing inductively, define vj and
wj for all j = 1, . . . ,m. The vectors v1, . . . , vm and w1, . . . , wm are the principal vectors associated
to the pair V,W , and the angles θj = arccos〈vj , wj〉 are the corresponding principal angles.

The principal angles between elements in G(n,m) can be efficiently computed in terms of repre-
senting transformations in O(n,m). Let π, ρ ∈ O(n,m) and consider a singular value decomposition

(2.3) πTρ = UDŨT ,

i.e. U, Ũ ∈ O(m) and D is a diagonal matrix with nonnegative diagonal entries. It is clear that the
diagonal matrix D is unaffected by precomposition of either π or ρ by orthogonal matrices, hence
the entries in D depend only on the image subspaces. In fact, if we assume, as we may without
loss of generality, that the diagonal entries d11, . . . , dmm of D are nonincreasing, then djj = cos θj ,
j = 1, . . . ,m, where θ1, . . . , θm denote the principal angles between V = im(π) and W = im(ρ).

We refer the reader to [8] for further details.

Procrustes metric. This metric is frequently employed in applications of Grassmannians to sta-
tistical shape analysis, see [6] or [12]. It is obtained by a standard quotient construction applied to
the Frobenius metric dF on O(n,m). Define the Procrustes metric

(2.4) dF (π, ρ) := inf
g∈O(m)

||π g − ρ||F ,

It is easy to check that dF induces a metric on O(n,m)/O(m) ' G(n,m); we use the same notation
for this metric.

An explicit formula for the Procrustes metric in terms of principal angles is

(2.5) dF (V,W ) = 2

√√√√
m∑

j=1

sin2(θj/2) .

Indeed, according to the solution of the classical orthogonal Procrustes problem [12, Chapter 4], the

infimum in (2.4) is achieved for g = UŨT , where U and Ũ are defined via (2.3). Then

||π − ρ g||2F = 2(m− trD) = 4
∑

j

sin2(θj/2).

2In Appendix B of [16], in the argument following equation (B3), reverse the roles of k = m and n−k and project
into a different k × k submatrix. Note also that the argument in [16] is presented for the complex Stiefel manifold
and must be slightly reworded to apply to the real case.
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Projector metric. Another natural O(n) invariant metric on G(n,m) arises from the identification
of elements V ∈ G(n,m) with orthogonal projectors PV : Rn → V . Define

(2.6) dP (V,W ) := ||PV − PW ||F .
We will again use the same notation to denote the corresponding metric on O(n,m), given by

(2.7) dP (π, ρ) = ||ππT − ρρT ||F .
The projector metric dP also admits an explicit expression in term of principal angles:

(2.8) dP (V,W ) =

√√√√2

m∑

j=1

sin2 θj .

The formula in (2.8) can be obtained from (2.7) using the definition of the Frobenius norm and the
singular value decomposition (2.3).

Geodesic metric. The Riemanian metric tensor g on O(n,m) defined above is O(m) invariant, and
descends to a metric tensor (still denoted g) on G(n,m). Wong [19] proved that the corresponding
geodesic metric is given in terms of principal angles by the explicit formula

(2.9) dg(V,W ) =

√√√√
m∑

j=1

θ2
j .

In view of (2.5), (2.8) and (2.9), together with the fact that all principal angles θj lie in the
interval [0, π/2] (so sin θj ' θj), the following proposition is clear.

Proposition 2.2. The Procrustes, projector and geodesic metrics on G(n,m) are mutually com-
parable. That is there exists C > 0 so that C−1d1 ≤ d2 ≤ Cd1, where d1, d2 ∈ {dF , dP , dg}.

We emphasize that the metrics dF and dF on O(n,m) are not comparable. Thus some care
must be taken in appropriately formulating statements regarding Hausdorff measure and dimension
in the parameter space O(n,m). Note, however, that the quotient map from (O(n,m), dF ) to
(G(n,m), dF ) is 1-Lipschitz.

