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Abstract. Real cameras have a limited depth of field. The resulting de-
focus blur is a valuable cue for estimating the depth structure of a scene.
Using coded apertures, depth can be estimated from a single frame. For
optical flow estimation between frames, however, the depth dependent
degradation can introduce errors. These errors are most prominent when
objects move relative to the focal plane of the camera. We incorporate
coded aperture defocus blur into optical flow estimation and allow for
piecewise smooth 3D motion of objects. With coded aperture flow, we
can establish dense correspondences between pixels in succeeding coded
aperture frames. We compare several approaches to compute accurate
correspondences for coded aperture images showing objects with arbi-
trary 3D motion.
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1 Introduction

Optical flow algorithms estimate the apparent motion between succeeding frames
of a video sequence [6] by comparing the brightness values of pixels. Optical flow
is an approximation of the projection of 3D motion to the image plane. Tra-
ditionally, optical flow algorithms consider pinpoint sharp images, without any
degradations other than moderate levels of noise [3]. Real recording conditions,
however, rarely allow to capture pinpoint sharp images. When the amount of
light in a scene is limited, real cameras require a finite aperture to capture im-
ages with a usable signal to noise ratio. Finite aperture sizes introduce defocus
blur into images of non fronto-planar scenes. We found that this depth depen-
dent image degradation can lead to erroneous optical flow estimates. However,
the size of the blur provides depth information. In fact, defocus blur is a fre-
quently exploited depth cue [18].

Conventional depth from defocus approaches acquire several images of a
static scene to estimate a depth map and reconstruct sharp textures. By intro-
ducing a coded mask into the aperture of a conventional camera, depth estimates
as well as texture restoration can be obtained from a single input image [9, 21].
This single image method is highly suited to provide monocular depth cues in
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dynamic scenes, where 3D location and shape of every object in a scene changes
independently from frame to frame.

For the estimation of pixel trajectories over time, coded aperture frames are
a challenging input. The appearance of objects changes dramatically whenever
they move relative to the focal plane. Conventional optical flow algorithms do
not take this change into account. In this work we consider several approaches
to model the effect of defocus blur in optical flow estimation. We evaluate these
formulations in the particular setup of high frequency aperture masks that are
optimized for the estimation of depth from a single input frame.

2 Related Work

The estimation of optical flow from image sequences is a challenging problem.
For a summary and evaluation of modern approaches we refer the reader to the
work of Sun et al. [19] and Baker et al. [3]. In our work we build upon the TV-L1

optical flow approach of Zach et al. [23] and its anisotropic extension by Werl-
berger et al. [22]. These approaches estimate dense optical flow with a robust
L1 norm for comparing brightness values in two frames and (anisotropic) total
variation regularization. The algorithms use a dual optimization scheme that, as
a GPU implementation, allows for real time dense flow estimation with state-
of-the-art accuracy. While most optical flow algorithms ignore depth altogether,
some approaches assign each pixel to a layer and can thus achieve improved
regularization and high accuracy, see e.g. Ref. [20]. Still, the layers do not in-
corporate a model for defocus blur that may change from frame to frame. In
contrast, the filter flow by Seitz and Baker [14] models relative blur between two
images, and allows to compute accurate correspondences also in the presence of
defocus blur. For the high frequency apertures that enable single frame depth
estimation, relative blurring is not applicable. Thus for coded aperture flow de-
blurring is necessary for the comparison of points that move in depth. In section
Sec. 3 we adapt the filter flow to coded apertures to evaluate its performance in
our application.

Other approaches to consider defocus effects in dynamic scenes have been
introduced by Kubota et al. [8] and Shroff et al. [17]. Both build on the as-
sumption that objects do not move in depth. Shroff et al. acquire focal stacks of
moving scenes. They initialize optical flow estimation on images with the same
focus settings. Then they refine this flow by considering images with different
focal settings, re-blurring deblurred images according to the current, constant
depth estimate. Kubota et al. avoid deblurring by applying blur to both images.
They evaluate all possible combinations of blur for the best correspondences,
before a common depth map is estimated with a depth-from-defocus approach.
In contrast to this approach, coded apertures allow to estimate depth from a
single frame. In our setup we can therefore simplify correspondence estimation
by applying the estimated depth map directly.

