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Synopsis Experimentally constrained wave functions are calculated for α-glycylglycine using high-

resolution X-ray structure factors and the Extremely Localized Molecular Orbital formalism.  

Abstract The recently developed X-ray constrained Extremely Localized Molecular Orbital (XC-

ELMO) technique is a potentially useful tool for the determination and the analysis of experimental 

electron densities. Molecular orbitals strictly localized on atoms, bonds or functional groups allow to 

combine the quantum-mechanical rigor of the wave function-based approaches with the easy chemical 

interpretability typical of the traditional multipole models. In this paper, using very high-quality X-ray 

diffraction data for the glycylglycine crystal, a detailed assessment of capabilities and limitations of 

this new method is given. In particular, the effects of constraining the ELMO wave functions to 

experimental X-ray structure factors amplitudes and the ability of the method to reproduce benchmark 

electron distributions have been accurately investigated. Topological analysis of the XC-ELMO 

electron densities and of the zero-flux surface integrated charges and dipole moments show that the 

new strategy is already reliable, provided that sufficiently flexible basis-set are used. These analyses 

also open new questions and call for further improvements of the method.  

 

 

 

 

 

 



Acta Crystallographica Section A  research papers 

 

 

  2 

 

1. Abbreviations 

General  

ELMO Extremely Localized Molecular Orbital 

XC-ELMO X-ray Constrained Extremely Localized Molecular Orbital 

IAM Independent Atom Model 

MM Multipole Model 

൛ࢎܨ,௢௕௦ൟ, ൛ࢎܨ,௖௔௟௖ൟ Set of experimentally observed or calculated structure factors amplitudes 

,൯	௢௕௦,ࢎܨ൫ߪ 	௢௕௦,ࢎܨሺߪ
	ଶ ሻ Standard uncertainty associated with the experimental structure factor 

amplitude ࢎܨ,௢௕௦ or the corresponding intensity ࢎܨ,௢௕௦
	ଶ  

 Overall h-independent scale factor which multiplies the calculated structure ߟ

factors amplitudes 

Electron densities  

ெெ/௑஼ߩ  Multipole-fitted (X-ray constrained) electron density; refined against 

experimental structure factors 

-ெெ/௉ି஻ଷ௅௒௉ Multipole-fitted periodic B3LYP electron density; refined against B3LYP/6ߩ

31G(2d,2p) crystal-phase calculated structure factors   

 ெெ/ா௅ெை Multipole-fitted ELMO electron density; refined against ELMO gas-phaseߩ

calculated structure factors 

 ெெ/௑஼ିா௅ெை Multipole-fitted XC-ELMO electron density; refined against XC-ELMOߩ	

calculated structure factors 

 ௉ି஻ଷ௅௒௉ Electron density calculated directly from the periodic B3LYP/6-31G(2d,2p)ߩ

computation 

 ா௅ெை Electron density calculated directly from an ELMO gas-phase wave functionߩ

 ௑஼ିா௅ெை Electron density calculated directly from an XC-ELMO wave functionߩ

 ுி Electron density calculated directly from a Hartree-Fock gas-phase waveߩ

function 

 ௑஼ିுி Electron density calculated directly from a XC-Hartree-Fock wave functionߩ

 ூ஺ெ Independent Atom Model density; sum of spherically averaged electronߩ

densities of isolated atoms 
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2. Introduction 

According to the Born interpretation of quantum mechanics, the wave function is the fundamental 

entity that contains all the information of a system. In fact, all the physical quantities can be obtained 

as expectation values of the corresponding Hermitian operators. Moreover, Hohenberg & Kohn 

(1964) have shown that the ground-state electron density and the wave function of an electronic 

system can be used alternatively as full descriptors of the ground-state and, therefore, it would be 

possible to obtain all properties of a system from its electron density distribution, which is an 

observable and, unlike the wave function, is only a three-dimensional function of the spatial 

coordinates.  

The prominence conferred by the Hohenberg & Kohn theorem to the electron density together with 

the observation that the knowledge of the electron distribution and of its properties has profound 

consequences for the understanding and the rationalization of chemical bonding (Coppens, 1997) has 

significantly increased the importance of the accurate determination of electron densities in crystals 

by means of high-resolution X-ray diffraction experiments (Gatti & Macchi, 2012). Nevertheless, the 

observed diffraction intensities do not directly provide the electron density because only a finite 

number of structure factors can be collected and, within the kinematic approximation, their phase 

cannot be measured. Consequently, the electron distribution in the unit-cell can be accurately 

reconstructed only by fitting a model against the collected X-ray diffraction intensities. The 

parameters of this model electron density are usually obtained minimizing the difference between 

experimentally observed and calculated structure factors. An alternative is represented by the 

maximization of the information entropy, which however would not return an electron density 

separated from the thermal smearing. For more discussion about this method, see for example Roversi 

et al. (1998).  

In this context, the multipole models (Hirshfeld, 1971; Stewart, 1972; Hansen & Coppens, 1978) are 

by far the most widely adopted approaches. Since the total electron distribution is the sum of the 

aspherical atom-centered density functions (also known as pseudoatoms), the resulting ground-state 

electron density of a molecule is simply approximated by the sum of atomic electron distributions 

deformed by the presence of chemical interactions. This is the main reason why these models offer an 

easy chemical interpretability and justifies their widespread popularity. Notwithstanding this 

important advantage, they also exhibit a non-negligible drawback: the number of properties directly 

available from the model electron density is limited because the exact functional relation between the 

ground-state electron distribution and the ground-state wave function is practically unknown. 

