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The recently developed X-ray constrained extremely localized molecular orbital

(XC-ELMO) technique is a potentially useful tool for the determination and

analysis of experimental electron densities. Molecular orbitals strictly localized

on atoms, bonds or functional groups allow one to combine the quantum-

mechanical rigour of the wavefunction-based approaches with the easy chemical

interpretability typical of the traditional multipole models. In this paper, using

very high quality X-ray diffraction data for the glycylglycine crystal, a detailed

assessment of the capabilities and limitations of this new method is given. In

particular, the effects of constraining the ELMO wavefunctions to experimental

X-ray structure-factor amplitudes and the ability of the method to reproduce

benchmark electron distributions have been accurately investigated. Topolo-

gical analysis of the XC-ELMO electron densities and of the zero-flux surface-

integrated charges and dipole moments shows that the new strategy is already

reliable, provided that sufficiently flexible basis sets are used. These analyses

also raise new questions and call for further improvements of the method.

1. Abbreviations

General

ELMO, extremely localized molecular orbital.

XC-ELMO, X-ray constrained extremely localized molecular

orbital.

IAM, independent atom model.

MM, multipole model.

fFh;obsg; fFh;calcg, set of experimentally observed or calculated

structure-factor amplitudes.

�ðFh;obsÞ; �ðF
2
h;obsÞ, standard uncertainty associated with the

experimental structure-factor amplitude Fh;obs or the corre-

sponding intensity F2
h;obs.

�, overall h-independent scale factor which multiplies the

calculated structure-factor amplitudes.

Electron densities

�MM=XC, multipole-fitted (X-ray constrained) electron density;

refined against experimental structure factors.

�MM/P-B3LYP, multipole-fitted periodic B3LYP electron density;

refined against B3LYP/6-31G(2d,2p) crystal-phase calculated

structure factors.

�MM=ELMO, multipole-fitted ELMO electron density; refined

against ELMO gas-phase calculated structure factors.

�MM/XC-ELMO, multipole-fitted XC-ELMO electron density;

refined against XC-ELMO calculated structure factors.

�P-B3LYP, electron density calculated directly from the periodic

B3LYP/6-31G(2d,2p) computation.

�ELMO, electron density calculated directly from an ELMO

gas-phase wavefunction.

�XC-ELMO, electron density calculated directly from an XC-

ELMO wavefunction.

�HF, electron density calculated directly from a Hartree–Fock

gas-phase wavefunction.

�XC-HF, electron density calculated directly from an XC-

Hartree–Fock wavefunction.

�IAM, independent atom model density; sum of spherically

averaged electron densities of isolated atoms.

2. Introduction

According to the Born interpretation of quantum mechanics,

the wavefunction is the fundamental entity that contains all

the information of a system. In fact, all the physical quantities

can be obtained as expectation values of the corresponding

Hermitian operators. Moreover, Hohenberg & Kohn (1964)

have shown that the ground-state electron density and the

wavefunction of an electronic system can be used alternatively

as full descriptors of the ground state and, therefore, it would

be possible to obtain all properties of a system from its
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electron-density distribution, which is an observable and,

unlike the wavefunction, is only a three-dimensional function

of the spatial coordinates.

The prominence conferred by the Hohenberg & Kohn

theorem to the electron density together with the observation

that knowledge of the electron distribution and of its prop-

erties has profound consequences for the understanding and

the rationalization of chemical bonding (Coppens, 1997) have

significantly increased the importance of the accurate deter-

mination of electron densities in crystals by means of high-

resolution X-ray diffraction experiments (Gatti & Macchi,

2012). Nevertheless, the observed diffraction intensities do not

directly provide the electron density because only a finite

number of structure factors can be collected and, within the

kinematic approximation, their phase cannot be measured.

Consequently, the electron distribution in the unit cell can be

accurately reconstructed only by fitting a model against the

collected X-ray diffraction intensities. The parameters of this

model electron density are usually obtained minimizing the

difference between experimentally observed and calculated

structure factors. An alternative is represented by the maxi-

mization of the information entropy, which however would not

return an electron density separated from the thermal

smearing. For more discussion about this method, see for

example Roversi et al. (1998).

In this context, the multipole models (Hirshfeld, 1971;

Stewart, 1972; Hansen & Coppens, 1978) are by far the most

widely adopted approaches. Since the total electron distribu-

tion is the sum of the aspherical atom-centred density func-

tions (also known as pseudoatoms), the resulting ground-state

electron density of a molecule is simply approximated by the

sum of atomic electron distributions deformed by the presence

of chemical interactions. This is the main reason why these

models offer an easy chemical interpretability and justifies

their widespread popularity. Notwithstanding this important

advantage, they also exhibit a non-negligible drawback: the

number of properties directly available from the model elec-

tron density is limited because the exact functional relation

between the ground-state electron distribution and the

ground-state wavefunction is practically unknown. Further-

more, the parameters of a multipole expansion may have a

strong correlation with the atomic anisotropic displacement

parameters (ADPs).

A possible solution to overcome the above-mentioned

drawbacks is offered by a work which dates back to 1969, thus

even before the appearance of multipole models. Clinton,

Nakhleh & Wunderlich (1969), Clinton, Galli & Massa (1969),

Clinton, Henderson & Prestia (1969), Clinton & Lamers

(1969) and Clinton, Galli, Henderson et al. (1969) proposed

obtaining wavefunctions or one-electron density matrices

constrained to experimental or theoretical X-ray diffraction

data. Since then, many researchers have drawn inspiration

from Clinton’s original ideas (Clinton & Massa, 1972; Clinton

et al., 1973; Frishberg & Massa, 1981; Massa et al., 1985;

Tanaka, 1988; Howard et al., 1994; Hibbs et al., 2005; Cassam-

Chenaı̈, 1995; Snyder & Stevens, 1999; Gillet et al., 2001; Gillet,

2007). Within this framework, the most promising method is

the X-ray constrained (initially called ‘experimental’) wave-

function approach developed by Jayatilaka and co-workers

(Jayatilaka, 1998; Jayatilaka & Grimwood, 2001; Grimwood &

Jayatilaka, 2001; Bytheway, Grimwood & Jayatilaka, 2002;

Bytheway, Grimwood, Figgis et al., 2002; Grimwood et al.,

2003; Hudák et al., 2010). This method provides a single Slater

determinant which, other than minimizing the corresponding

energy, reproduces a set of experimentally collected X-ray

structure-factor amplitudes within a predefined precision. The

strategy simply exploits the Lagrange multiplier technique to

variationally minimize a new functional given by the energy

associated with the single Slater determinant and an addi-

tional term represented by the statistical agreement with the

experimental diffraction data (namely, the experimental

constraint). In particular, the Lagrange multiplier is iteratively

adjusted until the desired agreement level is achieved between

the structure-factor amplitudes obtained from the diffraction

experiment and those calculated from the single Slater

determinant ansatz. Therefore, the constrained wavefunction

reproduces the experimental data within a given precision,

and, as it possesses all the quantum-mechanical features of a

wavefunction, it can also be used to compute those properties

that are not directly related to the experimental structure

factors used to determine the wavefunction itself (Grimwood

& Jayatilaka, 2001; Grimwood et al., 2003). Compared to the

multipole models, the approach enables one to obtain

quantum-mechanically rigorous electron densities, but it is

affected by a reduced chemical interpretability because the

canonical molecular orbitals are usually completely deloca-

lized over the whole system. Therefore, they are far from the

traditional and intuitive picture of a molecule constituted by

atoms, bonds and functional groups, typical of the pseudoatom

approaches.

One of us has recently devised a new technique to extract

from X-ray diffraction data a single Slater determinant built

up with molecular orbitals strictly localized (namely, without

tails) on molecular fragments, such as atoms, bonds or func-

tional groups (Genoni, 2013a,b). This novel strategy can

be considered as a combination of the experimentally

constrained wavefunction approach proposed by Jayatilaka

with the method developed by Stoll (Stoll et al., 1980) for the

determination of extremely localized molecular orbitals

(ELMOs). This synergy should be useful to solve the above-

mentioned drawbacks associated with the X-ray constrained

wavefunctions. Moreover, due to the complete absence of

tails, the ELMOs are directly transferable; thus they can be

computed on fragments of small model molecules and after-

wards properly exported to subunits belonging to more

complex systems such as macromolecules or polymers

(Genoni et al., 2005; Sironi et al., 2009). The ELMOs’ trans-

ferability is analogous to the well known pseudoatoms’

transferability within the framework of the multipole models.

In this view, new databases could be constructed from X-ray

constrained ELMOs (XC-ELMOs) and used to complement

the existing experimental (Pichon-Pesme et al., 1995, 2004;

Jelsch et al., 1998; Zarychta et al., 2007) or theoretical

(Koritsanszky et al., 2002; Volkov et al., 2004; Dittrich et al.,
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2004, 2006; Dominiak et al., 2007) libraries of pseudoatoms,

successfully used both for the refinement of macromolecular

crystallographic structures and for the evaluation of electro-

static properties in crystals.

In the present paper, we present a comprehensive assess-

ment of the performance of the XC-ELMO technique. In

particular, we analyse the machinery of the constraint proce-

dure, evaluating how much the unconstrained and the X-ray

constrained wavefunctions differ and to what extent the XC-

ELMO electron density is able to reproduce the ‘exact’ crystal

electron density. The latter is here approximated with two well

established methods, namely the multipole model density

fitted or, in analogy with the wavefunction approach,

constrained1 to the experimental structure factors, hereafter

�MM=XC, and the electron density directly obtained from a

periodic density functional theory (DFT) calculation with a

standard hybrid functional, hereafter �P-B3LYP. To accomplish

this task we have investigated the �-glycylglycine crystal,

already known from X-ray (Biswas et al., 1968) and neutron

(Kvick et al., 1977) diffraction experiments. Except for a

qualitative deformation electron-density study by Kvick et al.

(1979) and a spherical �-formalism refinement by Coppens et

al. (1979), to the best of our knowledge, no complete electron-

density refinement for this system has been reported in the

literature so far.