3. Metric and analytic properties of the evaluation mapping

In this section we study the evaluation map Φ : O(n,m) × Rm → Rn defined in (1.7). The
primary metric fact which we will prove is that restrictions of Φ to spherical shells in the Rm
factor are Lipschitz quotient maps. This fact has an analytic counterpart: the Jacobian of Φ is
uniformly bounded away from zero and infinity on such spherical shells. Finally, we show that Φ is
a submersion on O(n,m)× (Rm \ {0}) and use this fact to verify the Ahlfors regularity of its level
sets.

Notation. We denote by B(x, r) the closed ball with center x and radius r in a metric space X.
Unless otherwise specified, we work with the metric dF on the Stiefel manifold O(n,m). We equip
O(n,m)×Rm with the product metric dF ×d∞ (where d∞ denotes the `∞ metric on Rm), we write
p = (π, x) for points in O(n,m)×Rm, and we consider cubes Q(p0, r) = BdF (π0, r)×Bd∞(x0, r) in
O(n,m)×Rm. We write a ∧ b, resp. a ∨ b, for the minimum, resp. maximum, of real numbers a, b.

Proposition 3.1. For any π0 ∈ O(n,m), for any 0 6= x0 ∈ Rm and for any 0 < r ≤ 1, we have

B

(
π0x0,

1

4
√
m

(1 ∧ |x0|)r
)
⊂ Φ(Q(p0, r)) ⊂ B(π0x0, 2

√
n(1 ∨ |x0|)r).
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In the previous proposition we used the Euclidean metric on the target Rn.
A map Φ : X → Y between metric spaces is said to be a (local) Lipschitz quotient map

with constant C if there exists r0 > 0 so that for any x ∈ X and any 0 < r ≤ r0, we have
BY (Φ(x), C−1r) ⊂ Φ(BX(x, r)) ⊂ BY (Φ(x), Cr). Proposition 3.1 implies that Φ is a Lipschitz
quotient map on sets O(n,m)× {x : L−1 ≤ |x| ≤ L}.
Proof. The right hand inclusion is proven as follows. If (π, x) ∈ Q(p0, r), then (recall that ||A||
denotes the operator norm of a matrix A, while |x| denotes the Euclidean norm of a point x)

|π x− π0 x0| ≤ ||π|| |x− x0|+ ||π − π0|| |x0|
≤ √n||π|| d∞(x, x0) + ||π − π0||F |x0|
≤ (
√
n+ |x0|)r

≤ 2
√
n (1 ∨ |x0|)r

as desired. To prove the left hand inclusion, let y ∈ Rn satisfy |π0 x0 − y| ≤ (4
√
m)−1(1 ∧ |x0|)r.

Then |y| ≥ (1 − (4
√
m)−1r)|x0| ≥ 1

2 |x0|. Set z = tπ0 x0, where t is chosen so that |z| = |y|. Then

z ∈ B(π0 x0, (4
√
m)−1(1 ∧ |x0|)r). Pick A ∈ O(n) so that Az = y and ||A− idn || = |y−z|

|z| ≤ r/
√
m.

Let π = Aπ0, then ||π − π0|| ≤ ||A− idn || ≤ r/
√
m and so ||π − π0||F ≤ r. Finally, let x = π−1

0 z,
then d∞(x, x0) ≤ |x − x0| = |z − π0 x0| ≤ r/4 < r. Hence y = Az = π x with π ∈ BdF (π0, r) and
x ∈ Bd∞(x0, r), i.e., (π, x) ∈ Q(p0, r). �

A domain Ω ⊂ Rn is a John domain if there exists y0 ∈ Ω (the John center) and a constant
A > 0 (the John constant) so that every point y ∈ Ω can be joined to y0 by a rectifiable curve γ
with the property that, for each z ∈ γ, the length of the subcurve of γ from y to z is bounded above
by Adist(z, ∂Ω). The importance of John domains for us is the fact (see Proposition 4.1) that the
Morrey–Sobolev embedding theorem holds on such domains, in the same form as for Euclidean
balls.

The following lemma is elementary. For a metric space X, let B(X) denote the collection of all
metric balls in X.

Lemma 3.2. Let X be a metric space such that all elements of B(X) are John domains with a
universal John constant A. If f : X → Y is a Lipschitz quotient surjection with constant C, then
all elements of {f(B) : B ∈ B(X)} are John domains with John constant C2A.