Furthermore, the parameters of a multipole expansion may have a strong correlation with the atomic 

Anisotropic Displacement Parameters (ADPs). 
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A possible solution to overcome the above mentioned drawbacks is offered by a work which dates 

back to 1969, thus even before the appearance of multipole models. Clinton et al. (1969a-e) proposed 

to derive wave functions or one-electron density matrices constrained to experimental or theoretical 

X-ray diffraction data. Since then, many researchers drew inspiration from the original Clinton’s ideas 

(Clinton & Massa, 1972; Clinton et al., 1973; Frishberg & Massa, 1981; Massa et al., 1985; Tanaka, 

1988; Howard et al., 1994; Hibbs et al., 2005; Cassam-Chenaï, 1995; Snyder & Stevens, 1999; Gillet 

et al., 2001; Gillet, 2007). Within this framework, the most promising method is the X-ray 

constrained (initially called “experimental”) wave function approach developed by Jayatilaka and co-

workers (Jayatilaka, 1998; Jayatilaka & Grimwood, 2001; Grimwood & Jayatilaka, 2001; Bytheway 

et al., 2002a,b; Grimwood et al., 2003; Hudák et al., 2010). This method provides a single Slater 

determinant which, other than minimizing the corresponding energy, reproduces a set of 

experimentally collected X-ray structure factors amplitudes within a predefined precision. The 

strategy simply exploits the Lagrange multiplier technique to variationally minimize a new functional 

given by the energy associated with the single Slater determinant and an additional term represented 

by the statistical agreement with the experimental diffraction data (namely, the experimental 

constraint). In particular, the Lagrange multiplier is iteratively adjusted until the desired agreement 

level is achieved between the structure factors amplitudes obtained from the diffraction experiment 

and those calculated from the single Slater determinant ansatz. Therefore, the constrained wave 

function reproduces the experimental data within a given precision, and, as it possesses all the 

quantum-mechanical features of a wave function, it can be used to compute also those properties that 

are not directly related to the experimental structure factors used to determine the wave function itself 

(Grimwood & Jayatilaka, 2001; Grimwood et al., 2003). Compared to the multipole models, the 

approach enables to obtain quantum-mechanically rigorous electron densities, but it is affected by a 

reduced chemical interpretability because the canonical Molecular Orbitals are usually completely 

delocalized over the whole system. Therefore, they are far from the traditional and intuitive picture of 

a molecule constituted by atoms, bonds and functional groups, typical of the pseudoatom approaches.  

One of us has recently devised a new technique to extract from X-ray diffraction data a single Slater 

determinant built up with Molecular Orbitals strictly localized (namely, without tails) on molecular 

fragments, such as atoms, bonds or functional groups (Genoni, 2013a,b). This novel strategy can be 

considered as a combination of the experimentally constrained wave function approach proposed by 

Jayatilaka with the method developed by Stoll (Stoll et al., 1980) for the determination of Extremely 

Localized Molecular Orbitals (ELMOs). This synergy should be useful to solve the above-mentioned 

drawbacks associated with the X-ray constrained wave functions. Moreover, due to the complete 

absence of tails, the ELMOs are directly transferable, thus they can be computed on fragments of 

small model molecules and afterwards properly exported to subunits belonging to more complex 
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systems as macromolecules or polymers (Genoni et al., 2005; Sironi et al., 2009).  The ELMOs 

transferability is analogous to the well-known pseudoatoms transferability within the framework of 

the multipole models. In this view, new databases could be constructed from X-ray constrained 

ELMOs (XC-ELMOs) and used as complement to the existing experimental (Pichon-Pesme et al., 

1995; Jelsch et al., 1998; Pichon-Pesme et al., 2004; Zarychta et al., 2007) or theoretical 

(Koritsanszky et al., 2002; Volkov et al., 2004; Dittrich et al., 2004; Dittrich et al., 2006; Dominiak et 

al., 2007) libraries of pseudoatoms, succesfully used both for the refinement of macromolecular 

crystallographic structures and for the evaluation of electrostatic properties in crystals.  

In the present paper, we present a comprehensive assessment of the performances of XC-ELMO 

technique. In particular, we analyse the machinery of the constraint procedure, evaluating how much 

the unconstrained and the X-ray constrained wave functions differ and to what extent the XC-ELMO 

electron density is able to reproduce the “exact” crystal electron density. The latter is here 

approximated with two well-established methods, namely the multipole model density fitted or, in 

analogy with the wave function approach, constrained1 to the experimental structure factors, 

hereinafterߩெெ/௑஼, and the electron density directly obtained from a periodic Density Functional 

Theory (DFT) calculation with a standard hybrid functional, hereinafter ߩ௉ି஻ଷ௅௒௉. To accomplish this 

task we have investigated the -glycylglycine crystal, already known from X-ray (Biswas et al., 

1968) and neutron (Kvick et al., 1977) diffraction experiments. Except for a qualitative deformation 

electron density study by Kvick and co-workers (1979) and a spherical ߢ-formalism refinement by 

Coppens et al. (1979), to the best of our knowledge, no complete electron density refinement for this 

system has been reported in literature so far.  

The paper is structured as it follows. First, we summarize the theory of the X-ray constrained ELMO 

technique, previously presented in detail (Genoni, 2013a,b). Afterwards, we describe the experimental 

and computational methodologies and then we analyse the results. We initially focus on the effects of 

the fitting procedure, comparing the residual features and the topological properties computed from 

unconstrained or X-ray constrained ELMO electron densities (from now on ߩா௅ெை and ߩ௑஼ିா௅ெை, 

respectively). In a second step, we compare ߩா௅ெை and ߩ௑஼ିா௅ெை with the density from a periodic 

calculation (ߩ௉ି஻ଷ௅௒௉). In a third step, we project ߩா௅ெை and ߩ௑஼ିா௅ெை in terms of multipoles,  

 ெெ/௑஼ିா௅ெை and we compare these densities with multipole electron densities fittedߩ	 ெெ/ா௅ெை andߩ
                                                      