The paper is structured as follows. First, we summarize the

theory of the X-ray constrained ELMO technique, previously

presented in detail (Genoni, 2013a,b). We go on to describe

the experimental and computational methodologies and then

we analyse the results. We initially focus on the effects of the

fitting procedure, comparing the residual features and the

topological properties computed from unconstrained or X-ray

constrained ELMO electron densities (from now on �ELMO

and �XC-ELMO, respectively). In a second step, we compare

�ELMO and �XC-ELMO with the density from a periodic calcu-

lation (�P-B3LYP). In a third step, we project �ELMO and

�XC-ELMO in terms of multipoles, thus obtaining �MM=ELMO and

�MM/XC-ELMO, respectively, and we compare these densities

with multipole electron distributions fitted against the

experimental intensities (�MM=XC) or against theoretical

structure factors obtained from the periodic calculation

(�MM/P-B3LYP). This procedure allows us to compare all the

densities equally affected by the limitations of the multipolar

model. Finally, we investigate how the choice of initial para-

meters (fractional coordinates and ADPs of the atoms in the

unit cell) affects the XC-ELMO results and the convergence

of the fitting process. In the last section, we draw some

conclusions and discuss perspectives offered by this new

strategy.2

3. Theoretical background

3.1. Extremely localized molecular orbitals

In this section we will briefly introduce the extremely

localized molecular orbitals method proposed by Stoll et al.

(1980). This strategy is strictly connected to the earlier group

function method devised by McWeeny (1959, 1960, 1992) and

it can be considered one of the many theoretical approaches

that have been developed over the years in order to decom-

pose the global electronic wavefunction into functions

describing smaller subsets of electrons (Adams, 1961; Huzi-

naga & Cantu, 1971; Gilbert, 1974; Matsuoka, 1977; Stoll et al.,

1980; Smits & Altona, 1985; Francisco et al., 1992; Ordejón et

al., 1993; Couty et al., 1997; Fornili et al., 2003; Szekeres &

Surján, 2003).

Let us consider a 2N-electron closed-shell molecule and let

us introduce a localization scheme that subdivides the system

in exam into f fragments (e.g., atoms, bonds or functional

groups) that can overlap. Because of this fragmentation, each

generic subunit j is characterized by a local basis set

�j
¼ fj�j

	ig
Mj

	¼1, which is constituted by only the Mj basis

functions centred on the atoms belonging to the fragment.

Consequently, the extremely localized molecular orbitals

describing the subunit are expanded on �j and, therefore, the

generic �-th ELMO for the jth fragment can be written as:

’j
�i

�� ¼
PMj

	¼1

Cj
	� �

j
	i

�� : ð1Þ

Here it should be observed that predefined subunits may

overlap and, consequently, share atomic orbitals, which leads

to a natural non-orthogonality between ELMOs associated

with different fragments.

Following Stoll et al. (1980), we assume that the wave-

function describing the system is a normalized single Slater

determinant built up with extremely localized molecular

orbitals (ELMO wavefunction):

j�ELMOi ¼
1

½ð2NÞ!�1=2 det½S�

� ÂA½’1
1 ’

1
1 . . . ’1

n1
’1

n1
. . . ’f

1 ’
f
1 . . . ’f

nf
’f

nf
�

ð2Þ

where det½S� is the determinant of the overlap matrix between

the occupied ELMOs, ÂA is the anti-symmetrizer, nj is the

number of occupied ELMOs for the jth fragment and ’j
� is a

spin orbital with spatial part ’j
� and spin part �. The coeffi-

cients in equation (1) are obtained variationally minimizing

research papers

534 Leonardo H. R. Dos Santos et al. � Extremely localized molecular orbitals Acta Cryst. (2014). A70, 532–551

1 In this paper we adopt the terminology currently used in the literature. Thus,
the wavefunction fitted to the X-ray structure factors is called constrained, and
not restrained as would have been more intuitive for the crystallographic
community. In keeping with Jayatilaka (2012), the traditional multipolar fitting
can also be considered as an ‘X-ray constrained density function’. Therefore,
in this paper we will call the traditional multipolar model fitted to the X-ray
structure factors as ‘X-ray constrained multipolar model’ (MM/XC). Of
course, this nomenclature does not imply an additional constraint equation to
be satisfied, other than the least-squares minimization functions and those
already present in the multipolar fitting (e.g. electroneutrality condition).
When discussing local symmetry constraints on the multipolar model, which
implies that some parameters are not refined, we will refer to them as rigid
constraints to avoid ambiguity.

2 Supporting information contains additional experimental details, plots of
electron densities and their Laplacians, charges and dipoles in tabular form,
electrostatic potentials, residual density analysis of ELMO and XC-ELMO
densities and illustrative input and output files for unconstrained ELMO
calculations. It is available from the IUCr electronic archives (Reference:
TD5019).



the energy associated with the ELMO wavefunction, mini-

mization that is equivalent to solving self-consistently the

following modified Hartree–Fock equations for each subunit:

F̂Fj ’j
�i

�� ¼ "j
� ’

j
�i

�� ð3Þ

with F̂Fj as the modified Fock operator for the generic fragment

j given by

F̂Fj ¼ ð1� �̂�þ �̂�jy Þ F̂Fð1� �̂�þ �̂�jÞ ð4Þ

where F̂F is the usual Fock operator, �̂�j is the local density

operator for the jth subunit, which depends only on the

occupied ELMOs of the fragment, and �̂� is the global density

operator, which, on the contrary, depends on all the occupied

ELMOs of the system and, for this reason, couples all the

modified Hartree–Fock equations associated with the

different subunits.

Finally, it is worth mentioning that, due to the non-

orthogonality of the ELMOs, convergence problems and

instabilities may arise when solving equation (3) (Stoll et al.,

1980; Smits & Altona, 1985). To overcome these important

drawbacks, Fornili et al. (2003) have implemented a comple-

tely equivalent strategy for ELMOs determination which

consists in directly minimizing the ELMO energy through a

quasi-Newton procedure that exploits an approximated

Hessian. In particular, this Hessian is analytically computed

only at the first iteration, while it is afterwards updated

exploiting a variable metric algorithm that uses the Broyden–

Fletcher–Goldfarb–Shanno formula (Press et al., 1992).

3.2. X-ray constrained extremely localized molecular orbitals

In order to extract extremely localized molecular orbitals

from X-ray diffraction data it is necessary not only to minimize

the energy associated with the ELMO wavefunction as

discussed in the previous subsection, but also to reproduce a

set of collected structure-factor amplitudes fFh;obsg within a

predetermined desired agreement. In other words, this is

equivalent to looking for those ELMOs that minimize the

following functional:

J u½ � ¼ EELMO u½ � þ 
 �2 u½ � ��
� �

; ð5Þ

where ½u� indicates the functional dependence on the occupied

ELMOs, EELMO is the energy associated with the ELMO

wavefunction for the reference crystal unit, 
 is the Lagrange

multiplier representing the strength of the constraint asso-

ciated with the experimental data, � is the desired agreement

between theoretical and experimental values, and �2 is the

agreement statistics between the calculated and the observed

structure-factor amplitudes (Fh;calc and Fh;obs, respectively),

namely

�2
¼

1

Nr � Np

X
h

� Fh;calc

�� ��� Fh;obs

�� ��� �2

�2
h;obs

ð6Þ

with Nr as the number of considered experimental diffraction

data, Np as the number of adjustable parameters (in our case

only the Lagrange multiplier 
), h as the tern of Miller indexes

labelling the reflection and �h;obs as the standard uncertainty

associated with the experimental structure-factor amplitude

Fh;obs [i.e., �h;obs ¼ �ðFh;obsÞ]. All the calculated structure-

factor amplitudes are properly multiplied by an overall h-

independent scale factor �, determined in order to minimize

�2 as discussed in detail in a previous paper (Genoni, 2013b).

Moreover, in this work the set of collected structure-factor

amplitudes fFh;obsg was previously corrected for secondary

extinctions.

Following Jayatilaka’s philosophy (Jayatilaka, 1998; Jayati-

laka & Grimwood, 2001), the crystal is a set of non-interacting

units, which allows one to write the global wavefunction for

the crystal as

�cryst

�� i ¼
Y

k

�k

�� i; ð7Þ

where all the unit wavefunctions j�ki are related to each other

by means of the crystal symmetry operations and are formally

identical to the ELMO wavefunction given by equation (2).

Furthermore, assuming that all the non-interacting units

correspond to symmetry-unique portions of the crystal unit

cell, the unit-cell electron distribution can be expressed using

only the electron density �0ðrÞ associated with the ELMO

wavefunction j�0i of the reference crystal unit, namely

�cell rð Þ ¼
PNm

k¼1

�k rð Þ ¼
PNm

k¼1

�0 R�1
k r� rkð Þ

� �
; ð8Þ

where the Nm unit-cell electron distributions are related to the

reference one through the crystal symmetry operations

fRk; rkg. It is important to point out that equation (8) is exact

provided that �0ðrÞ is not obtained by means of an isolated

crystal unit calculation. Nevertheless, in this case, the previous

condition is not completely fulfilled since �0ðrÞ is the electron

density associated with the reference unit ELMO wavefunc-

tion j�0i that is obtained searching those extremely localized

molecular orbitals that minimize the functional given by

equation (5).

Now, defining the structure-factor operator

ÎIh ¼
PNm

k¼1 exp i2� Rkrþ rkð Þ � Bhð Þ
� �

¼ ÎIh;R þ i ÎIh;C; ð9Þ

where B is the reciprocal-lattice matrix and both ÎIh;R and ÎIh;C

(real and imaginary parts of ÎIh, respectively) are Hermitian

operators, it is possible to show that finding the ELMOs that

minimize the functional J½u� introduced above is equivalent to

solving self-consistently this new eigenvalue problem for each

fragment:

F̂F
j;exp

’j
�i

�� ¼ "j;exp
� ’j

�

�� i; ð10Þ

where the new modified Fock operator for the generic jth

subunit, F̂F
j;exp

, can be expressed as

F̂F
j;exp
¼ ð1� �̂�þ �̂�jy

Þ F̂Fð1� �̂�þ �̂�j
Þ

þ 

P

h

KhRefFh;calcgð1� �̂�þ �̂�
jy
Þ ÎIh;Rð1� �̂�þ �̂�

j
Þ

þ 

P

h

KhImfFh;calcgð1� �̂�þ �̂�
jy
Þ ÎIh;Cð1� �̂�þ �̂�

j
Þ

ð11Þ
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with

Kh ¼
2�

Nr � Np

�Fh;calc � Fh;obs

�2
h;obsFh;calc

: ð12Þ

As for the equations for the ‘theoretical’ ELMOs, also the

equations for the X-ray constrained extremely localized

molecular orbitals are coupled since all the operators F̂F
j;exp

depend on the global density operator �̂� which is constructed

with all the occupied ELMOs of the system. Furthermore, as

for the theoretical case, we have also implemented an analo-

gous quasi-Newton procedure to overcome possible conver-

gence problems and instabilities in the resolution of equation

(10) (Genoni, 2013a,b).