Proposition 3.3. For each L > 0, π0 ∈ O(n,m), x0 ∈ Rm, L−1 ≤ |x0| ≤ L and 0 < r ≤ 1
2 |x0|,

the set Φ(Q(p0, r)) is a John domain with center π0 x0 and John constant A depending only on L,
m and n.

Proof. Consider O(n,m) × Rm equipped with the product metric dg × d∞, where dg denotes the
Riemannian metric on O(n,m). This is a geodesic space, hence its metric balls are John do-
mains, with a universal John constant [13, Corollary 9.5]. By Proposition 2.1 and the bi-Lipschitz
invariance of the John domain condition, balls in (O(n,m) × Rm, dF × d∞) are John domains
with a universal John constant. We complete the proof by applying the preceding lemma with
X = O(n,m)× {x : L−1 ≤ |x| ≤ L}, f = Φ, and Y = {y ∈ Rn : L−1 ≤ |y| ≤ L}. �

In what follows, we write (Rn)∗ := Rn \ {0} and similarly for (Rm)∗.

Proposition 3.4. The evaluation map Φ is a submersion of O(n,m)× (Rm)∗ to (Rn)∗.

Proof. The differential of Φ, at π0 ∈ O(n,m) and 0 6= x0 ∈ Rm, is DΦ(π0,x0)(B, v) = B x0 + π0 v.
Recall that the tangent space to O(n,m) was identified in (2.2). We identify the tangent spaces of
(Rm)∗ and (Rn)∗, with Rm and Rn respectively. In order to show that DΦ(π0,x0) has full rank, we
verify the following stronger statement:
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Claim 3.5. For each w ∈ Rn and each B ∈ Tπ0O(n,m), there exists B̃ ∈ Tπ0O(n,m) and v ∈ Rm

so that πT0 B = πT0 B̃ and B̃ x0 + π0 v = w.

We consider π0 as an n × m matrix, whose columns are orthonormal. Let π⊥0 ∈ O(n, n − m)
correspond to an n × (n −m) matrix so that the columns of π0 and π⊥0 (taken together) form an
orthonormal basis of Rn. Then πT0 π

⊥
0 = 0 while (π⊥0 )T π⊥0 = idn−m.

Let C = πT0 B. By (2.2), C is skew-symmetric. Define

B̃ := π0C +
1

|x0|2
π⊥0 (π⊥0 )TwxT0 .

Then

πT0 B̃ = C +
1

|x0|2
πT0 π

⊥
0 (π⊥0 )TwxT0 = C = πT0 B

and (again by (2.2)), B̃ ∈ Tπ0O(n,m). Define v := πT0 w − Cx0. Then

B̃ x0 + π0 v = π0C x0 +
1

|x0|2
π⊥0 (π⊥0 )TwxT0 x0 + π0π

T
0 w − π0Cx0

= π⊥0 (π⊥0 )Tw + π0π
T
0 w

= Pim(π⊥0 )(w) + Pim(π0)(w) = Pim(π0)⊥(w) + Pim(π0)(w) = w.

The proof is complete. �

It follows from Proposition 3.4 that every point y of (Rn)∗ is a regular value of Φ and so, for all
such y, Φ−1(y) is a smooth submanifold of dimension N + m − n. Moreover, Φ−1(y) is compact,
since it is a closed submanifold of O(n,m)× Sm−1(|y|).

The conclusions in the following proposition do not depend on the choice of metric on O(n,m)×
Rm up to bi-Lipschitz equivalence. For convenience, in the proof we work with the metric

d((π1, x1), (π2, x2)) = ||π1 − π2||+ |x1 − x2| .
Proposition 3.6. (1) O(n,m)× Rm is Ahlfors (N +m)-regular.

(2) For each 0 6= y ∈ Rn, Φ−1(y) is Ahlfors (N+m−n)-regular. The Ahlfors regularity constant
depends on |y|, but remains bounded on spherical shells {y ∈ Rn : L−1 ≤ |y| ≤ L}.

Proof. Every smooth compact Riemannian manifold is Ahlfors regular in its dimension, and prod-
ucts of Ahlfors regular metric measure spaces are Ahlfors regular. These remarks suffice to deduce
(1) and the first assertion in (2).