1 In this paper we adopt the terminology currently used in the literature. Thus, the wave function fitted to the X-
ray structure factors is called constrained, and not restrained as it would have been more intuitive for the 
crystallographic community. In keeping with Jayatilaka (2012), the traditional multipolar fitting can also be 
considered as an “X-ray constrained density function”. Therefore, in this paper we will call the traditional 
multipolar model fitted to the X-ray structure factors as “X-ray constrained multipolar model” (MM/XC). Of 
course, this nomenclature does not imply an additional constraint equation to be satisfied, other than the least 
squares minimization functions and those already present in the multipolar fitting (e.g. electroneutrality 
condition). When discussing about local symmetry constraints on the multipolar model, which implies that some 
parameters are not refined, we will refer to them as rigid constraints to avoid ambiguity. 
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against the experimental intensities (ߩெெ/௑஼) or against theoretical structure factors obtained from the 

periodic calculation (ߩெெ/௉ି஻ଷ௅௒௉ሻ. This procedure allows us to compare all the densities equally 

affected by the limitations of the multipolar model. Finally, we investigate how the choice of initial 

parameters (fractional coordinates and ADPs of the atoms in the unit-cell) affects the XC-ELMO 

results and the convergence of the fitting process. In the last section, we draw some conclusions and 

discuss perspectives offered by this new strategy.2 

3. Theoretical background 

3.1. Extremely Localized Molecular Orbitals 

In this section we will briefly introduce the Extremely Localized Molecular Orbitals method proposed 

by Stoll and coworkers (Stoll et al., 1980). This strategy is strictly connected to the earlier group 

function method devised by McWeeny (1959; 1960; 1992) and it can be considered one of the many 

theoretical approaches that have been developed over the years in order to decompose the global 

electronic wave function into functions describing smaller subsets of electrons (Adams, 1961; 

Huzinaga & Cantu, 1971; Gilbert, 1974; Matsuoka, 1977; Stoll et al. 1980; Smits & Altona, 1985; 

Francisco et al., 1992; Ordejón et al., 1993; Couty et al., 1997; Fornili et al., 2003; Szekeres & 

Surján, 2003). 

Let us consider a 2N-electron closed-shell molecule and let us introduce a localization scheme that 

subdivides the system in exam into f fragments (e.g., atoms, bonds or functional groups) that can 

overlap. Due to this fragmentation, each generic subunit j is characterized by a local basis-set 

௝ߚ ൌ ቄቚ	߯ఓ
௝ 	඀ቅ

ఓୀଵ

ெೕ

, which is constituted by the only ܯ௝ basis functions centred on the atoms belonging 

to the fragment. Consequently, the Extremely Localized Molecular Orbitals describing the subunit are 

expanded on ߚ௝ and, therefore, the generic ߙ-th ELMO for the j-th fragment can be written as: 

ቚ	߮ఈ
௝ 	඀ ൌ ෍ ఓఈܥ

௝
ெೕ

ఓୀଵ

	ቚ	߯ఓ
௝ 	඀ 				ሺ1ሻ 

Here it should be observed that pre-defined subunits may overlap and, consequently, share atomic 

orbitals, which leads to a natural non-orthogonality between ELMOs associated with different 

fragments. 

                                                      
2 Supporting information contains additional experimental details, plots of electron densities and their 
Laplacians, charges and dipoles in tabular form, electrostatic potentials, residual density analysis of ELMO and 
XC-ELMO densities and illustrative input and output files for unconstrained ELMO calculations. It is available 
from the IUCr electronic archives (XXXXXX). 
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Following Stoll (Stoll et al., 1980), we assume that the wave function describing the system is a 

normalized single Slater determinant built up with Extremely Localized Molecular Orbitals (ELMO 

wave function): 

|Ψா௅ெைۧ ൌ
1

ඥሺ2ܰሻ! ሿࡿሾݐ݁݀
መܣ			 ቂ	߮ଵ

ଵ		 ത߮ଵ
ଵ …	߮௡భ

ଵ 		 ത߮௡భ
ଵ … 	߮ଵ

௙		 ത߮ଵ
௙ …	߮௡೑

௙ 		 ത߮௡೑
௙ 	ቃ					ሺ2ሻ 

Where ݀݁ݐሾࡿሿ is the determinant of the overlap matrix between the occupied ELMOs,  ܣመ is the 

antisymmetrizer, ௝݊ is the number of occupied ELMOs for the j-th fragment and ത߮ఈ
௝  is a spin-orbital 

with spatial part ߮ఈ
௝  and spin part ߚ. The coefficients in (1) are obtained variationally minimizing the 

energy associated with the ELMO wave function, minimization that is equivalent to solve self-

consistently the following modified Hartree-Fock equations for each subunit: 

෠௝ܨ 	ቚ	߮ఈ
௝ 	඀ ൌ 	 ఈߝ

௝ 	ቚ	߮ఈ
௝ 	඀					ሺ3ሻ 

with ܨ෠௝ as the modified Fock operator for the generic fragment j given by 

෠௝ܨ ൌ 	 ቀ1 െ ොߩ ൅ ො௝ߩ
ற
ቁ	ܨ෠	൫1 െ ොߩ ൅  ሺ4ሻ					ො௝൯ߩ

where ܨ෠ is the usual Fock operator, ߩො௝ is the local density operator for the j-th subunit, which depends 

only on the occupied ELMOs of the fragment, and ߩො is the global density operator, which, on the 

contrary, depends on all the occupied ELMOs of the system and, for this reason, couples all the 

modified Hartree-Fock equations associated with the different subunits.  