Finite apertures improve signal to noise ratio by admitting more light than
the ideal pinhole camera. When instead the exposure time is extended, the im-
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ages are affected by motion blur. The modeling of motion blur can improve the
performance of tracking [7] or dense optical flow estimation [13]. However, ex-
tended exposure time does not introduce additional information on the depth
structure of a dynamic scene such as provided by the coded apertures. To obtain
depth information Xu and Jia consider stereo images and then remove depth de-
pendent motion blur. However, even for the stereo camera setup, scene motion
is restricted to mainly translational camera motion. Independent object motion
is not allowed.

In our work we profit from defocus blur as a depth cue. There are some recent
advances in single image depth estimation using a conventional aperture, e.g.
Ref. [10]. However, using a conventional aperture sacrifices high frequency image
content in the low-pass property of the full-aperture blur. Coded aperture images
preserve high frequency content more faithfully. This preservation property can
be used for improved deblurring results. By evaluating the quality of the images
deblurred with different depth hypotheses, a depth map can be estimated, [9,21].
In contrast, filter-based coded aperture depth estimation [5, 11] evaluates the
blurred images themselves for depth estimation. More accurate results can be
obtained with less computational burden. To obtain smoother and temporally
consistent depth maps, Martinello and Favaro [12] use succeeding frames in a
coded aperture image sequence for regularization of the depth map. However,
they do not compute explicit correspondences between frames and exploit only
objects that move parallel to the image plane. We focus on scenes where objects
can move arbitrarily and estimate their motion from frame to frame.

3 Brightness Constancy Assumptions

The basic assumption of optical flow estimation is that the brightness of a pixel
does not change through the motion [6]. Given two focused images I1, I2 : Ω →
[0, 1] of a moving scene, this brightness constancy assumption can be written as
I1(x) = I2(x + u) for x ∈ Ω ⊂ R2 and a displacement vector u ∈ R2. To solve
this equation, usually the Taylor linearization I2(x + u) ≈ I2(x) + u>∇I2(x) is
used. For focused images, the estimation of the displacement u is then based on
the data-term

DF (x, u) = I2(x) + u>∇I2(x)− I1(x) . (1)

When a planar scene is out of focus, we measure the defocused image B1 = k1∗I1
were the defocus blur is expressed as the convolution with a depth dependent
point spread function (PSF) k1. In this case, the brightness of a pixel x depends
on the PSF and the brightness of the neighboring pixels. The PSF is depth
dependent, so in sum the brightness of a pixel depends on the neighborhood
and its depth. When a surface point moves towards the camera, its brightness
in every frame is different.

In coded aperture photography, aperture masks are designed to effect a tex-
ture highly differently for different depths [15]. For optical flow estimation based
on the brightness constancy assumption, highly depth dependent brightness is a
hinderance. On the other hand, the coded aperture masks allow for single frame
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depth estimation. We can profit from the estimated depth to improve optical
flow estimation.

In our evaluation, we concentrate on the estimation of optical flow on coded
aperture images. For depth estimation we use the state-of-the-art algorithm of
Martinello and Favaro [11]. In the following we assume that a spatially variant
depth map di : Ω → R is given for all measured frames Bi.

We compare several approaches to obtain optical flow estimates for coded
aperture images. The first approach is based on the idea that high frequency
aperture masks conserve high image frequencies better than conventional aper-
tures. They therefore provide better deblurring results [9]. The deblurred images
Î1, Î2 are all-in-focus representation of the scene, for which the linearized bright-
ness constancy, Eq. (1), can be directly applied

DD(x, u) = Î2(x) + u>∇Î2(x)− Î1(x) (2)

Thereby we compute the images Îi by the conjugate gradient based, spatially
variant deblurring that has been applied successfully for coded aperture images
with multiple objects [16]. We use the optimized smoothness weight of 0.01
and 50 iterations. The advantage of operating optical flow estimation on the
deblurred image is that any state-of-the-art optical flow implementation can be
used out-of-the-box. The disadvantage is that we need to perform the ill-posed
procedure of deblurring twice. Apart from disturbance by deblurring artifacts,
we also have to deal with the computational burden of the deblurring.

Under the assumption of fronto-parallel scene patches we also consider a
second approach by adapting the idea of Refs. [14,17] to coded aperture images.
We compare the measured image B2 to the re-blurred image kd2 ∗ Î1 where
kd2 is the PSF corresponding to the estimated depth in B2(x + u). Under the
assumption of local planarity, we can apply Taylor linearization and obtain the
brightness term

DS(x, u) = B2(x) + u>∇B2(x)−
(
kd2(x) ∗ Î1

)
(x) . (3)

In comparison to the therm DD in Eq. (2) we now only have to estimate the
deblurred image Î1. Still, this procedure can introduce deblurring artifacts that
might not be compensated by the convolution with kd2 .