In order to compute a set of structure-factor amplitudes

fFh;calcg that properly takes into account the effects of the

thermal vibrations, we have followed the Stewart (1969)

thermal smearing scheme using the same equations proposed

by Jayatilaka and co-workers (Jayatilaka, 1998; Jayatilaka &

Grimwood, 2001), except for the fact that, for the calculation

of the Fourier transforms of basis function pairs, an Obara–

Saika scheme (Obara & Saika, 1986, 1988) with both vertical

and horizontal recurrence relations (Head-Gordon & Pople,

1988) has been implemented (Genoni, 2013a,b).

Owing to experimental errors in the collected experimental

structure-factor amplitudes, it is not necessary to force �2

equal to zero, but it is better to set the value of the desired

agreement � in equation (5) equal to 1, so that, at the end of

the calculations, the computed values are on average within

one standard deviation of the experimental data. However, as

already observed by Jayatilaka and co-workers (Grimwood &

Jayatilaka, 2001; Whitten et al., 2006; Jayatilaka et al., 2009;

Hudák et al., 2010), the convergence towards the desired

agreement is not always fast and straightforward. In order to

avoid large values of 
 producing only minimal improvements

in the �2 statistics and large unphysical changes of the energy,

the following termination criteria have recently been

proposed (Genoni, 2013b):

�2 < 1

��2

�


� �
i

¼
�2

i � �
2
i�1


i � 
i�1

> � 5� 10�1

jEel

i
� Eel


¼0j

jEel

¼0j

> 5� 10�4

8>>>>><
>>>>>:

: ð13Þ

While the first criterion is the traditional one, namely it checks

if the desired statistical agreement � ¼ 1:0 has been reached,

the second one avoids the case that a very large Lagrange

multiplier produces only very small improvements in the

agreement statistics. The third criterion ensures that the XC-

ELMO electronic energy does not excessively change

compared to the unconstrained ELMO electronic energy.

Although these criteria are quite reliable and well defined,

the termination of the fitting procedure in the X-ray

constrained approaches is still an open problem and will

deserve further investigations in the future.

4. Experimental and computational details

4.1. X-ray data collection and processing

�-Glycylglycine (Fig. 1a) was recrystallized by slow

evaporation of an n-propanol–water mixture. We have re-

determined the crystal structure by single-crystal X-ray

diffraction at 100 K. The temperature was stable within

�0.5 K. Details of data-collection and refinement procedures

are given in Table 1. Measurements were carried out on an

Agilent SuperNova diffractometer equipped with an Mo K�
Al-filtered microsource (Macchi et al., 2011) and an Oxford

Cryosystem 700 cryostream for low temperature. Data

collection, reduction and cell refinement were performed

using the CrysAlis Pro programs (Agilent Technologies, 2013).

A total of 2765 image frames were obtained from 33 !-scan

sets (1.0� oscillation angle) using three different exposure

times. The scan sets with low detector � offsets were measured

for 10 + 10 s, intermediate-angle images were collected for 30

+ 30 s and the high-angle images were measured for 60 + 60 s.

The unit-cell dimensions were determined by post-refinement

of 18 946 reflections (2.7� < � < 52.4�). An analytical absorp-

tion correction was applied using a multifaceted crystal model

based on expressions derived by Clark & Reid (1995) as

implemented in the SCALE3 ABSPACK scaling algorithm

(Agilent Technologies, 2013). A total of 38 933 reflections

were collected with a mean redundancy of 5.9. The resulting
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Figure 1
Experimental molecular structure of crystalline �-glycylglycine (a) and
strongest hydrogen-bond network (b). Thermal ellipsoids are drawn at
the 70% probability level. Symmetry codes: (i) �x + 1, y + 1

2, �z + 3
2; (ii) x

+ 1, y, z + 1; (iii) �x + 1, �y, �z + 1; (iv) �x + 1, y + 1
2, �z + 3

2.



data were merged using SORTAV (Blessing, 1987) giving

6597 independent reflections until a resolution of

sin �max=
 ¼ 1:12 Å�1 (�max = 52.6� for Mo K� radiation).

4.2. Spherical, independent atom refinement

Atomic coordinates and ADPs were taken from Biswas et

al. (1968) and refined on F2 applying the IAM and using all

data with full-matrix least-squares as implemented in

SHELXL (Sheldrick, 2008), within the WinGX package

(Farrugia, 1999). The weighting scheme wh ¼ ½�
2ðF2

h;obsÞ +

ðAPÞ
2
þ BP��1 was applied, where P = F2

h;obs=3þ 2F2
h;calc=3

and A = 0.0606, B = 0.0360. All non-hydrogen atoms were

refined anisotropically. X—H distances and hydrogen ADPs

were fixed according to experimental neutron diffraction data

(Kvick et al., 1977). As recommended by Blessing (1995), the

H-atom ADPs were scaled against the ADPs obtained for

the heavier atoms from the two experiments. An isotropic

extinction parameter was also refined according to the

empirical expression implemented in SHELXL, where Fh;calc

is multiplied by �½1þ 0:001"F2
h;calc


3= sinð2�hÞ�
�1=4, with � as

the overall scale factor and " as the extinction parameter,

which was refined to 0.007 (4).

4.3. Multipole refinement

The multipole refinement was performed using the XD2006

program suite (Volkov et al., 2006) and the Hansen–Coppens

formalism (Hansen & Coppens, 1978) that is able to model the

deformation fraction of �ðrÞ using atom-centred multipole

functions (also known as pseudoatoms) having the form

�atom rð Þ ¼ �core rð Þ þ Pv��valence � rð Þ þ��ðrÞ; ð14Þ

where

��ðrÞ ¼
Plmax

l¼0

�0lRlð�
0
lrÞ

Pþl

m¼�l

PlmYlmð�; ’Þ: ð15Þ

The core and spherical valence density (�core and �valence,

respectively) are composed of Hartree–Fock wavefunctions

expanded in Slater-type orbitals (Clementi & Roetti, 1974).

The valence shell is either contractible or expandable by the

use of the � parameter. Single-zeta orbitals with energy-

optimized Slater exponents are used for the radial part of the

deformation terms (Clementi & Raimondi, 1963). The addi-

tional radial parameters �0l are defined for each angular

momentum l in order to deal with the radial expansion or

contraction of the deformation density. Pv and Plm represent

the population parameters for the valence and deformation

density multipoles, respectively. The angular functions Ylm are

density-normalized real spherical harmonics (Paturle &

Coppens, 1988). Several multipole models were tested, as

described in x5.

The function minimized in the least-squares procedure wasP
h wh½F

2
h;obs � �Yhð"ÞF

2
h;calc�

2
, where the statistical weight

wh ¼ 1=�2ðF2
h;obsÞ was applied and where only those reflec-

tions characterized by Fh;obs > 3�h;obsðFh;obsÞ were included.

Furthermore, � is the overall scale factor while Yhð"Þ is the

correction for secondary extinctions according to the model

proposed by Becker & Coppens (1974). This model depends

on the isotropic extinction parameter ", which was refined to

0.315 (15), corresponding to a mosaicity spread of 1000.

The multipole expansion was truncated at the hexadecapole

level (lmax = 4) for all the non-H atoms, while bond-directed

dipoles and quadrupoles were applied to all the H atoms. The

� and �0l parameters were initially set to proper reference

values (Volkov et al., 2001) and posteriorly refined. A single �0l
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Table 1
Crystallographic details and results of IAM and multipolar refinements
for glycylglycine.

Crystal data
Chemical formula C4H8N2O3

Mr (g mol�1) 132.12
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100.0 (5)
a; b; c (Å) 7.9798 (1), 9.5201 (1), 7.7643 (1)
� (�) 106.151 (1)
V (Å3) 566.56 (1)
Z 4
F(000) 280
� range (�) for cell measurement 2.7–52.4
	 (mm�1) 0.13
Crystal size (mm) 0.20 � 0.17 � 0.07

Data collection
Diffractometer Agilent SuperNova diffractometer
Radiation type Mo K�
Absorption correction Analytical (Clark & Reid, 1995)
Tmin, Tmax 0.974, 0.991
No. of measured, independent

and observed [F > 3�(F)]
reflections

38933, 6597, 5467

Redundancy 5.9
Rint† 0.029
� values (�) �max = 52.6, �min = 2.1
(sin �/
)max (Å�1) 1.118
Range of h; k; l h = �17!17, k = �21!21,

l = �17!17

Spherical, independent
atom refinement

Refinement on F2 (for F > 0)
R[F > 3�(F)], Rall, wR, S, �2‡ 2.82, 4.15, 4.16, 1.06, 2.60
No. of parameters 107
(�/�)max 0.001
��max, ��min (e Å�3) 0.54, �0.37
Extinction coefficient 0.007 (4)

Multipole refinement
Refinement on F2 [for F > 3�(F)]
R[F > 3�(F)], Rall, wR, S, �2‡ 1.97, 3.30, 2.14, 1.03, 0.91 (MM1)

1.72, 2.93, 1.71, 0.80, 0.57 (MM2)
1.70, 2.91, 1.68, 0.80, 0.55 (MM3)

No. of parameters§ 271
(�/�)max§ 0.00001
��max, ��min (e Å�3)§ 0.14, �0.14
Extinction coefficient§ 0.315 (15)

† Rint ¼
P

h jF
2
h;obs � hF

2
h;obsij=

P
h F2

h;obs (summation is carried out only where more

than one symmetry-equivalent reflection is averaged). ‡ RðFÞ ¼ 100
P

h jjFh;obsj �

jFh;calcjj=
P

h jFh;obsj, wRðFÞ = 100½
P

h whðjFh;obsj � jFh;calcjÞ
2=
P

h whF2
h;obs�

1=2, S =

½
P

h whðF
2
h;obs � F2

h;calcÞ
2
=ðN � PÞ�

1=2
with wh ¼ 1=�2

h;obs, N as the number of reflections

and P as the number of parameters. �2 is given by equation (6), see main text. Both in the

spherical model and in the multipole model refinements the calculated structure-factor

magnitudes are properly multiplied by a scale factor � and by an additional factor Yhð"Þ

that corrects for secondary extinctions. For the spherical model, Yhð"Þ =

½1þ 0:001"F2
h;calc


3= sinð2�hÞ�
�1=4

, while, for the multipole model, Yhð"Þ has been chosen

following the Becker & Coppens (1974) equations. § For MM2 model.



was refined for all the l values belonging to a defined set while

�0l for the H atoms was not refined. The X—H distances were

initially set to neutron diffraction averages (Allen & Bruno,

2010) but then freely refined. A high-order refinement with

sin �=
 	 0:7 Å�1 was performed for the non-H atoms to

obtain accurate positional and displacement parameters. In

the next step, the H-atom ADPs were estimated by the

SHADE routine (Madsen, 2006) and the obtained values were

used as fixed parameters in the subsequent refinements.