Finally, it is worth mentioning that, due to the non-orthogonality of the ELMOs, convergence 

problems and instabilities may arise when solving Equations (3) (Stoll et al., 1980; Smits & Altona, 

1985). To overcome these important drawbacks, Fornili et al. (2003) have implemented a completely 

equivalent strategy for the ELMOs determination which consists in directly minimizing the ELMO 

energy through a quasi-Newton procedure that exploits an approximated Hessian. In particular, this 

Hessian is analytically computed only at the first iteration, while it is afterwards updated exploiting a 

variable metric algorithm that uses the Broyden-Fletcher-Goldfarb-Shanno formula (Press et al., 

1992). 

3.2. X-ray constrained Extremely Localized Molecular Orbitals 

In order to extract Extremely Localized Molecular Orbitals from X-ray diffraction data it is necessary 

not only to minimize the energy associated with the ELMO wave function as discussed in the 

previous subsection, but also to reproduce a set of collected structure factors amplitudes ൛ࢎܨ,௢௕௦ൟ 

within a predetermined desired agreement. In other words, this is equivalent to look for those ELMOs 

that minimize the following functional: 



Acta Crystallographica Section A  research papers 

 

 

  8 

 

ሾ࣐ሿܬ 	ൌ ா௅ெைሾ࣐ሿܧ	 	൅ ሺ߯ଶሾ࣐ሿ	ߣ	 െ Δሻ						ሺ5ሻ 

where ሾ࣐ሿ indicates the functional dependence on the occupied ELMOs, EELMO is the energy 

associated with the ELMO wave function for the reference crystal unit, ߣ is the Lagrange multiplier 

representing the strength of the constraint associated with the experimental data,  Δ  is the desired 

agreement between theoretical and experimental values, and  ߯ଶ is the agreement statistics between 

the calculated and the observed structure factors amplitudes (ࢎܨ,௖௔௟௖	 and ࢎܨ,௢௕௦, respectively), namely: 

߯ଶ ൌ
1

௥ܰ െ ௣ܰ
	෍

൫ߟ	หࢎܨ,௖௔௟௖	ห െ 	 หࢎܨ,௢௕௦	ห൯
ଶ

௢௕௦,ࢎߪ
ଶ 						ሺ6ሻ

ࢎ

 

with ௥ܰ as the number of considered experimental diffraction data, ௣ܰ as the number of adjustable 

parameters (in our case only the Lagrange multiplier ߣ), h as the term of Miller indexes labelling the 

reflection and  ࢎߪ,௢௕௦ as the standard uncertainty associated with the experimental structure factor 

amplitude ࢎܨ,௢௕௦	 [i.e., ࢎߪ,௢௕௦ ൌ  ሻ]. All the calculated structure factors amplitudes are	௢௕௦,ࢎܨሺߪ

properly multiplied by an overall h-independent scale factor ߟ,  determined in order to minimize ߯ଶ as 

discussed in details in a previous paper (Genoni, 2013b). Moreover, in this work the set of collected 

structure factors amplitudes ൛ࢎܨ,௢௕௦ൟ was previously corrected for secondary extinctions.  

Following the Jayatilaka’s philosophy (Jayatilaka, 1998; Jayatilaka & Grimwood, 2001), the crystal is 

a set of non-interacting units, which allows writing the global wave function for the crystal as: 

หΨ௖௥௬௦௧ൿ ൌෑ|Ψ௞ۧ
௞

							ሺ7ሻ 

where all the unit wave functions |Ψ௞ۧ are related to each other by means of the crystal symmetry 

operations and are formally identical to the ELMO wave function given by Equation (2). Furthermore, 

assuming that all the non-interacting units correspond to symmetry-unique portions of the crystal unit-

cell, the unit-cell electron distribution can be expressed using only the electron density ߩ଴ሺ࢘ሻ 

associated with the ELMO wave function |Ψ଴ۧ of the reference crystal-unit, namely 

௖௘௟௟ሺ࢘ሻߩ ൌ ෍ߩ௞ሺ࢘ሻ

ே೘

௞ୀଵ

ൌ ෍ߩ଴ ቀࡾ௞
ିଵ	ሺ࢘ െ ࢘࢑ሻቁ

ே೘

௞ୀଵ

						ሺ8ሻ 

where the ܰ௠ unit-cell electron distributions are related to the reference one through the crystal 

symmetry operations  ሼࡾ௞, ࢘௞ሽ. It is important to point out that Equation (8) is exact provided that 

 ଴ሺ࢘ሻ is not obtained by means of an isolated crystal unit calculation. Nevertheless, in this case, theߩ

previous condition is not completely fulfilled since ߩ଴ሺ࢘ሻ is the electron density associated with the 

reference unit ELMO wave function |Ψ଴ۧ that is obtained searching those Extremely Localized 

Molecular Orbitals that minimize the functional given by Equation (5).  
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Now, defining the structure factor operator 

ࢎመܫ ൌ ෍݁௜ଶగሺࡾೖ࢘ା࢘ೖሻ⋅ሺࢎ࡮ሻ
ே೘

௞ୀଵ

ൌ ோ,ࢎመܫ ൅  ሺ9ሻ									஼,ࢎመܫ	݅

where ࡮ is the reciprocal lattice matrix and both ܫመࢎ,ோ and ܫመࢎ,஼  (real and imaginary part of ܫመࢎ, 

respectively) are Hermitian operators, it is possible to show that finding the ELMOs  that minimize 

the functional ܬሾ࣐ሿ introduced above is equivalent to solve self-consistently this new eigenvalue 

problem for each fragment: 

෠௝,௘௫௣ܨ 	ቚ	߮ఈ
௝ 	඀ ൌ 	 ఈߝ

௝,௘௫௣ 	ቚ	߮ఈ
௝ 	඀												ሺ10ሻ					 

where the new modified Fock operator for the generic j-th subunit, ܨ෠௝,௘௫௣ , can be expressed as: 