It remains to verify that the Ahlfors regularity constant of Φ−1(y) remains bounded for |y|
bounded away from zero and infinity. We use an invariance property of the evaluation mapping
under rotations and scalings. Given y 6= 0, there exists Ay ∈ O(n) so that Ay(

y
|y|) = e1, where e1

denotes the first vector in the standard basis of Rn. Then the map

(π, x) 7→ (Ayπ, |y|−1x)

is a bijection from Φ−1(y) to Φ−1(e1). We claim that it is L-bi-Lipschitz. Indeed, for (π1, x1) and
(π2, x2) in Φ−1(y),

||Ayπ1 −Ayπ2||+
∣∣∣∣
x1

|y| −
x2

|y|

∣∣∣∣ = ||Ay(π1 − π2)||+ |x1 − x2|
|y| ≤ ||π1 − π2||+ L|x1 − x2|

and similarly ||Ayπ1 − Ayπ2|| + |x1|y| − x2
|y| | ≥ ||π1 − π2|| + L−1|x1 − x2|. It follows that the Ahlfors

regularity constant for Φ−1(y) can be bounded in terms of L when L−1 ≤ |y| ≤ L, as asserted. �
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For a linear map L : V → W between Hilbert spaces V and W with dimV ≥ dimW = n, we
denote by JnL the Jacobian (or n-dimensional coarea factor) of L, defined as follows:

Jn(L) =
√

det(L ◦ LT ),

where LT denotes the transpose of L. For the evaluation map Φ, we abbreviate

(JΦ)p := Jn(DΦp).

We will employ the following coarea formula (see, for example, Theorem 2.93 in [1] for the case
of Lipschitz mappings and M = RN ):

Proposition 3.7 (Coarea formula). Let M be a smooth d-dimensional Riemannian manifold,
d ≥ n, let F : M → Rn be a smooth map, and let g : M → [0,∞] be Borel. Then

(3.1)

∫

M
g(x) Jn(DFx) dx =

∫

Rn

(∫

{F=y}
g(z) dz

)
dy.

In (3.1) we use the Riemannian volume element on M and on the level sets of F . We will apply
this formula to the map Φ : M → Rn where M = O(n,m) × Rm. We also make use of the fact
that the volume measure on M is comparable to the Hausdorff (N +m)-measure, and the volume
measure on level sets Φ−1(y) is comparable to the Hausdorff (N + m − n)-measure on spherical
shells {x : L−1 ≤ |x| ≤ L} in Rm (with comparison constant depending on L).

The following proposition is an analytic version of Proposition 3.1, and a strengthening of Propo-
sition 3.4.

Proposition 3.8. There exists a constant C > 0 so that for each L > 1 we have

1

CLn
≤ (JΦ)(π0,x0) ≤ CLn

whenever π0 ∈ O(n,m) and x0 ∈ Rm such that L−1 ≤ |x0| ≤ L.

Proof. We derive the desired conclusion as a consequence of the Ahlfors regularity of the level sets.
For two positive quantities A and B, we write A ≈ B to mean that the ratio of A and B is bounded
above and below by absolute constants depending only on the dimensions m and n.

Let p0 = (π0, x0) ∈ O(n,m) × Rm and assume that L−1 ≤ |x0| ≤ L. Let Q be a small cube
centered at p0 and contained in O(n,m) × (Rm)∗. By the continuity of the Jacobian p 7→ (JΦ)p,
by the coarea formula (3.1), and by Proposition 3.6, we have

(JΦ)p0 r
N+m ≈ (JΦ)(π0,x0)HN+m(Q) ≈

∫

Q
(JΦ)p dHN+m(p)

≈
∫

Q
(JΦ)p dp =

∫

Rn

(∫

Φ−1(y)
χQ(q) dq

)
dy

≈
∫

Φ(Q)
HN+m−n(Φ−1(y) ∩Q) dy ≈ rN+m−nHn(Φ(Q)).