4.4. Ab initio periodic calculation and multipole refinement
of theoretical structure factors

In order to provide an additional and reliable benchmark

for the XC-ELMO calculations, a single-point periodic

calculation was performed on the final multipole model

geometry without including thermal smearing, using the

CRYSTAL09 package (Dovesi et al., 2009) at the DFT level

using the B3LYP functional. Since in CRYSTAL09 the Bloch

functions are expanded as a linear combination of Gaussian-

type functions centred on the atoms of the periodic system, the

calculation was carried out using the standard 6-31G(2d,2p)

basis set.

In order to mimic the experimental refinement as much as

possible, the calculation of theoretical structure factors

was limited to the sin �=
 ¼ 1:2 Å�1 resolution and, after-

wards, a static multipole model refinement (i.e., ADPs set to

zero) of the theoretical data was performed without opti-

mizing atomic positions, thus eliminating an important source

of correlation between parameters. As for the experimental

refinement, the multipole expansion was truncated at the

hexadecapole level for the non-H atoms and only bond-

directed dipoles and quadrupoles were refined for the H

atoms. Both � and �0l parameters were refined independently

for each heavy atom, while only one � was refined for all the

H atoms. The rigid local symmetry constraints and chemical

equivalences were also consistent with the experimental

refinement (see x5).

4.5. Unconstrained and X-ray constrained ELMO and
Hartree–Fock calculations

The X-ray constrained ELMO strategy has been imple-

mented modifying version 8 of the GAMESS-UK quantum-

chemistry package (Guest et al., 2005), which has been used

to perform all the unconstrained (
 ¼ 0) and constrained

(
 6¼ 0) ELMO calculations that will be discussed hereafter.

In order to assess the fitting effects on the ELMO electron

density of the glycylglycine molecule, ELMO and XC-ELMO

calculations have been performed using the 6-31G, 6-31G(d,p)

and cc-pVDZ basis sets and considering both the IAM and the

MM experimental molecular geometries obtained from the

X-ray diffraction experiment. Electron-density-related prop-

erties derived from the constrained ELMO wavefunctions

were afterwards compared to those corresponding to the

unconstrained ELMO wavefunctions.

For all the ELMO calculations, the adopted localization

scheme almost corresponds to the Lewis structure of the

molecule, with atomic fragments, which describes the core

electrons and the lone pairs associated with each atom, and

with bond subunits, which describe all the electron pairs

between each couple of nuclei. The only exceptions are

represented by two three-atom fragments: one for the � and

the � electrons of the amide group O1—C2—N2 (comprising

also the electrons for the delocalized lone pair of the nitrogen

atom) and another one for the � and the � electrons of the

carboxylic group O2—C4—O3. The same localization scheme

has been used for all the XC-ELMO calculations for which the

unit-cell parameters and the ADPs associated with the

different refinement models were also taken into account.

Concerning the experimental structure-factor amplitudes used

to constrain the ELMO wavefunctions, only those character-

ized by Fh;obs > 3�h;obsðFh;obsÞ were selected (overall 5467

reflections). As anticipated, the set of amplitudes fFh;obsg was

previously corrected for secondary extinctions. Furthermore,

the scale factor � was properly optimized during the XC-

ELMO computations.

For the sake of comparison, using the TONTO package

(Jayatilaka & Grimwood, 2003), we have computed uncon-

strained and X-ray constrained Hartree–Fock electron densi-

ties (�HF and �XC-HF, respectively) for the three selected basis

sets. These densities are to be compared with the corre-

sponding ELMO and XC-ELMO densities.3

4.6. Topological analyses

The quantum theory of atoms in molecules (QTAIM)

(Bader, 1990) has been exploited to properly analyse all the

obtained charge distributions. In particular, the TOPXD

module (Volkov et al., 2000) was used to partition and

integrate the atomic basins of all the multipole-fitted

electron densities, namely, �MM=XC, �MM/P-B3LYP, �MM=ELMO and

�MM/XC-ELMO. The TOPOND98 software (Gatti, 1998) was

used to perform the topological analysis of the periodic

B3LYP/6-31G(2d,2p) electron density �P-B3LYP, while the

analyses of all the �ELMO, �XC-ELMO, �HF and �XC-HF electron

distributions were performed with the AIMAll software

(Keith, 2013).

Given the complexity associated with the definition of zero-

flux surfaces in the electron density and with the subsequent

integration (Popelier, 1998), the numerical integration error of

the atomic basins, which is defined by

L �ð Þ ¼ �
1

4

Z
�

r
2� rð Þ dr ð16Þ

and which should be zero for an ideal integration (Bader,

1990), was also carefully monitored. In this work, the values of

Lð�Þ approximately ranged from 3 � 10�6 to 2 � 10�3 a.u.
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3 XC-HF wavefunctions were computed at the same 
max values as the
corresponding XC-ELMO wavefunctions, except for the 6-31G basis set, for
which self-consistent field (SCF) convergence could not be achieved for 
 	
0.40 (see Table 2).



5. Fitting effects on the multipole model

In this section, we analyse the effects of fitting several Hansen

& Coppens multipole models against the experimentally

collected structure factors. In other words, we investigate step-

by-step the relaxation of the local symmetries of atoms from

spherical and neutral to aspherical and charged. After the

spherical atom refinement (x4.2), an initial multipole model

(MM1) was refined using several rigid constraints on the local

symmetry of the atomic density functions (mm2 for O1, O2,

O3 and C4; m for C1, C2, C3 and N2; 3m for N1; see Fig. 1a for

atomic labels) and chemical equivalences (O2 = O3, C1 = C3).

These constraints imply sp2 hybridization for N2, C4 and for

all the O atoms, and sp3 hybridization for N1, C1 and C3

(however, a ‘perfect’ hybridization includes here an asym-

metric polarization induced by chemical bonds to atoms of

different electronegativity). The H atoms were treated with

cylindrical symmetry (m1) and those bonded to equivalent

heavier atoms were also treated as equivalent.

The atomic symmetries were progressively reduced, using

the statistical parameters R and wR and the residual density

maps as guides to select the best refinement model. The

chemical equivalences were then removed and the following

local symmetries were used (MM2 model): mm2 for C4, 3m for

N1 and m for all the other non-H atoms, and m1 for all the

H’s. This implies sp2 hybridization for C4, sp3 for N1, C1 and

C3, but a mixed character for all the O atoms and N2. In the

last cycle, the coordinates and the ADPs for all the non-H

atoms, the coordinates for the H atoms, the � and �0l para-

meters, the multipole populations, the extinction parameter

" and the overall scale factor � were refined together, for

an overall optimization of 271 parameters. A satisfactory

deconvolution of thermal motion from the deformation

electron-density distribution has been obtained, as shown by

the Hirshfeld rigid-bond test (Hirshfeld, 1976). In fact, the

largest difference of mean-squares displacement amplitudes

(DMSDA) was 5 � 10�4 Å2, which is lower than the limit of

0.001 Å2 suggested by Hirshfeld. Additionally, the comparison

between the final ADPs of the MM2 model with those

previously published for the neutron diffraction on glycyl-

glycine (Kvick et al., 1977) shows a mean absolute difference

of 0.0008 (14) Å2, taking into account however that the

temperatures of the two experiments are different (100 K for

the current X-ray diffraction versus 82 K for the neutron

diffraction). The neutron and X-ray geometries are in good

agreement, but, as expected, larger discrepancies occur for

positions of H atoms: in fact, X—H distances are on average

0.04 (2) Å shorter in the MM2 model with respect to the
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Figure 2
Normalized residuals of the structure-factor amplitudes versus the scattering resolution for (a) the IAM and the different multipole models (b) MM1, (c)
MM2 and (d) MM3 refined against the experimental set of structure factors.



neutron diffraction geometry. The maximum and minimum

residual peaks are +0.14 and �0.14 e Å�3, with the residual

density maps showing only few and small discrepancies that

could not be removed by any deformation model.

For the sake of completeness, we have also performed a

multipole refinement up to hexadecapole level for all non-H

atoms and up to the quadrupole level for the H atoms without

imposing any local symmetry constraint (MM3), namely we

have refined all the corresponding multipoles, accounting 423

parameters overall. The final statistical agreements (see Table

1) are very close to those obtained in the last refinement cycle

of the symmetry-constrained MM2 model described above.

Fig. 2 shows scatter plots of the difference between

experimental and calculated structure-factor amplitudes

normalized by the experimental standard deviations as a

function of the sin �=
 resolution for the IAM and the three

MM refinements. It is obvious that the multipolar refinement

improves the agreement between measured and calculated

structure factors compared to the IAM (Fig. 2a), even when

rigid local symmetry constraints are extensively applied (MM1

model, Fig. 2b). The progressive reduction of the local

symmetries and the removal of equivalences (MM2) further

improve the agreement (Fig. 2c), whereas a model without any

local symmetry constraint (MM3) does not further reduce the

normalized residuals (Fig. 2d). In fact, the number of reflec-

tions computed within �1� from the observed ones is 3336,

3888, 4236 and 4276, for IAM, MM1, MM2 and MM3,

respectively. The Hamilton significance test (Hamilton, 1965)

also indicates that removing the local symmetry constraints

from MM2 does not lead to a significant model improvement,

despite using 152 additional parameters. Therefore, the

models MM2 and MM3 are not statistically different and, from

now on, we only refer to the results obtained using the local

symmetry constrained multipole model MM2 just described.