෠௝,௘௫௣ܨ ൌ ቀ1 െ ොߩ ൅ ො௝ߩ
ற
ቁ	ܨ෠	൫1 െ ොߩ ൅ ො௝൯ߩ ൅

	 ൅ ൟ	௖௔௟௖,ࢎܨ൛ܴ݁	ࢎܭ෍ߣ
ࢎ

ቀ1 െ ොߩ ൅ ො௝ߩ
ற
ቁ	ܫመࢎ,ோ	൫1 െ ොߩ ൅ ො௝൯ߩ ൅

	 ൅ ൟ	௖௔௟௖,ࢎܨ൛݉ܫ	ࢎܭ෍ߣ
ࢎ

ቀ1 െ ොߩ ൅ ො௝ߩ
ற
ቁ	ܫመࢎ,஼	൫1 െ ොߩ ൅ ሺ11ሻ													ො௝൯ߩ

 

with 

ࢎܭ ൌ
ߟ2

௥ܰ െ ௣ܰ
		
	௖௔௟௖,ࢎܨߟ െ 	௢௕௦,ࢎܨ
௢௕௦,ࢎߪ
ଶ 	௖௔௟௖,ࢎܨ		

						ሺ12ሻ 

As the equations for the “theoretical” ELMOs, also the equations for the X-ray constrained Extremely 

Localized Molecular Orbitals are coupled since in all the operators ܨ෠௝,௘௫௣ depend on the global 

density operator ߩො which is constructed with all the occupied ELMOs of the system. Furthermore, as 

for the theoretical case, we have also implemented an analogous quasi-Newton procedure to 

overcome possible convergence problems and instabilities in the resolution of Equations (10) 

(Genoni, 2013a,b). 

In order to compute a set of structure factors amplitudes ൛	ࢎܨ,௖௔௟௖	ൟ that properly take into account the 

effects of the thermal vibrations we have followed the Stewart (1969) thermal smearing scheme using 

the same equations proposed by Jayatilaka and co-workers (Jayatilaka, 1998; Jayatilaka & Grimwood, 

2001), except for the fact that, for the calculation of the Fourier transforms of basis functions pairs, an 

Obara-Saika scheme (Obara & Saika, 1986; Obara & Saika, 1988) with both vertical and horizontal 

recurrence relations (Head-Gordon & Pople, 1988) has been implemented (Genoni, 2013a,b). 

Owing to experimental errors in the collected experimental structure factors amplitudes, it is not 

necessary to force ߯ଶ equal to zero, but it is better to set the value of the desired agreement Δ in 

Equation (5) equal to 1, so that, at the end of the calculations, the computed values are on average 
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within one standard deviation of the experimental data. However, as already observed by Jayatilaka 

and co-workers (Grimwood & Jayatilaka, 2001; Whitten et al., 2006; Jayatilaka et al., 2009; Hudák et 

al., 2010), the convergence towards the desired agreement is not always fast and straightforward. In 

order to avoid that large values of ߣ produce only minimal improvements in the ߯ଶ statistics and large 

unphysical changes of the energy, the following termination criteria have been recently proposed 

(Genoni, 2013b): 

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ
߯ଶ ൏ 1
	

ቆ
Δ߯ଶ

Δλ
ቇ
௜

ൌ
߯௜
ଶ െ ߯௜ିଵ

ଶ

௜ߣ െ ௜ିଵߣ
	൐ െ5 ⋅ 10ିଵ

	
หܧఒ೔

௘௟ െ ఒୀ଴ܧ
௘௟ ห

หܧఒୀ଴
௘௟ ห
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While the first criterion is the traditional one, namely it checks if the desired statistical agreement Δ ൌ

1.0 has been reached, the second one avoids that a very large Lagrange multiplier produces only very 

small improvements in the agreement statistics. The third criterion assures that the XC-ELMO 

electronic energy does not excessively change compared to the unconstrained ELMO electronic 

energy.  

Although these criteria are quite reliable and well defined, the termination of the fitting procedure in 

the X-ray constrained approaches is still an open problem and it will deserve further investigations in 

the future. 

4. Experimental and computational details 

4.1. X-ray data collection and processing 

-Glycylglycine, Figure 1 (a), was recrystallized by slow evaporation of an n-propanol-water mixture. 

We have re-determined the crystal structure by single-crystal X-ray diffraction at 100 K. The 

temperature was stable within 0.5 K. Details of data collection and refinement procedures are given 

in Table 1. Measurements were carried out on an Agilent SuperNova diffractometer equipped with a 

MoK Al-filtered microsource (Macchi et al., 2011) and an Oxford Cryosystem 700 cryostream for 

low temperature. Data collection, reduction and cell refinement were performed using the CRYSALIS 

PRO programs (Agilent Technologies, 2013). A total of 2765 image frames were obtained from 33  

scan sets (1.0 oscillation angle) using three different exposure times. The scan sets with low detector 

 offsets were measured for 10 + 10 s, intermediate-angle images were collected for 30 + 30 s and the ߠ

high-angle images were measured for 60 + 60 s. The unit-cell dimensions were determined by post-

refinement of 18 946 reflections (2.7 < 52.4 > ߠ). An analytical absorption correction was applied 

using a multifaceted crystal model based on expressions derived by Clark & Reid (1995) as 
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implemented in SCALE3 ABSPACK scaling algorithm (Agilent Technologies, 2013). A total of 38 

933 reflections were collected with a mean redundancy of 5.9. The resulting data were merged using 

SORTAV (Blessing, 1987) giving 6597 independent reflections until resolution of 

sin ௠௔௫ߠ ߣ ൌ 1.12	Հିଵ⁄ ௠௔௫ߠ)  ൌ 52.6° for MoK radiation).   