By Proposition 3.1, Hn(Φ(Q)) . Lnrn and Hn(Φ(Q)) & L−nrn. The proof is complete. �

4. Proof of the main theorems

In this section we prove our main theorems, Theorem 1.4 and Theorem 1.3. We begin by recalling
the notion of Sobolev mappings valued in metric spaces and the Morrey–Sobolev embedding the-
orem for supercritical Sobolev maps defined on John domains. Next, we prove a Morrey–Sobolev
type estimate for maps from the product manifold M = O(n,m) × Rm which factor through
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the evaluation map. The novelty here is that our estimate holds even for W 1,p mappings with
p < N + m = dimM . Finally, we use such estimates to implement the scheme from [3] and
establish Theorem 1.4. With a little more work, Theorem 1.3 follows as a corollary of Theorem 1.4.

Let Y be a complete, separable metric space and let Ω be a domain in Rn. A map f : Ω → Y
has a Borel function g : Ω→ [0,∞] as an upper gradient if the inequality

dY (f(γ(a)), f(γ(b))) ≤
∫

γ
g ds

holds for every rectifiable curve γ : [a, b] → Ω. For the purposes of this paper, the Sobolev space
W 1,p(Ω : Y ) consists of all maps f : Ω → Y which are p-integrable (e.g., x 7→ dY (f(x), y0) is in
Lp(Ω) for some fixed basepoint y0 ∈ Y ) and which carry a p-integrable upper gradient. In fact, we
will only work with continuous maps f ; this entails no loss of generality for us since we restrict our
attention to the supercritical case p > n. In general the p-integrability condition on f may depend
on the choice of basepoint y0 (at least when Ω is unbounded), however, the integrability of f will
play no role in our arguments.

The definition of the Y -valued Sobolev space W 1,p easily extends to the case when the domain
is a Riemannian manifold.

For the next result, see, for example, [13, Theorem 9.7].

Theorem 4.1 (Morrey–Sobolev estimate on John domains). Let Ω be a domain in Rn, let p > n,
and let Y be a complete separable metric space. For A > 0 there exists a constant C = C(n, p,A)
so that

diam f(U) ≤ C(diamU)1−n/p
(∫

U
gp
)1/p

whenever f is a continuous map in W 1,p(Ω : Y ) with upper gradient g ∈ Lp(Ω), and U ⊂ Ω is a
John domain with John constant A.

We are now ready to begin the proof of Theorem 1.4. Let Ω ⊂ Rn be a bounded domain, let p > n
and let f ∈ W 1,p(Ω : Y ) where Y is a complete separable metric space. We may assume without
loss of generality that 0 6∈ Ω. By decomposing (Rn)∗ into a countable disjoint family of spherical
shells and using the countable subadditivity of Hausdorff measure and a dilation argument, we can
assume without loss of generality that

Ω ⊂ B(0, 2) \B(0, 1
2).

Hence the prior results established in this section and the previous section are applicable with
L = 2.

Let Ω′ = Φ−1(Ω) ⊂ O(n,m)× Rm and define maps F : Ω′ → Y and G : Ω′ → R by

F = f ◦ Φ and G = g ◦ Φ.

Then F ∈ W 1,p(Ω′ : Y ) and CG is an upper gradient for F for some absolute constant C (by the
chain rule for upper gradients and Proposition 3.8). In fact, we will not explicitly make use of the
Sobolev membership of F , but rather the following Morrey–Sobolev type inequality for F which
follows directly from its counterpart for f . Here we emphasize again that while f is supercritical
(p > n), F need not be so (in general, we may have p < N +m). Recall that N = dimO(n,m).

Proposition 4.2. There exists C = C(n,m, p,Ω) > 0 so that for all sufficiently small cubes Q′ ⊂ Ω′

we have

diamF (Q′) ≤ C(diamQ′)
1−N+m

p

(∫

Q′
G(π, x)p dπ dx

)1/p

.



12 ZOLTÁN M. BALOGH, PERTTI MATTILA, AND JEREMY T. TYSON

Proof. By Proposition 3.3, there exists a constant A > 0 depending only on m so that Φ(Q′) is a
John domain with John constant A. By Theorem 4.1, we know that

diam f(Φ(Q′)) ≤ C(diam Φ(Q′))
1−np

(∫

Φ(Q′)
g(y)p dy

)1/p

for some C = C(n, p,A) = C(n,m, p). Since F = f ◦Φ and diam(Φ(Q′)) ≤ C diamQ′, we conclude
that

(4.1) diamF (Q′) ≤ C(diamQ′)
1−np

(∫

Φ(Q′)
g(y)p dy

)1/p

.