A similar conclusion can be reached refining the P-B3LYP

structure factors with these two models, meaning also that the

theoretical crystal density shows such a local symmetry for all

the atoms.

Attempts to refine core deformations were not carried out,

as this would be beyond the scope of this paper. Such a study

would require even higher resolution and, at present, has been

applied only on smaller and more symmetric crystals (Fischer

et al., 2011).

Based on the difference density maps, the residual density

analysis and the normal probability plot provided in the

supporting information, one can easily conclude that both the

measured intensities and the refined multipole models are of

extremely good quality and therefore could be a very good

benchmark for the XC-ELMO calculations.

6. Fitting effects on the ELMO wavefunctions

6.1. Agreement statistics and energy

The agreement statistics and the energies for all the X-ray

constrained computations on glycylglycine, using the

geometry and the ADPs from MM2 refinement, are reported

in Table 2. For each basis set, the XC-ELMO calculations are

of course in better agreement with the measured intensities.

For the 6-31G basis set, however, the desired agreement

cannot be reached (�2 ¼ 1:27 for 
max ¼ 0:40, with an

asymptote above 1.0), whereas it is quite smoothly obtained
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Table 2
Statistical agreements and energy values corresponding to all the unconstrained and constrained calculations performed on glycylglycine considering the
geometry and the ADPs resulting from the MM refinement.

�2 = ½1=ðNr �NpÞ�
P

h whð�jFh;calcj � jFh;obsjÞ
2, %R(F) = 100½

P
hj�jFh;calcj � jFh;obsjj=

P
hjFh;obsj�, %wR(F) = 100ð�2=

P
h whF2

h;obsÞ
1=2

with wh ¼ 1=�2
h;obsðFh;obsÞ.

Basis set �2 %R(F) %wR(F) Energy (a.u.) 
max �2 %R(F) %wR(F) Energy (a.u.)

ELMO calculations† XC-ELMO calculations
6-31G 2.56 2.62 3.44 �489.161 0.40 1.27 2.17 2.43 �489.060
6-31G(d,p) 1.74 2.38 2.84 �489.385 0.12 1.00 2.04 2.15 �489.357
cc-pVDZ 1.66 2.36 2.78 �489.394 0.12 0.98 2.03 2.13 �489.368
Hartree–Fock calculations† XC-Hartree–Fock calculations
6-31G 2.11 2.47 3.13 �489.310 0.38‡ 1.15 2.05 2.17 �489.227
6-31G(d,p) 1.41 2.25 2.56 �489.549 0.12 0.85 1.93 1.98 �489.528
cc-pVDZ 1.31 2.20 2.47 �489.574 0.12 0.83 1.93 1.97 �489.556

† The scale factors � have been optimized using the density matrices obtained from the corresponding unconstrained calculations. ‡ �2 reaches an asymptotic value above 
 = 0.3 but
no SCF convergence is found for 
 	 0.40.

Figure 3
The variation of �2 agreement statistic with the Lagrange multiplier 
 for
the XC-ELMO 6-31G (green), 6-31G(d,p) (blue) and cc-pVDZ (red)
calculations, using geometry and ADPs from the multipole model MM2.



for the larger and more flexible basis sets 6-31G(d,p) and cc-

pVDZ (�2 
 1 for 
 as large as 0.12) (see Fig. 3). Here we

point out that for the 6-31G basis set the second termination

criterion in equation (13) is satisfied, while in the other two

cases we have observed the fulfilment of the more traditional

condition �2 < 1.

�2 rapidly decreases as 
 increases, showing that even a

weak constraint to the X-ray data is sufficient to improve the

agreement significantly. The asymptotic value of �2 is slightly

above the limit obtained for the multipolar models (0.57 and

0.55 for MM2 and MM3, respectively) and smaller than for the

IAM (2.60). The agreement indexes R and wR shown in Table

2 mirror the behaviour of the �2 statistics, but they are much

less sensitive to 
 and, therefore, less useful to compare the

quality of the different constrained wavefunctions. On the

other hand, R and wR can be used for comparison against

the multipole models (see Table 1), which of course give better

agreements because they do not have to satisfy an energy
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Figure 4
Normalized residuals of the structure-factor amplitudes versus the scattering resolution for the unconstrained ELMO (a) 6-31G, (b) 6-31G(d,p) and (c)
cc-pVDZ wavefunctions and for the XC-ELMO (d) 6-31G, (e) 6-31G(d,p) and (f) cc-pVDZ wavefunctions.



minimization criterion and, above all, because they are not

subject to the termination criterion �2 
 1 imposed by equa-

tion (13). Furthermore, R and wR confirm that XC-ELMO

performs much better than an IAM refinement.

Fig. 4 shows the normalized differences between experi-

mental and ELMO or XC-ELMO structure-factor amplitudes

as a function of the resolution. Almost all the structure-factor

amplitudes computed from the 6-31G(d,p) and cc-pVDZ XC-

ELMO wavefunctions (Figs. 4e and 4f) are within �5� from

the experimental values without any obvious resolution

dependence. The number of reflections within the �1� range

is 4149 and 4240 for the 6-31G(d,p) and the cc-pVDZ basis

sets, respectively, contrasting with 3663 and 3764 reflections

within �1� for the unconstrained ELMO 6-31G(d,p) and cc-

pVDZ wavefunctions, respectively. On the other hand, for the

XC-ELMO/6-31G wavefunction, for which �2 ¼ 1:27, only

the structure-factor amplitudes calculated at resolution

sin �=
> 0:5 Å�1 agree with the experimental values within

�5�, while many low-angle structure factors significantly

exceed the 5� limit (Fig. 4d). Moreover, the XC-ELMO/6-31G

plot shows a distribution of normalized residuals quite similar

to that associated with the unconstrained ELMO wavefunc-

tions (3689 and 3954 reflections are within the �1� range for

the unconstrained and the X-ray constrained ELMO 6-31G

wavefunctions, respectively), meaning that the X-ray

constraining procedure was actually not particularly effective,

despite the better agreement indexes. In this respect, the

comparison between Figs. 4(d), 4(b) and 4(c) is extremely

elucidative because it shows that an X-ray constrained wave-

function is not better than an unconstrained one in the

absence of polarization functions in the basis set. This

demonstrates that the ELMO/6-31G wavefunction is definitely

not flexible enough to fit the experimental data. On the

contrary, if sufficient variational flexibility is present in the

basis set, even unconstrained ELMO wavefunctions better

reproduce the experimentally collected structure factors.

The constraint to strictly localize the molecular orbitals on

molecular subunits introduces additional approximations over

the usual Hartree–Fock method, which enables full delocali-

zation of the canonical molecular orbitals. In order to quantify

this effect, we have computed unconstrained and X-ray
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Figure 5
Three-dimensional plots of the electron-density difference �XC-ELMO

�

�ELMO for (a) the 6-31G and (b) 6-31G(d,p) basis sets. The isosurface
value is set to 0.005 a.u., with negative isosurfaces in red and positive
isosurfaces in blue.

Figure 6
Plots of L ¼ �r2�ðrÞ for (a) the ELMO/6-31G(d,p) and (b) XC-ELMO/
6-31G(d,p) wavefunctions of glycylglycine in the carboxylate plane.
Contours are drawn at intervals of (� 2,� 4,� 8)� 10n e Å�5 (n =�3 to
3). Blue lines denote regions of charge concentration (L > 0) and red lines
denote regions of charge depletion (L < 0).
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Table 3
Bond-critical-point data for all glycylglycine electron densities resulting from unconstrained and constrained ELMO calculations (data for the �P-B3LYP

density are also shown).

For each bond critical point A–B, dA is its distance from the nucleus A in Å, �(rb) is its electron-density value in a.u. and r2�(rb) is its Laplacian value in a.u.

�P�B3LYP
6�31Gð2d;2pÞ �ELMO

6�31G �ELMO
6�31Gðd;pÞ �ELMO

cc�pVDZ �XC�ELMO
6�31G �XC�ELMO

6�31Gðd;pÞ �XC�ELMO
cc�pVDZ

O1—C2
dA 0.825 0.799 0.833 0.835 0.806 0.835 0.837
�(rb) 0.397 0.386 0.406 0.401 0.398 0.405 0.404
�r

2�(rb) 0.409 0.922 0.346 0.243 0.917 0.158 0.123
O2—C4
dA 0.837 0.811 0.849 0.850 0.819 0.851 0.851
�(rb) 0.380 0.368 0.388 0.383 0.375 0.389 0.387
�r

2�(rb) 0.532 0.908 0.387 0.330 0.842 0.217 0.229
O3—C4
dA 0.834 0.807 0.845 0.846 0.813 0.846 0.847
�(rb) 0.385 0.374 0.395 0.389 0.381 0.393 0.390
�r

2�(rb) 0.519 0.952 0.413 0.342 0.888 0.223 0.194
N1—C1
dA 0.879 0.957 1.012 1.004 0.907 1.000 0.981
�(rb) 0.252 0.218 0.240 0.235 0.233 0.249 0.246
�r

2�(rb) 0.642 0.326 0.271 0.307 0.521 0.502 0.575
N2—C2
dA 0.836 0.798 0.885 0.879 0.854 0.890 0.888
�(rb) 0.350 0.335 0.363 0.355 0.327 0.346 0.344
�r

2�(rb) 1.282 1.110 1.153 1.213 0.959 0.846 0.927
N2—C3
dA 0.874 0.957 0.995 0.989 0.897 0.988 0.975
�(rb) 0.263 0.227 0.248 0.243 0.250 0.259 0.256
�r

2�(rb) 0.712 0.259 0.203 0.253 0.629 0.429 0.528
C1—C2
dA 0.747 0.777 0.786 0.788 0.757 0.749 0.751
�(rb) 0.256 0.242 0.277 0.270 0.240 0.267 0.262
�r