4.2. Spherical, independent-atom refinement 

Atomic coordinates and ADPs were taken from Biswas et al. (1968) and refined on F2 applying the 

independent atom model (IAM) and using all data with full-matrix least-squares as implemented in 

SHELXL (Sheldrick, 2008),within the WINGX package (Farrugia, 1999). The weighting scheme 

ࢎݓ ൌ 	௢௕௦,ࢎܨଶ൫ߪൣ
	ଶ ൯ ൅ ሺܲܣሻଶ ൅ ൧ܲܤ

ିଵ
 was applied, where ܲ ൌ 	௢௕௦,ࢎܨ

	ଶ 3⁄ ൅ 	௖௔௟௖,ࢎܨ2
	ଶ 3⁄  and A = 

0.0606, B = 0.0360. All non-hydrogen atoms were refined anisotropically. X–H distances and 

hydrogen ADPs were fixed according to experimental neutron diffraction data (Kvick et al., 1977). As 

recommended by Blessing (1995), the H-atom ADPs were scaled against the ADPs obtained for the 

heavier atoms from the two experiments. An isotropic extinction parameter was also refined 

according to the empirical expression implemented in SHELXL, where 	ࢎܨ,௖௔௟௖	 is multiplied by 

1ൣߟ ൅	0.001	߳	ࢎܨ,௖௔௟௖	
	ଶ ଷߣ	 sinሺ2ࢎߠሻ⁄ 	൧

ିଵ ସ⁄
, with ߟ as the overall scale factor and ߳ as the extinction 

parameter, which was refined to 0.007 (4). 

4.3. Multipole refinement 

The multipole refinement was performed using the XD2006 program suite (Volkov et al., 2006) and 

the Hansen-Coppens formalism (Hansen & Coppens, 1978) that is able to model the deformation 

fraction of ߩሺ࢘ሻ using atom-centred multipole functions (also known as pseudoatoms) having this 

form: 

௔௧௢௠ሺ࢘ሻߩ ൌ ௖௢௥௘ሺ࢘ሻߩ ൅ ௩ܲ	ߢ	ߩ௩௔௟௘௡௖௘ሺߢ	࢘ሻ ൅ Δߩሺ࢘ሻ										ሺ14ሻ 

where 

Δߩሺ࢘ሻ ൌ ෍ ௟ߢ
ᇱ

௟೘ೌೣ

௟ୀ଴

	ܴ௟ሺߢ௟
ᇱݎሻ	 ෍ ௟ܲ௠

ା௟

௠ୀି௟

	 ௟ܻ௠ሺߠ, ߮ሻ																					ሺ15ሻ	 

The core and spherical valence density (ߩ௖௢௥௘ and ߩ௩௔௟௘௡௖௘, respectively) are composed of Hartree-

Fock wave functions expanded in Slater-type orbitals (Clementi & Roetti, 1974). The valence shell is 

either contractible or expandable by the use of the ߢ parameter. Single-zeta orbitals with energy-

optimized Slater exponents are used for the radial part of the deformation terms (Clementi & 

Raimondi, 1963). The additional radial parameters ߢ௟
ᇱ are defined for each angular momentum l in 

order to deal with the radial expansion or contraction of the deformation density. ௩ܲ and ௟ܲ௠ represent 
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the population parameters for the valence and deformation density multipoles, respectively. The 

angular functions ௟ܻ௠ are density normalized real spherical harmonics (Paturle & Coppens, 1988). 

Several multipole models were tested, as described in section 5. 

The function minimized in the least-squares procedure was ∑ ࢎࢎݓ ൫ࢎܨ,௢௕௦
ଶ െ ௖௔௟௖,ࢎܨ	ሺ߳ሻࢎY	ߟ

ଶ ൯
ଶ
  where 

the statistical weight  ࢎݓ ൌ 1 ௢௕௦,ࢎܨଶ൫	ߪ
ଶ ൯⁄   was applied and where only those reflections characterized 

by ࢎܨ,௢௕௦ ൐  ሺ߳ሻ isࢎis the overall scale factor while Y ߟ ,௢௕௦൯ were included. Furthermore,ࢎܨ௢௕௦൫,ࢎߪ3

the correction for secondary extinctions according to the model proposed by Becker & Coppens 

(1974). This model depends on the isotropic extinction parameter ߳, which was refined to 0.315(15), 

corresponding to a mosaicity spread of 10". 

The multipole expansion was truncated at the hexadecapole level (lmax = 4) for all the non-H atoms, 

while bond-directed dipoles and quadrupoles were applied to all the H-atoms. The ߢ and ߢ௟
ᇱ 

parameters were initially set to proper reference values (Volkov et al., 2000a) and posteriorly refined. 

A single ߢ௟
ᇱ was refined for all the l values belonging to a defined set while ߢ௟

ᇱ for the H-atoms was not 

refined. The X–H distances were initially set to neutron diffraction averages (Allen & Bruno, 2010) 

but then freely refined. A high-order refinement with sin ߠ ⁄ߣ ൒ 0.7	Հିଵ was performed for the non-H 

atoms to obtain accurate positional and displacement parameters. In the next step, the H-atom ADPs 

were estimated by the SHADE routine (Madsen, 2006) and the obtained values were used as fixed 

parameters in the subsequent refinements. 

4.4. Ab initio periodic calculation and multipole refinement of theoretical structure factors 

In order to provide an additional and reliable benchmark for the XC-ELMO calculations, a single-

point periodic calculation was performed on the final multipole model geometry without including 

thermal smearing, using the CRYSTAL09 package (Dovesi et al., 2009) at the density functional 

theory (DFT) level using the B3LYP functional. Since in CRYSTAL09 the Bloch functions are 

expanded as a linear combination of Gaussian-type functions centered on the atoms of the periodic 

system, the calculation was carried out using the standard 6-31G(2d,2p) basis-set. 