Under the same assumptions as above, we also consider a third approach.
Based upon the idea of mutual blurring of Refs. [7,8,13] we compare the images
kd1 ∗B2 and kd2 ∗B1. Linearization leads to the brightness term

DM (x, u) =
(
kd1(x) ∗B2

)
(x) + u>∇

(
kd1(x) ∗B2

)
(x)−

(
kd2(x) ∗B1

)
(x) . (4)

This approach has the advantage that deblurring is not required. However, re-
lying on mutual blurring of defocused images potentially sacrifices those image
frequencies that are required for accurate optical flow estimation.

From the three above formulations of depth dependent brightness constancy
we want to evaluate which provides us with the most accurate flow estimates.
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Generally, scenes consist of multiple objects and therefore incorporate depth
discontinuities. The brightness of pixels at depth discontinuities is determined
by objects in the foreground as well as the background [2]. In this case con-
volution with a single, depth dependent PSF is not an accurate description.
Instead of introducing more elaborate defocus models, we decided to disable
the brightness constancy assumption for pixels close to discontinuities. We in-

troduce a weight function φd1(x) = exp(
∫
Nx
‖∇d1(x)‖2 dx

σd
) where Nx is a small

neighborhood around pixel x and σd a constant. This weight function disables
the brightness constancy assumption at known depth discontinuities, i.e., when
∇d1 is large. We set Nx to 1

4 the maximally considered blur size and fix σd = 3.
A further cue to depth discontinuities are occlusion boundaries of moving

objects. As proposed by Alvarez et al. [1] we therefore compare forward motion
estimate w and backward motion estimate v : Ω → R2. When the difference is
large a point is most probable occluded. We let φs(x) = exp(‖w(x)−v(x+w)‖2

σs
)

with the parameter σs set to 2% of the smallest image dimension. Our final
confidence in the brightness constancy is φw = φsφd.

4 Estimating Correspondence Fields

All brightness constancy assumptions introduced in the previous section provide
only one equation for the two unknown components of the displacement vector.
To solve for a dense optical flow field w : Ω → R2, x 7→ u =

(
w1

w2

)
, we additionally

assume piecewise smoothness of the flow. A typical difficulty is the determination
of the pieces to impose smoothness on. In conventional optical flow estimation,
only the images are available to determine regions. In coded aperture flow we
also have the depth map available. We expect the flow to be discontinuous at
the same locations where the depth of the scene changes rapidly.

To study the effect of coded aperture blur in optical flow estimation on a
comparable basis, we incorporate the modified brightness constancies and the
depth dependent regularization in the state-of-the-art optical flow of Werlberger
et al. [22]. For completeness, we here give a short summary of the approach
highlighting our modifications. For more details on the original optical flow al-
gorithm, we refer the reader to Ref. [22].

The first modification in our implementation is the data term. Instead of the
conventional brightness constancy, Eq. 1, we consider alternative expressions,
Eqs. (2) - (4). Additionally, we include an occlusion weight φw to circumvent
false brightness comparisons at object boundaries. The second modification is
to consider depth gradients for regularization. For the depth map normal ni =
∇di
‖∇di‖ and its perpendicular vector n⊥ we consider the diffusion tensor T =

exp(a‖∇di‖)nn> + n⊥(n⊥)>. Thus, our variational formulation of the problem
takes the form

min
w:Ω→R2

∑
x∈Ω

λ φw|Dq|+
2∑
i=1

ψε
(
(∇wi)>T∇wi

)
(5)
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(a) Wall (b) TriPlane (c) Slanted (d) Chair

Fig. 1: For the evaluation of coded aperture flow we render coded aperture frames
for scenes of which the 3D motion, i.e. depth maps for each frame and the 2D
projection of the motion, is known. From top to bottom: Input frames B1 and
B2 and ground truth 2D motion, color coded with the map in Fig. 4c

with Dq either of our brightness constancy formulations DD, DS or DM , λ > 0 a
constant and ψε the Huber-norm from Ref. [22]. Given the linearizations in Sect.
3 we can apply the solution scheme of Ref. [22]. For comparability we picked
suitable parameters of the algorithm for conventional optical flow estimation
and kept them fixed for all experiments. In detail, for normalized images we set
a = 0.20, λ = 50, and, from Ref. [22] ε = 0.1, θ = 1 in the solution scheme.