2�(rb) 0.560 0.509 0.862 0.772 0.505 0.770 0.703
C3—C4
dA 0.757 0.787 0.797 0.802 0.776 0.764 0.771
�(rb) 0.254 0.240 0.275 0.268 0.238 0.266 0.260
�r

2�(rb) 0.551 0.503 0.867 0.778 0.505 0.771 0.705
N1—H1
dA 0.808 0.771 0.792 0.804 0.776 0.798 0.807
�(rb) 0.322 0.322 0.354 0.339 0.316 0.336 0.326
�r

2�(rb) 1.849 -1.590 2.094 1.925 1.553 1.900 1.825
N1—H2
dA 0.785 0.741 0.763 0.774 0.741 0.768 0.776
�(rb) 0.352 0.346 0.378 0.364 0.342 0.353 0.346
�r

2�(rb) 2.083 1.710 2.232 2.001 1.679 1.937 1.837
N1—H3
dA 0.804 0.763 0.784 0.797 0.768 0.793 0.803
�(rb) 0.325 0.324 0.356 0.342 0.324 0.338 0.330
�r

2�(rb) 1.873 1.581 2.085 1.855 1.600 1.887 1.802
C1—H4
dA 0.708 0.696 0.692 0.697 0.695 0.709 0.723
�(rb) 0.269 0.268 0.297 0.290 0.267 0.287 0.284
�r

2�(rb) 0.893 0.817 1.163 1.142 0.813 1.114 1.134
C1—H5
dA 0.692 0.680 0.674 0.684 0.676 0.690 0.703
�(rb) 0.287 0.282 0.312 0.304 0.276 0.298 0.294
�r

2�(rb) 1.036 0.921 1.290 1.255 0.878 1.188 1.197
N2—H6
dA 0.789 0.750 0.768 0.779 0.759 0.779 0.788
�(rb) 0.331 0.332 0.363 0.348 0.332 0.349 0.339
�r

2�(rb) 1.899 1.610 2.093 1.815 1.640 1.942 1.814
C3—H7
dA 0.678 0.641 0.629 0.639 0.647 0.655 0.667
�(rb) 0.289 0.298 0.327 0.318 0.285 0.300 0.297
�r

2�(rb) 1.041 1.019 1.396 1.330 0.973 1.168 1.179
C3—H8
dA 0.646 0.631 0.619 0.638 0.620 0.630 0.642
�(rb) 0.317 0.316 0.345 0.335 0.289 0.303 0.301
�r

2�(rb) 1.277 1.172 1.565 1.489 1.013 1.187 1.205



constrained Hartree–Fock electron densities (�HF and �XC-HF,

respectively) for the three selected basis sets and compared

them with the corresponding ELMO and XC-ELMO densi-

ties. Both unconstrained and X-ray constrained Hartree–Fock

electron densities produce better statistical agreements than

the corresponding ELMO and XC-ELMO electron distribu-

tions. Moreover, the gap between �HF and �ELMO is roughly

constant as a function of 
 (see Table 2). These results suggest

that �HF and �ELMO are equally able to incorporate the

information from the experimental structure-factor ampli-

tudes.

In Table 2 the energies associated with all the unconstrained

and constrained wavefunctions are also reported. As already

observed (Grimwood & Jayatilaka, 2001; Hudák et al., 2010;

Genoni, 2013a), the energies of constrained wavefunctions are

always higher, in keeping with what is expected in a varia-

tional procedure when a constraint is added without intro-

ducing a new variational parameter.

6.2. Electron-density distribution and its topology

Fig. 5 shows three-dimensional plots of �XC-ELMO
� �ELMO

for the 6-31G and the 6-31G(d,p) basis sets [the distribution

associated with the cc-pVDZ case is shown only in the

supporting information because it is very similar to the

6-31G(d,p) one]. While for the 6-31G(d,p) basis set the main

consequences of the fitting consist of a large redistribution of

the electron density around the nuclei and only small re-

arrangements in the bonding regions, the 6-31G fitting

procedure entails significant changes of the electron density

both in the core and in the bonding domains. This is especially

evident for the oxygen atoms, for which a depletion of electron

density in the lone-pair regions is noteworthy. Other impor-

tant fitting effects are the reduction of electron density asso-

ciated with the C—H bonds and the shifting of electronic

charge from the H atoms to the N atoms. Shifts of electron

density from C3 to C4 and, analogously, from C2 to N2 and

from N1 to C1 are also observed.

Topological properties at the bond critical points of �ELMO

and �XC-ELMO are gathered in Table 3 and they are compared

to the results obtained from the periodic B3LYP/6-31G(2d,2p)

computation (�P-B3LYP). The properties obtained from the XC-

ELMO wavefunctions are in general similar to those obtained

from the corresponding unconstrained ELMO calculations,

especially the electron density at the bond critical points, �ðrbÞ.

Upon closer inspection, we see that the XC-ELMO �ðrbÞ

generally approach the P-B3LYP limit for the more complete

and polarized basis sets.

The analysis of the Laplacian at the bond critical points,

r2�ðrbÞ, shows much larger discrepancies. As previously

discussed (Macchi et al., 1998; Bytheway, Grimwood & Jaya-

tilaka, 2002), this is a consequence of the intrinsic nature of

the Laplacian, especially for polar bonds. Fig. 6 depicts the

plots of L ¼ �r2�ðrÞ, which show regions of electron-density

concentration (L > 0) and depletion (L < 0), in the carboxylate

group plane of glycylglycine. The constrained or uncon-

strained plots are qualitatively very similar, showing regions of

electronic charge concentration along the C—C and C—O

bonds as well as in the lone-pair regions of the oxygen atoms.

The atomic graphs of C4, O2 and O3 have the expected

trigonal arrangement of three charge concentration maxima

in both constrained and unconstrained cases. Nevertheless,

because polar bond critical points lie close to nodal surfaces of

the Laplacian, small changes in the position of these bond

critical points may lead to large changes of r2�ðrbÞ. This

explains the large differences between constrained and

unconstrained r2�ðrbÞ values found in Table 3 and stresses the

importance of correctly locating the critical point along the

corresponding bond path (Bytheway, Grimwood & Jayatilaka,

2002).

The topological properties computed for both the �HF and

�XC-HF electron densities are deposited in the supporting

information (Table S9). The comparison with the corre-

sponding ELMO and XC-ELMO densities indicates that the

ELMO approximation does not introduce significant changes

in the electron distributions, in keeping with the small differ-

ences between the agreement indices reported in Table 2. For

example, the difference in electron density at the bond critical

points between �ELMO and �HF and between �XC-ELMO and

�XC-HF are usually less than 5% for the 6-31G basis set and

even less for the larger 6-31G(d,p) and cc-pVDZ basis sets.

6.3. QTAIM atomic charges and dipoles

Bar graphs of the net atomic charges are shown in Fig. 7.

Overall, charges from ELMO and XC-ELMO wavefunctions

are qualitatively similar, addressing negatively charged O and

N atoms, positively charged C and H atoms of the amino group

and basically neutral methylenic H atoms. For the O, N and C

atoms, the XC-ELMO/6-31G charges are relatively close to

the ELMO/6-31G results with the largest discrepancy around

0.13 a.u. The differences are even smaller for the polarized

and more flexible basis sets. For the H atoms, the relative

changes are larger, but these charges are very small, so the

largest absolute differences are around 0.04 a.u. Furthermore,

the results obtained from the �XC-ELMO and �P-B3LYP densities

are similar for all the basis sets, with the XC-ELMO charges

slightly larger in absolute values. Surprisingly, the best

agreement with the �P-B3LYP results is found for the charges

calculated using the smaller 6-31G basis set. However, the

results previously discussed indicate that this better agreement

must be just incidental.

Atomic dipole moments measure the displacement of the

centroid of an atomic charge density from its nucleus and can

be calculated from the integration of the dipolar density

function r�ðrÞ inside the atomic basin � (Bader, 1990):

l �ð Þ ¼ �
R
�

r� rð Þ dr: ð17Þ

Magnitudes of atomic dipole moments are given as bar graphs

in Fig. 8. For O atoms, ELMO/6-31G and XC-ELMO/6-31G

dipole moments are markedly underestimated compared to

the more polarized basis sets and P-B3LYP. For these atoms,

the extra d functions are therefore vital to describe the

internal polarization. Using �P-B3LYP as a benchmark, we see
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that the X-ray constraining improves the dipole moments of O

atoms for the 6-31G(d,p) and the cc-pVDZ ELMO wave-

functions, although they remain considerably overestimated.

The largest discrepancies between unconstrained and

constrained calculations are always observed for the

carbonylic oxygen O1, with decrements of 0.06 and 0.03 a.u.

for the 6-31G(d,p) and cc-pVDZ basis sets, respectively.

On the contrary, for the N atoms, the XC-ELMO/6-31G

wavefunction gives a dipole moment closer to the one asso-

ciated with �P-B3LYP. For N1 and N2, the X-ray constraining is

helpful, whereas the polarization functions are not so neces-

sary. The largest difference between ELMO and XC-ELMO

dipole moments is 0.07 a.u. for N1, the amino nitrogen

involved as ‘donor’ atom in some hydrogen bonds with

neighbouring molecules.

For C and H atoms, the polarized basis sets usually perform

better and the dipole moment magnitude improves after the

fitting procedure. The directions of the atomic dipole moments

are substantially similar for all methods, with a maximum

difference smaller than 2�.

A more important analysis is that of the molecular dipole

moment, which can be expressed in terms of two contribu-

tions: the integration of the dipolar density function over

atomic basins, equation (17), and the net atomic charge qð�Þ.
Therefore,

lMOL ¼
P
�

l �ð Þ þ qð�ÞR�

� �
; ð18Þ

where R� is the position vector of the nucleus of atom � with

respect to an arbitrary origin. As previously shown, both terms

are equally important in the description of a molecular dipole

(Bader et al., 1987; Laidig & Bader, 1990). Magnitudes of the

molecular dipole moments for glycylglycine are given as bar

graphs in Fig. 9(a). Spackman et al. (2007) have shown that

typical enhancements of molecular dipole moments from the

gas phase to crystals are within 10–40%, depending on the

polarizability of the molecule and its specific packing in

the solid state. The gas-phase B3LYP/6-31G(2d,2p) molecular

dipole moment of glycylglycine is 9.445 a.u. whereas the

P-B3LYP molecular dipole moment, using the same basis set,
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Figure 7
Integrated atomic charges (a.u.) from unconstrained (�ELMO) and constrained (�XC-ELMO) ELMO densities and from the ab initio periodically calculated
density (�P-B3LYP).