In order to mimic the experimental refinement as much as possible, the calculation of theoretical 

structure factors was limited to the sin ߠ ⁄ߣ ൌ 1.2	Հିଵ resolution and, afterwards, a static multipole 

model refinement (i.e., ADPs set to zero) of the theoretical data was performed without optimizing 

atomic positions, thus eliminating an important source of correlation between parameters. As for the 

experimental refinement, the multipole expansion was truncated at the hexadecapole level for the non-

H atoms and only bond-directed dipoles and quadrupoles were refined for the H-atoms. Both ߢ and ߢ௟
ᇱ  

parameters were refined independently for each heavy atom, while only one ߢ was refined for all the 
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H-atoms. The rigid local symmetry constraints and chemical equivalences were also consistent with 

the experimental refinement (see Section 5).  

4.5.  Unconstrained and X-ray constrained ELMO calculations 

The X-ray constrained ELMO strategy has been implemented modifying the version 8 of the 

GAMESS-UK quantum chemistry package (Guest et al., 2005), which has been used to perform all 

the unconstrained (ߣ ൌ 0) and constrained (ߣ ് 0) ELMO calculations that will be discussed 

hereafter.  

In order to assess the fitting effects on the ELMO electron density of the glycylglycine molecule, 

ELMO and XC-ELMO calculations have been performed using the 6-31G, 6-31G(d,p) and cc-pVDZ 

basis-sets and considering both the IAM and the MM experimental molecular geometries obtained 

from the X-ray diffraction experiment. Electron density-related properties derived from the 

constrained ELMO wave functions were afterwards compared to the ones corresponding to the 

unconstrained ELMO wave functions.  

For all the ELMO calculations, the adopted localization scheme almost corresponds to the Lewis 

structure of the molecule, with atomic fragments, which describes the core electrons and the lone-

pairs associated with each atom, and with bond subunits, which describe all the electron pairs between 

each couple of nuclei. The only exceptions are represented by two three-atom fragments: one for the ߪ 

and the ߨ electrons of the amide group O1-C2-N2 (comprising also the electrons for the delocalized 

lone pair of the nitrogen atom) and another one for the ߪ and the ߨ electrons of the carboxylic group 

O2-C4-O3. The same localization scheme has been used for all the XC-ELMO calculations for which 

the unit-cell parameters and the ADPs associated with the different refinement models were also taken 

into account. Concerning the experimental structure factors amplitudes used to constrain the ELMO 

wave functions, only those characterized by ࢎܨ,௢௕௦ ൐  ௢௕௦൯ were selected (overall 5467,ࢎܨ௢௕௦൫,ࢎߪ3

reflections). As anticipated, the set of amplitudes ൛ࢎܨ,௢௕௦ൟ was previously corrected for secondary 

extinctions. Furthermore, the scale factor ߟ was properly optimized during the XC-ELMO 

computations. 

4.6. Topological analyses 

The Quantum Theory of Atoms in Molecules (QTAIM) (Bader, 1990) has been exploited to properly 

analyze all the obtained charge distributions. In particular, the TOPXD module (Volkov et al., 2000b) 

was used to partition and integrate the atomic basins of all the multipole-fitted electron densities, 

namely, ߩெெ/௑஼, ߩெெ/௉ି஻ଷ௅௒௉, ߩெெ/ா௅ெை and 	ߩெெ/௑஼ିா௅ெை. The TOPOND98 software (Gatti, 

1999) was used to perform the topological analysis of the periodic B3LYP/6-31G(2d,2p) electron 
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density ߩ௉ି஻ଷ௅௒௉, while the analyses of all the ߩா௅ெை and ߩ௑஼ିா௅ெை electron distributions were 

performed with the AIMAll software (Keith, 2013). 

Given the complexity associated with the definition of zero-flux surfaces in the electron density and 

with the subsequent integration (Popelier, 1998), the numerical integration error of the atomic basins, 

which is defined by 

ሺΩሻܮ ൌ െ
1
4
	න ࢘݀	ሺ࢘ሻߩଶ׏

	

ஐ
							ሺ16ሻ 

and which should be zero for an ideal integration (Bader, 1990), was also carefully monitored. In this 

work, the values of ܮሺΩሻ approximately ranged from 3  10-6 to 2  10-3 au. 

5. Fitting effects on the multipole model 

In this section, we analyse the effects of fitting several Hansen & Coppens multipole models against 

the experimentally collected structure factors. In other words, we investigate step-by-step the 

relaxation of the local symmetries of atoms from spherical and neutral to aspherical and charged. 

After the spherical atom refinement (section 4.2),  an initial multipole model (MM1) was refined 

using several rigid constraints on the local symmetry of the atomic density functions (mm2 for O1, 

O2, O3 and C4; m for C1, C2, C3 and N2; 3m for N1; see Figure 1 (a) for atomic labels) and chemical 

equivalences (O2 = O3, C1 = C3). These constraints imply sp2 hybridization for N2, C4 and for all the 

O atoms and sp3 hybridization for N1, C1 and C3 (however, a “perfect” hybridization includes here an 

asymmetric polarization induced by chemical bonds to atoms of different electronegativity). The H-

atoms were treated with cylindrical symmetry (m) and those bonded to equivalent heavier atoms 

were also treated as equivalent.  

