Tissue-specific metabolism of benzo[a]pyrene in rainbow trout (Oncorhynchus mykiss): a comparison between the liver and immune organs.

Möller, Anja-Maria; Hermsen, Corinna; Floehr, Tilman; Lamoree, Marja H; Segner, Helmut (2014). Tissue-specific metabolism of benzo[a]pyrene in rainbow trout (Oncorhynchus mykiss): a comparison between the liver and immune organs. Drug metabolism and disposition, 42(1), pp. 111-118. American Society for Pharmacology and Experimental Therapeutics 10.1124/dmd.113.053777

[img] Text
Drug Metab Dispos-2014-Möller-111-8.pdf - Published Version
Restricted to registered users only
Available under License Publisher holds Copyright.

Download (424kB) | Request a copy

Polycyclic aromatic hydrocarbons (PAHs) are immunotoxicants in fish. In mammals, phase I metabolites are believed to be critically involved in the immunotoxicity of PAHs. This mechanism has been suggested for fish as well. The present study investigates the capacity of immune organs (head kidney, spleen) of rainbow trout, Oncorhynchus mykiss, to metabolize the prototypic PAH, benzo[a]pyrene (BaP). To this end, we analyzed 1) the induction of enzymatic capacity measured as 7-ethoxyresorufin-O-deethylase (EROD) activity in immune organs compared with liver, 2) the organ profiles of BaP metabolites generated in vivo, and 3) rates of microsomal BaP metabolite production in vitro. All measurements were done for control fish and for fish treated with an intraperitoneal injection of 15 mg BaP/kg body weight. In exposed trout, the liver, head kidney, and spleen contained similar levels of BaP, whereas EROD induction differed significantly between the organs, with liver showing the highest induction factor (132.8×), followed by head kidney (38.4×) and spleen (1.4×). Likewise, rates of microsomal metabolite formation experienced the highest induction in the liver of BaP-exposed trout, followed by the head kidney and spleen. Microsomes from control fish displayed tissue-specific differences in metabolite production. In contrast, in BaP-exposed trout, microsomes of all organs produced the potentially immunotoxic BaP-7,8-dihydrodiol as the main metabolite. The findings from this study show that PAHs, like BaP, are distributed into immune organs of fish and provide the first evidence that immune organs possess inducible PAH metabolism leading to in situ production of potentially immunotoxic PAH metabolites.

Item Type:

Journal Article (Original Article)

Division/Institute:

05 Veterinary Medicine > Department of Infectious Diseases and Pathobiology (DIP)
05 Veterinary Medicine > Department of Infectious Diseases and Pathobiology (DIP) > Center for Fish and Wildlife Health (FIWI)

UniBE Contributor:

Möller, Anja-Maria; Hermsen, Corinna; Floehr, Tilman and Segner, Helmut

Subjects:

600 Technology > 630 Agriculture

ISSN:

0090-9556

Publisher:

American Society for Pharmacology and Experimental Therapeutics

Language:

English

Submitter:

Lucia Gugger-Raaflaub

Date Deposited:

23 Apr 2015 12:50

Last Modified:

23 Apr 2015 12:50

Publisher DOI:

10.1124/dmd.113.053777

PubMed ID:

24144719

BORIS DOI:

10.7892/boris.66995

URI:

https://boris.unibe.ch/id/eprint/66995

Actions (login required)

Edit item Edit item
Provide Feedback