In order to bring the integral of Gp into the game, we shall further estimate the right hand side of
(4.1) by using the co-area formula (3.1) applied to the map Φ and the Lp function G = g ◦ Φ. To
this end, we also employ Proposition 3.8 to control the Jacobian of Φ. We estimate

∫

Q′
G(π, x)p dπ dx ≈

∫

Q′
G(π, x)p (JΦ)(π,x) dHN (π) dHm(x)

=

∫

O(n,m)×Rm

g(Φ(π, x))p (JΦ)(π,x) χQ′(π, x) dHN (π) dHm(x)

≈
∫

Rn

∫

Φ−1(y)
g(Φ(π, x))p χQ′(π, x) dHN+m−n(π, x) dHn(y)

=

∫

Φ(Q′)
g(y)pHN+m−n(Φ−1(y) ∩Q′) dHn(y)

Applying the Ahlfors (N +m− n)-regularity of the level sets Φ−1(y) we conclude that

(4.2)

∫

Q′
G(π, x)p dπ dx ≈ (diamQ′)N+m−n

∫

Φ(Q′)
g(y)p dy .

Combining (4.1) and (4.2) we obtained the desired conclusion. �

With Proposition 4.2 in hand, Theorem 1.4 can be deduced by working in charts on the Rie-
mannian manifold O(n,m)× (Rm)∗, or by directly reproducing the argument from [3]. For the sake
of completeness, we briefly recapitulate part of this argument.

Proof of Theorem 1.4. Let γ = γ(p, α) be given as in (1.6). Suppose that the Stiefel exceptional
set

Fα = {π ∈ O(n,m) : HαY (f(im(π) ∩ Ω)) > 0}
has positiveHγ+dimO(m) measure. We may find a compact subset C in Fα whose measure is positive
and finite. By Frostman’s lemma [18, Theorem 8.8], there exists a positive and finite Borel measure
µ supported on C satisfying the growth condition

µ(B(π, r)) ≤ rγ+dimO(m)

for all π ∈ C and all r > 0. Proposition 4.3 below allows us to conclude that HαY (F (({π} × Rm) ∩
Φ−1(Ω))) = 0 for µ-almost every a ∈ C. Since Φ({π}×Rm) = im(π), this contradicts the definition
of C, and completes the proof of Theorem 1.4. �
Proposition 4.3. Let Ω′ be a domain in O(n,m) × Rm. Let E ⊂ O(n,m) be a set of finite

Hγ+dimO(m) measure and assume that µ is a positive Borel measure supported on E satisfying the
growth condition µ(B(π, r)) ≤ rγ+dimO(m) for all π ∈ O(n,m) and all r > 0. Let F ∈W 1,p(Ω′ : Y ).
Then HαY (F (({π} × Rm) ∩ Φ−1(Ω))) = 0 for µ-almost every a ∈ E.
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Proposition 4.3 is analogous to [3, Proposition 3.2] and its proof is similar. Only one issue
deserves further discussion. In the proof of Proposition 3.2 in [3] the equivalence of Hausdorff
measure and dyadic Hausdorff measure is used to eliminate overlap between covering sets in the
parameter space. We must deal with this issue in our setting also. We used the `∞ metric on
the Rm factor precisely for this reason. On the O(n,m) factor we could work locally in charts
and use dyadic Hausdorff measures. Alternatively, and more simply, we can use the Besicovitch
covering theorem to treat the issue of overlapping sets. Note that compact subsets of Riemannian
manifolds admit a Besicovitch covering theorem [14, Example 1.15(c)]. We can modify the proof of
Proposition 3.2 in [3], relaxing the dyadic assumption by appropriate use of a Besicovitch covering
theorem. We leave the details to the reader.

Finally, we show how to deduce Theorem 1.3 from Theorem 1.4.

Proof of Theorem 1.3. The GrassmannianG(n,m) identifies with the quotientO(n,m)/O(m), where
O(m) acts on O(n,m) by precomposition. In alternate language, O(n,m) has the structure of an
O(m) bundle over G(n,m). By the definition of the Stiefel and Grassmannian exceptional sets, we
see that Fα is an O(m) bundle over Eα. Working in charts, we easily conclude that

dimFα = dimEα + dimO(m).