The implementation of Werlberger et al. works on a Gaussian image pyra-
mid to increase speed and obtain robust estimates for large displacements. To
compute DS and DM for downscaled images, we require corresponding PSFs
and depth maps. We downscale the PSF from the camera calibration, Sect. 5
to obtain PSFs for each level of the image pyramid. To obtain a down-sampled
depth map, we consider all depth levels that contribute to a pixel on a coarser
level and pick the depth level that is closest to the camera. This heuristic is mo-
tivated by the fact that for constant motion the projection of foreground motion
spans larger 2D displacements. In our experiments we use 6 levels of an image
pyramid with a down-sampling factor of 2.
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(a) (b) (c)

(d) (e) (f)

Fig. 2: Estimating conventional optical flow on defocused images with objects
moving in depth (scene Wall, Fig. 1) leads to erroneous flow estimation (a), (b).
Deblurring the defocused input image with the estimated depth map provides
visually pleasing images (c). Still, optical flow estimation between two deblurred
images is noisy (d). Better results can be obtained when only one image is
deblurred (e) or images are mutually blurred (f) (color coding with Fig. 4c).

5 Experiments

We evaluate the different approaches to calculate optical flow on coded aperture
frames in several experiments. First we perform evaluation on synthetic images
with known ground truth. Then we show results on real images.

5.1 Synthetic Experiments

We render several synthetic scenes with blur size between 4 and 11 pixels. The
rendered frames for the 5×5 optimized coded aperture from Ref. [15] are shown
in Fig. 1. The scenes contain different challenges ranging from a simple plane
moving away from the focal plane, Fig. 1a, to a complex object moving in space,
Fig. 1d. Note that for all experiments we keep all parameter of the algorithm
fixed. All flow fields in this work are visualized with the color scale in Fig. 4c
using black for points with φw(x) < 0.5 that are rejected as occluded.

Accuracy Evaluation In our first experiment, we evaluate the different ap-
proaches to coded aperture flow for their accuracy. First we observe that optical
flow estimation on defocused images with a conventional algorithm leads to noisy
results, Figs. 2a and 2b. We also find that on synthetic images with known PSF
and estimated depth map the results of the deblurring is visually very pleasing,
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Table 1: We compare the average endpoint error of different formulations of
brightness constancy. Computing optical flow (OF) on images with a conven-
tional, full aperture in most cases results in a smaller error than optical flow on
coded aperture images. Better results can be obtained when the estimated depth
map is incorporated in the brightness constancy assumption by using DD, DS

or DM although the estimated depth has a certain mean squared error.
OF, full OF, coded DD DS DM Depth

Wall 0.46 px 0.67 px 0.22 px 0.09 px 0.08 px 0.17 px2

TriPlane 0.28 px 0.30 px 0.23 px 0.21 px 0.15 px 0.55 px2

Slanted 0.68 px 0.85 px 0.49 px 0.10 px 0.06 px 0.20 px2

Chair 0.58 px 0.61 px 0.36 px 0.38 px 0.28 px 0.65 px2

Fig. 2c. Still, optical flow estimation between two deblurred images is noisy, Fig.
2d. Better results can be obtained by using re-blurred images or mutually blurred
images, Figs. 2e, 2f. By evaluating the endpoint error of the unoccluded optical
flow, Tab. 1, we observe that any formulation of depth dependent brightness im-
proves the agnostic approach. The improvement is clearly visible, even though
the estimated depth maps have a remaining depth estimation error. Over all our
synthetic data-sets we observe best performance by the data-term based on mu-
tual blurring. Although the deblurred images are visually pleasing, deblurring
artifacts seem to deteriorate the accuracy of other approaches to coded aperture
flow.

Similar results can be obtained for a variety of coded aperture masks pro-
posed in literature, see supplementary material.

In our second experiment we evaluate the robustness of the coded aperture
flow towards errors in the depth estimation. For our synthetic scenes, ground
truth depth maps are known. For additional comparison we also use the point-
wise depth estimates returned by the algorithm [11]. We compute flow fields
with these depth maps as input and observe that deblurring both input images
still gives the worst coded aperture flows, Tab. 2.