Figure 8
Atomic dipole moments (a.u.) from unconstrained (�ELMO) and constrained (�XC-ELMO) ELMO densities and from the ab initio periodically calculated
density (�P-B3LYP).



is 11.337 a.u., corresponding to an enhancement of 20%. In

our work, the difference between �P-B3LYP and �XC-ELMO

dipole moments may inform us on the ability of XC-ELMO

wavefunctions to account for intermolecular crystal-field

effects. In fact, from Fig. 9(a), we see that the X-ray

constraining procedure makes the molecular dipole moment

quite close to the P-B3LYP value, but the increase is smaller

than 10% for all the basis sets. The value obtained with the

6-31G basis set is closer to the P-B3LYP one, but this again

seems a consequence of the fortuitous agreement on atomic

charges described before. In reality, we learn from Fig. 9(a)

that, as the basis sets become more complete and flexible, the

dipole moments obtained through the X-ray constrained

wavefunctions converge to a value that is circa 5% smaller

than the P-B3LYP one.

7. Fitting effects on the multipole-model-projected
ELMO electron densities

In order to avoid potential ambiguities due to the multipolar

expansion used to model the benchmark experimental elec-

tron density, we have also projected the P-B3LYP, all the

ELMO and XC-ELMO electron densities in terms of Hansen

& Coppens multipoles, using the very same MM2 model

discussed in x5. This will enable us to compare all the densities,

affected in the same way by the inherent limitations of the

multipolar expansion (Fischer et al., 2011). Of course, all the

atomic coordinates and ADPs (for XC-ELMO) were kept

fixed to those from the MM2 refinement against experimental

data.

7.1. Deformation density

Fig. 10 shows the deformation densities �MM=XC � �IAM and

�MM/P-B3LYP
� �IAM for glycylglycine. As expected, the plots

clearly show an accumulation of electron density in all the

covalent bonds and in the lone-pair domains of the oxygen

atoms. Electron-density depletions are mainly concentrated

around the nuclei.

In Fig. 11, we show the deformation density plots

(�MM=ELMO � �IAM) and (�MM/XC-ELMO
� �IAM) using the

6-31G and 6-31G(d,p) basis sets. At the ELMO/6-31G level

(Fig. 11a) the electron accumulation in the bonding regions is

significantly smaller, especially for the N2—C3 and all the C—

O bonds. The experimental constraint gives only a slight

improvement (Fig. 11b). This result confirms that constraining

an ELMO wavefunction to experimental structure factors

leads to a meaningful electron-density distribution only if the

basis set is sufficiently flexible. In fact, the deformation

densities derived from the unconstrained and constrained

ELMO/6-31G(d,p) wavefunctions (Figs. 11c and 11d) are

significantly closer to the �MM=XC and �MM/P-B3LYP deformation

densities.

The �MM=ELMO deformation density calculated with the

polarized 6-31G(d,p) basis set (Fig. 11c) is already very similar

to the �MM/P-B3LYP deformation density (Fig. 10b), although

only the latter takes into account crystalline environment

effects through a fully periodic approach.
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Figure 9
Molecular dipole moments (a.u.) from unconstrained (�ELMO) and
constrained (�XC-ELMO) ELMO densities and from the ab initio
periodically calculated density (�P-B3LYP). Dipole moments calculated
from both (a) the primary densities and (b) the multipole-projected
densities are shown.

Figure 10
Three-dimensional plots of the deformation electron densities (a)
�MM=XC � �IAM and (b) �MM/P-B3LYP

� �IAM for glycylglycine. The
isosurface value is set to 0.02 a.u., with negative isosurfaces in red and
positive isosurfaces in blue.



A finer analysis shows that Fig. 11(d) [deformation density

for �MM/XC-ELMO with 6-31G(d,p) basis set] is closer to Fig.

10(a) (�MM=XC) than to Fig. 10(b) (�MM/P-B3LYP), in particular

for the lone-pair domains of the O atoms. This means that

some features of the deformation densities are genuinely due

to the X-ray constraint rather than to a crystal-field effect (at

least if calculated at the B3LYP level). This is particularly

encouraging because it shows the ability of XC-ELMO to

extract information from experimental intensities.

7.2. Topological properties, charges and dipoles

A full topological analysis of all the electron-density

distributions projected to the Hansen & Coppens MM2

multipole model is given in the supporting information. The

results are in good agreement with the topological features

shown in Table 3, i.e. the multipole model projections are not

significantly different from the corresponding non-projected

electron distributions: �ðrbÞ differ by less than 5%, the bond-

critical-point positions are on average within 0.08 a.u. As

expected, r2�ðrbÞ change more significantly. In general,

�MM/XC-ELMO are closer to the �MM=XC and �MM/P-B3LYP

benchmark densities than �MM=ELMO and, more importantly,

the agreement is better when larger basis sets 6-31G(d,p) and

cc-pVDZ are used.

Having multipolar projected electron densities, it is possible

to thoroughly analyse the hydrogen bonds and comment on

the performances of the XC-ELMO approach, in particular

verifying if there is any improvement upon the fitting. Fig. 1(b)

shows the pattern of strongest hydrogen bonds in the crystal

structure of glycylglycine and Table 4 collects their topological

features. All these bonds are of N—H� � �O type, with the

H� � �O distance ranging from 1.77 (2) to 1.98 (2) Å.

Topological features of hydrogen bonds from experimental

electron-density analyses have often been used to classify

various types of interactions (Rozas et al., 2000; Espinosa et al.,

1999). However, Spackman (1999) observed that for many

medium–weak hydrogen bonds, the electron density, its

topology and the local energy densities can be well approxi-

mated even using the pro-molecule, that is the electron-

density distribution calculated from the IAM. As a matter of

fact, the topological properties of hydrogen bonds calculated
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Table 4
Bond-critical-point data corresponding to all the unconstrained and constrained multipole-model-projected electron densities for the shortest hydrogen
bonds in the crystal structure of glycylglycine (data for the �P-B3LYP density are also shown).

For each bond critical point H� � �O, dH is its distance from the nucleus H in Å, �(rb) is its electron-density value in a.u.,r2�(rb) is its Laplacian value in a.u. and 
3 is
its positive curvature in a.u.

�P�B3LYP
6�31Gð2d;2pÞ �MM=XC �MM=P�B3LYP

6�31Gð2d;2pÞ �MM=ELMO
6�31G �MM=ELMO

6�31Gðd;pÞ �MM=ELMO
cc�pVDZ �MM=XC�ELMO

6�31G �MM=XC�ELMO
6�31Gðd;pÞ �MM=XC�ELMO

cc�pVDZ

H1� � �O2i

dH 0.713 0.680 0.695 0.679 0.663 0.661 0.675 0.665 0.663
�(rb) 0.024 0.030 (3) 0.033 0.032 0.029 0.029 0.031 0.030 0.030
r

2�(rb) 0.081 0.109 (1) 0.102 0.105 0.098 0.097 0.109 0.098 0.097

3 0.14 0.20 0.20 0.20 0.18 0.18 0.20 0.19 0.18
H2� � �O3ii

dH 0.610 0.650 0.644 0.641 0.624 0.624 0.651 0.628 0.630
�(rb) 0.038 0.043 (4) 0.041 0.041 0.037 0.038 0.042 0.039 0.040
r

2�(rb) 0.130 0.115 (1) 0.103 0.126 0.116 0.107 0.116 0.109 0.103

3 0.24 0.26 0.24 0.26 0.24 0.23 0.25 0.24 0.23
H3� � �O2iii

dH 0.627 0.666 0.679 0.652 0.647 0.644 0.641 0.646 0.642
�(rb) 0.038 0.036 (4) 0.038 0.037 0.033 0.033 0.039 0.033 0.034
r

2�(rb) 0.107 0.111 (1) 0.110 0.134 0.129 0.126 0.116 0.119 0.117

3 0.22 0.23 0.23 0.25 0.22 0.22 0.24 0.22 0.22
H6� � �O1iv

dH 0.904 0.964 0.968 0.950 0.944 0.946 0.942 0.953 0.954
�(rb) 0.014 0.011 (1) 0.011 0.011 0.010 0.011 0.012 0.011 0.011
r

2�(rb) 0.046 0.047 (1) 0.047 0.048 0.044 0.045 0.051 0.046 0.047

3 0.07 0.07 0.07 0.07 0.06 0.07 0.08 0.07 0.07

Symmetry codes: (i) �x + 1, y + 1
2, �z + 3

2; (ii) x + 1, y, z + 1; (iii) �x + 1, �y, �z + 1; (iv) �x + 1, y � 1
2, �z + 3

2.

Figure 11
Deformation electron-density plots for glycylglycine obtained from
unconstrained (�MM/ELMO

� �IAM) and constrained (�MM/XC-ELMO
�

�IAM) ELMO wavefunctions. (a) ELMO/6-31G; (b) XC-ELMO/6-31G;
(c) ELMO/6-31G(d,p); (d) XC-ELMO/6-31G(d,p). The isosurface value
is set to 0.02 a.u., with negative isosurfaces in red and positive isosurfaces
in blue.



from all the electron-density models for glycylglycine are

rather similar. Wavefunctions computed with the 6-31G

basis set provide slightly larger electron densities than the

6-31G(d,p) and the cc-pVDZ ones. However, the effect of

X-ray constraining is extremely small. This observation, along

with the small dipole moment enhancements discussed in x6.3,

suggests that the long-range crystal interactions do not

polarize the electron density in the hydrogen-bond bond-

critical-point regions. This is quite different from what

happens in the electron lone pairs and intramolecular bonding

regions, where the effects due to the crystal field or the X-ray

constraining are more evident (see the previous section).

Grimwood & Jayatilaka (2001) have briefly discussed the

effects of long-range interactions on the electron density of

oxalic acid dihydrate by means of a relatively large molecular

cluster calculation. They concluded that, even when consid-

ering the electron distributions of intra-molecular bonds and

lone pairs, the influence of the crystalline environment is not

significant, at least when the long-range interactions are

modelled at DFT level. However, in our opinion, much more

work is needed before finding a more general understanding.