Furthermore, Eα is a null set for the Hγ measure on G(n,m) (for some γ > 0) if and only if Fα is

a null set for the Hγ+dimO(m) measure on O(n,m). Theorem 1.4 allows us to conclude that Fα is

a null set for Hγ(p,α)+dimO(m). Hence Eα is a null set for Hγ(p,α). The proof is complete. �

5. A concluding example

In this final section we address the issue of sharpness in Theorem 1.3. Although we do not
presently know whether or not the value of γ(p, α) in (1.6) is best possible, we can show that it is
asymptotically sharp for p near n. This can be seen in the following example.

Example 5.1. Fix integers 0 < m < n and a line L in G(n, 1). The subset

A(L) := {V ∈ G(n,m) : L ⊂ V }
can be identified with G(n − 1,m − 1) as follows. Fix an element f ∈ O(n, n − 1) such that
im(f) = L⊥, and define Θ : G(n− 1,m− 1)→ A(L) by Θ(W ) = f(W )⊕ L.

The map Θ is an isometry, when A(L) is equipped with the subspace metric and the two Grass-
mannians are both equipped with any one of the metrics described in section 2. This is easily
seen by recalling that each of those metrics admits a representation in terms of principal angles.
Note that all but one of the principal angles between Θ(W1) and Θ(W2) coincide with the prin-
cipal angles between W1 and W2, while the remaining principal angle between Θ(W1) and Θ(W2)
(corresponding to the direction L which is common to both) is equal to zero.

In particular, the Hausdorff dimension of A(L) is equal to dimG(n−1,m−1) = (m−1)(n−m).
Now fix a value ε, 0 < ε < n−m

2m−1 , and set p = n+ ε. The universal upper bound for dimensions

of images of L under W 1,p maps is
p · 1

p− n+ 1
=
n+ ε

1 + ε
.

Set

α :=
n+ ε

1 + 2ε
.

By [17, Theorem 3], there exists a map f ∈ W 1,p(Rn : Rn) so that dim f(L) ≥ n+ε
1+ε , hence

Hα(f(L)) > 0. By the choice of ε, we have α > m. In view of its definition, we see that A(L) is a
subset of the exceptional set Eα = {V : Hα(f(V )) > 0}. Hence

dimEα ≥ (m− 1)(n−m).



14 ZOLTÁN M. BALOGH, PERTTI MATTILA, AND JEREMY T. TYSON

In order to see how sharp is this example, we compare this value with the value of γ(p, α) coming
from Theorem 1.3. For the data p = n+ ε and α = n+ε

1+2ε we have

dimEα ≤ γ(p, α) = m(n−m)− p(1− m

α
) = (m− 1)(n−m) + (2m− 1)ε.

We conclude that the estimate in Theorem 1.3 is asymptotically sharp as p→ n.

It remains an open question to improve the quality of this example to obtain sharper bounds on
the dimension and/or to increase the range of Sobolev exponents covered.
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Anal. Non Linéaire, 29(3):401–411, 2012.
[16] O. Henkel. Sphere-packing bounds in the Grassmann and Stiefel manifolds. IEEE Trans. Inform. Theory,

51(10):3445–3456, 2005.
[17] R. P. Kaufman. Sobolev spaces, dimension, and random series. Proc. Amer. Math. Soc., 128(2):427–431, 2000.
[18] P. Mattila. Geometry of sets and measures in Euclidean spaces: fractals and rectifiability, volume 44 of Cambridge

Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1995.
[19] Y.-C. Wong. Differential geometry of Grassmann manifolds. Proc. Nat. Acad. Sci. U.S.A., 57:589–594, 1967.

Mathematisches Institut, Universität Bern, Sidlerstrasse 5, 3012 Bern, Switzerland.
E-mail address: zoltan.balogh@math.unibe.ch

Department of Mathematics, Helsinki University, P.O. Box 68 (Gustaf Hällströminkatu 2b), FI-
00014 Helsinki, Finland

E-mail address: pertti.mattila@helsinki.fi

Department of Mathematics, University of Illinois, 1409 West Green St., Urbana, IL 61801, USA.
E-mail address: tyson@math.uiuc.edu


	1