In the next experiment we evaluate the influence of the occlusion term. The
effect is most prominent in the Chair sequence. E.g. for data-term DM the
average endpoint error for setting ψw = 1 is 1.43 px. By setting ψw = ψd, i.e.
considering only the depth dependent cue, we can reduce the error to 0.97 px.
Setting ψw = ψs the error is reduced to 0.56 px. By combination of the terms
with ψw = ψsψd a further reduction of the error to 0.28 px can be obtained (see
supplement for the other data-sets).

Runtime Evaluation We implemented the coded aperture flow estimation
using MATLAB. We use the same basic framework for each of the data-terms.
Deblurring two images and estimating optical flow with data-term DD takes 81
seconds an a 3.2GHz Mac Pro. Deblurring one image and employing data-term
DS takes 72 seconds. The deblurring free data-term DM allows for optical flow
estimation in 61 seconds.
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Table 2: We evaluate the robustness of the different approaches to coded aper-
ture flow towards the estimated depth map. Due to deblurring artifacts, DD

has the highest endpoint error even when ground truth depth is known (a).
The point-wise estimated depth map is slightly less accurate than its smoothed
version, but allows for comparable flow estimation, see (b) and Tab. 1

(a)

GT depth DD DS DM

Wall 0.14 px 0.06 px 0.07 px

TriPlane 0.10 px 0.06 px 0.04 px

Slanted 0.37 px 0.08 px 0.05 px

Chair 0.12 px 0.12 px 0.11 px

(b)

Pointwise DD DS DM Depth

Wall 0.20 px 0.09 px 0.08 px 0.18 px2

TriPlane 0.25 px 0.21 px 0.15 px 0.58 px2

Slanted 0.47 px 0.10 px 0.06 px 0.21 px2

Chair 0.34 px 0.34 px 0.26 px 0.68 px2

5.2 Real Images

We acquire real image sequences by introducing the binary 5 × 5 mask from
Ref. [15] into a Canon EF f/1.8 II lens [4]. We attach the lens to a Canon EOS
5D, Mark II camera that we set to continuous shooting mode. The camera is
calibrated by acquiring a single point spread function (PSF) from a calibration
point light source. The blur kernels for all other scales are generated synthetically
from the measured image by downscaling to adjust to different depth levels.

Fig. 4 shows the scene train, and the optical flow we obtain with conven-
tional algorithms and with coded aperture flow. Note how only the data-terms
in Eqs. (3) and (4) can estimate the motion of the whole train correctly, even
for the weakly textured locomotive. In the scene walking a person approaches
the camera. Here all coded aperture approaches provide a good flow estimate
in spite of noisy depth maps. However, deblurring both images introduces more
noise on the background stones to the right than the other two approaches.

6 Conclusion

We consider dense optical flow between images that are acquired with a coded
aperture. Unlike the ideal sharp image usually assumed for optical flow estima-
tion, coded aperture defocus allows for single frames depth estimation. We show
that conventional optical flow estimation is unsuitable to estimate accurate mo-
tion for objects moving relative to the focus plane. Instead, we evaluate three
different formulations that take defocus maps into consideration for flow esti-
mation. We find that the most accurate results can be obtained by comparing
a measured image to a reblurred deconvolved image or by comparing mutually
blurred images. As the latter approach is faster, we plan to use this approach in
our future work on coded aperture video. Generally, the high accuracy that can
be obtained with all evaluated methods also shows that coded aperture defocus
blur preserves a sufficient amount of high frequency texture for dense optical
flow estimation.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3: A toy train backs away from the focal plane, (a) and (b). Coded apertures
allow to estimate depth independently for each frame (c) and eases to deblur
the images (d). Ignoring coded defocus effects in optical flow estimation (e)
leads to inaccurate flow. Deblurring the images before conventional optical flow
estimation (f) is susceptible to deblurring effects. Better results can be obtained
by a combination of deblurring and re-blurring (g) or the application of mutual
blur (h).

(a) (b)

w
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w
2

−10 0 10

−10
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10
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10
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(d)

(e) (f) (g)

Fig. 4: A person approaches the camera, (a) Although the depth map is noisy
(color coded with (d)) coded aperture flow estimation provides reasonable flow
estimates (e) by deblurring both input images, (f) by re-blurring a deblurred
image and (g) by applying mutual blur (color coded with (c)).
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