The crystal environment effect on ELMO and XC-ELMO

wavefunctions will be extensively analysed in a future publi-

cation.

Integrated atomic charges calculated from the Hansen &

Coppens multipole-model-projected electron densities differ

by 5–10% from those calculated from the respective primary

densities, corresponding to an average absolute value of about

0.1 a.u. The largest differences are observed for the oxygen

atoms at the 6-31G level. In this respect, the influence of the

basis set on the integrated charges is much more pronounced

than the influence of the multiple projection itself (see Fig. 7

and Table S6). For all the basis sets, the atomic charges

obtained from X-ray constrained calculations are closer to the

�MM=XC ones.

The atomic dipole moments from the multipole-projected

ELMO and XC-ELMO electron densities are in reasonable

agreement with those from the respective primary densities

using the 6-31G(d,p) and cc-pVDZ basis sets (differences in

the 10–20% range), whereas larger discrepancies (up to 80%)

are observed for the 6-31G basis set. As for the non-projected

densities, the multipole-projected atomic dipole moments

calculated for O atoms using the 6-31G basis set are markedly

underestimated compared to the values determined using the

larger basis sets or P-B3LYP. Again, the �MM/XC-ELMO electron

distributions generally give more accurate atomic dipole

moment magnitudes.

Molecular dipole moment magnitudes obtained from the

multipole-projected electron densities are shown in Fig. 9(b).

Both unconstrained and constrained ELMO dipole moments

are larger than the �MM=XC and �MM/P-B3LYP values. Compared

to the values obtained from the primary densities (Fig. 9a), the

multipole projection produces an underestimation of the

molecular dipole moments of about 20%, corresponding to

circa 1.5 a.u. The underestimation due to multipolar projec-

tion is even larger for P-B3LYP.

8. Influence of fractional coordinates and ADPs on the
X-ray constrained calculations

Since the current version of the X-ray constrained ELMO

strategy does not allow one to refine atomic positions and

thermal parameters, all the XC-ELMO wavefunctions

considered in the previous sections have been carried out

using parameters refined from the multipole model MM2 (x5).

On the contrary, if XC-ELMO computations are performed

using the IAM coordinates and ADPs, the statistical agree-

ments and the energy values (Table 5) do not sensitively

change, but the convergence towards �2 ¼ 1 is much slower, as

it occurs for a larger 
max. On the other hand, since the desired

agreement is anyway reached (at least for the more flexible

basis sets), the small biases in the initial coordinates and ADPs

have been artificially ‘absorbed’ into the wavefunction and

this would affect the electron density and its topology: �ðrbÞ

are not much affected (with changes smaller than 0.03 a.u.);

the distances of the bond critical points from the nuclei differ

by less than 5%;r2�ðrbÞ change more significantly (up to 15%,

corresponding to about 0.05 a.u.). The same holds true for

atomic dipole moment magnitudes, the largest differences

being of the order of 3%, representing absolute differences

around 0.04 a.u.

It is important to point out that the IAM was refined

against a high-resolution data set and therefore non-hydrogen

atomic positions and ADPs are already quite accurate,

certainly more so than those of typical crystal structure

determinations. Significantly different results are expected in

the case of an IAM refined against structure factors up to a

lower resolution, for which a multipolar model would also not

be reliable.
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Table 5
Statistical agreements and energy values corresponding to all the unconstrained and constrained calculations performed on glycylglycine considering the
geometry and the ADPs resulting from the IAM refinement.

�2 = ½1=ðNr �NpÞ�
P

h whð�jFh;calcj � jFh;obsjÞ
2, %R(F) = 100½

P
hj�jFh;calcj � jFh;obsjj=

P
hjFh;obsj�, %wR(F) = 100ð�2=

P
h whF2

h;obsÞ
1=2

with wh ¼ 1=�2
h;obsðFh;obsÞ.

Basis set �2 %R(F) %wR(F) Energy (a.u.) 
max �2 %R(F) %wR(F) Energy (a.u.)

ELMO calculations† XC-ELMO calculations
6-31G 3.04 2.83 3.75 �489.158 0.42 1.45 2.29 2.59 �489.036
6-31G(d,p) 2.03 2.52 3.06 �489.384 0.18 0.98 2.04 2.14 �489.335
cc-pVDZ 2.01 2.51 3.05 �489.396 0.18 0.98 2.04 2.13 �489.350

† The scale factors � have been optimized using the density matrices obtained from the corresponding unconstrained calculations.



9. Conclusions and perspectives

We have demonstrated that XC-ELMO is a new and poten-

tially useful tool for the determination and analysis of

experimental electron densities. All the X-ray constrained

wavefunction methods use the X-ray data in order to capture,

at least in part, the effects due to the electron correlation and

the crystal environment. XC-ELMO has the additional

advantage of resuming the atomistic interpretation typical of

the pseudoatom approaches, since the orbitals are one elec-

tron function accounting for the electron distributions of

atoms, bonds or functional groups, depending on the locali-

zation scheme.

This work is part of a long project aimed at studying the

efficiency of XC-ELMO wavefunctions in molecular crystals

and testing the transferability of the ELMO to larger systems

in order to devise new strategies for refining crystallographic

structures and electron densities of macromolecules, such as

proteins or polymers. In this first step, we have reported a

detailed comparison between unconstrained and X-ray

constrained ELMO wavefunctions, using traditional multi-

polar electron density or periodic density functional as

benchmarks. The main conclusions can be summarized as

follows:

(i) Sufficiently flexible basis sets are fundamental to

obtaining a meaningful fitting of the wavefunction. In fact, all

calculations confirm that the desired agreement with the

experimental data is reached only if polarized basis functions

are used.

(ii) The fractional coordinates and ADPs used for XC-

ELMO have a strong influence on the convergence: the more

accurate the initial parameters are, the faster the convergence

is. The inaccuracy of the initial set of coordinates and ADPs is

absorbed into the molecular orbital coefficients, thus affecting

the electron density. A strategy for the direct refinement of

atomic coordinates and ADPs in the framework of the XC-

ELMO strategy is currently in preparation.

(iii) When �2 ¼ 1 is reached, the constrained ELMO

wavefunction is of course in much better agreement with the

X-ray data than the unconstrained one, but in less good

agreement than a standard multipole model, for which there is

not a strict ‘control’ on the desired precision. In fact, while

XC-ELMO only partially uses (through 
) the information

contained in the X-ray intensities, the multipole models MM2

and MM3 fully exploit the experimental observations through

global least-square refinements of the available diffraction

data, which leads to �2 values much lower than 1.0. Therefore,

for a definitive and fair comparison with the traditional

multipole models, we should push the X-ray constrained

computations beyond the usual �2 ¼ 1:0 limit (namely, we

should consider larger 
). Whitten et al. (2006) have proposed

pursuing the fitting until the weighted residual wR values

approach those obtained in the multipole refinement of the

same X-ray structure-factor magnitudes. This idea could be

reformulated using �2 as a criterion, but, unfortunately, this is

partially hampered by the problem of determining the optimal

value for the Lagrange multiplier 
 (see final discussion in

x3.2). However, also in this case, theoretical approaches to

overcome this last important drawback are under investiga-

tion.

(iv) The multipolar models seem to be much more sensitive

to the valence electron density than the XC-ELMO strategy.

Fig. 2 shows that the two most flexible multipolar models

reproduce the low-angle diffracted intensities much better

than the high-angle ones, whereas this is not true for the XC-

ELMO technique that seems more ‘tempered’. This might be

interpreted as an over-fitting of the low-angle data by the

multipolar models, which, in fact, converge to lower �2, or

otherwise as the evidence of a too restricted model that could

be improved by a more flexible treatment of the core elec-

trons, as suggested by Fischer et al. (2011). A model with

strictly hybridized atoms, MM1, is instead closer to �2 ¼ 1,

and shows a more uniform agreement with the observed

structure factors, like the XC-ELMO calculations (Fig. 4).

However, one would normally consider MM1 as too rigid (i.e.,

insufficient to exhaust the present data quality) and many

indicators address the more flexible MM2 (or the statistically

equivalent MM3) as more reliable. Once more, this observa-

tion prompts a revision of the current recipes for the X-ray

constrained wavefunction calculations that could be too

biased by the quantum-mechanical part of the functional in

equation (5) and not sufficiently influenced by the experi-

mental data, the second part of the functional.

(v) Many properties of the XC-ELMO reconstructed elec-

tron density suggest that the constrained wavefunction

approaches the ‘exact’ electron density in the crystal, using as

a benchmark the experimental multipole model or the peri-

odic calculations at density functional level. However, some

atomic charges and molecular dipole moments are not prop-

erly reproduced. In particular the XC-ELMO calculations

generally underestimate the molecular dipole moment and

this might be ascribed to the inability of XC-ELMO to include

all the effects of the crystalline environment, in particular the

polarization of the molecule. Interestingly, the multipolar

model also underestimates the dipole moment in this case.

(vi) For the intermolecular interactions, here represented

by medium-strength N—H� � �O hydrogen bonds, there is

limited perturbation by the crystal packing; therefore it is not

possible to judge the efficiency of the X-ray constrained

procedure.

We want to stress that, although X-ray constrained methods

have been known and used for more than a decade, until now

there have been no reports of such an accurate comparison

with respect to traditional multipolar expansions refined

against X-ray intensities or theoretical calculations with

periodic boundary conditions. Therefore, we believe that our

results could be important not only to appreciate the advan-

tages of XC-ELMO, but more generally to understand the

necessities and pitfalls of all kinds of X-ray constrained

wavefunction calculations.

In view of these results, we plan to investigate further the

XC-ELMO technique in order to better analyse the ability of

the XC-ELMO wavefunctions to include electronic correla-

tion and crystal-field effects into the electron density. This may
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enable us to establish better criteria for the best Lagrange

multiplier, which is a crucial parameter in the X-ray

constrained wavefunction strategies. Moreover, we will

analyse the performances of the XC-ELMO wavefunctions on

a broad spectrum of molecules, including metal complexes and

stronger hydrogen-bond adducts.
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