The atomic symmetries were progressively reduced, using the statistical parameters R and wR and the 

residual density maps as guides to select the best refinement model. The chemical equivalences were 

then removed and the following local symmetries were used (MM2 model): mm2 for C4, 3m for N1 

and m for all the other non-H atoms and m for all the H's. This implies sp2 hybridization for C4, sp3 

for N1, C1 and C3 but a mixed character for all the O atoms and N2. In the last cycle, the coordinates 

and the ADPs for all the non-H atoms, the coordinates for the H-atoms, the	ߢ and ߢ௟
ᇱ  parameters, the 

multipole populations, the extinction parameter ߳ and the overall scale factor ߟ were refined together, 

for an overall optimization of 271 parameters. A satisfactory deconvolution of thermal motion from 

the deformation electron density distribution has been obtained, as shown by the Hirshfeld rigid-bond 

test (Hirshfeld, 1976). In fact, the largest differences of mean-squares displacement amplitudes 

(DMSDA) was 5  10-4 Å2, which is lower than the limit of 0.001 Å2 suggested by Hirshfeld. 

Additionally, the comparison between the final ADPs of the MM2 model with those previously 
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published for the neutron diffraction on glycylglycine (Kvick et al., 1977) shows a mean absolute 

difference of 0.0008(14) Å2, taking however into account that the temperatures of the two experiments 

are different (100 K of the current X-ray diffraction vs. 82 K for the neutron diffraction). The neutron 

and X-ray geometries are in good agreement, but, as expected, larger discrepancies occur for positions 

of H atoms: in fact, X-H distances are on average 0.04(2) Å shorter in the MM2 model with respect to 

the neutron diffraction geometry. The maximum and minimum residual peaks are +0.14 and –0.14 ݁ ⋅

Åିଷ, with the residual density maps showing only few and small discrepancies that could not be 

removed by any deformation model. 

For the sake of completeness, we have also performed a multipole refinement up to hexadecapole 

level for all non-H atoms and up to the quadrupole level for the H-atoms without imposing any local 

symmetry constraint (MM3), namely we have refined all the corresponding multipoles, accounting 

423 parameters overall. The final statistical agreements (see Table 1) are very close to those obtained 

in the last refinement cycle of the symmetry constrained MM2 model described above. 

Figure 2 shows scatter plots of the difference between experimental and calculated structure factors 

amplitudes normalized by the experimental standard deviations as a function of the sin ߠ ⁄ߣ  resolution 

for the IAM and the three MM refinements. It is obvious that the multipolar refinement improves the 

agreement between measured and calculated structure factors compared to the IAM, Fig. 2 (a), even 

when rigid local symmetry constraints are extensively applied, MM1 model, Fig. 2 (b). The 

progressive reduction of the local symmetries and the removal of equivalences (MM2) further 

improve the agreement, Fig. 2 (c), whereas a model without any local symmetry constraint (MM3) 

does not further reduce the normalized residuals, Fig. 2 (d). In fact, the number of reflections 

computed within 1 from the observed ones is 3336, 3888, 4236 and 4276, for IAM, MM1, MM2 

and MM3, respectively. The Hamilton significance test (Hamilton, 1965) also indicates that removing 

the local symmetry constraints from MM2 does not lead to a significant model improvement, despite 

using 152 additional parameters. Therefore, the models MM2 and MM3 are not statistically different 

and from now on, we only refer to the results obtained using the local symmetry constrained multipole 

model MM2 just described. A similar conclusion can be reached refining the P-B3LYP structure 

factors with these two models, meaning that also the theoretical crystal density shows such a local 

symmetry for all the atoms. 

Attempts to refine core deformations were not carried out, as this would be beyond the scope of this 

paper. Such a study would require even higher resolution and, at present, has been applied only on 

smaller and more symmetric crystals, Fischer et al. (2011).  

Based on the difference density maps, the residual density analysis and the normal probability plot 

provided in the Supporting Information, one can easily conclude that both the measured intensities 
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and the refined multipole models are of extremely good quality and therefore could be a very good 

benchmark for the XC-ELMO calculations. 

6. Fitting effects on the ELMO wave-functions 

6.1. Agreement statistics and energy 

The agreement statistics and the energies for all the X-ray constrained computations on glycylglycine, 

using the geometry and the ADPs from MM2 refinement, are reported in Table 2. For each basis-set, 

the XC-ELMO calculations are of course in better agreement with the measured intensities. For the 6-

31G basis-set, however, the desired agreement cannot be reached (߯ଶ ൌ 1.27 for ߣ௠௔௫ ൌ 0.40, with 

an asymptote above 1.0), whereas it is quite smoothly obtained for the larger and more flexible basis-

sets 6-31G(d,p) and cc-pVDZ (߯ଶ ൑ 1 for ߣ as large as 0.12), see Figure 3. Here we point out that for 

the 6-31G basis-set the second termination criterion in (13) is satisfied, while in the other two cases 

we have observed the fulfillment of the more traditional condition ߯ଶ ൏ 1.  

 ߯ଶ  rapidly decreases as  increases, showing that even a weak constraint to the X-ray data is 

sufficient to improve significantly the agreement. The asymptotic value of ߯ଶ is slightly above the 

limit obtained for the multipolar models (0.66 for both MM2 and MM3) and smaller than for IAM 

(1.04). The agreement indexes R and wR shown in Table 2 mirror the behaviour of the 2 statistics, 

but they are much less sensitive to  and, therefore, less useful to compare the quality of the different 

constrained wave functions. On the other hand, R and wR can be used for comparison against the 

multipole models (see Table 1), which of course give better agreements because they do not have to 

satisfy an energy minimization criterion and, above all, because they are not subject to the termination 

criterion ߯ଶ ൑ 1	imposed by Equation (13). Furthermore, R and wR confirm that XC-ELMO performs 

much better than an IAM refinement.   

Figure 4 shows the normalized differences between experimental and ELMO or XC-ELMO structure 

factors amplitudes in function of the resolution. Almost all the structure factor amplitudes computed 

from the 6-31G(d,p) and cc-pVDZ XC-ELMO wave functions, Fig. 4 (e) and (f), are within 5 from 

the experimental values without any obvious resolution dependence. The number of reflections within 

the 1 range is 4149 and 4240 for the 6-31G(d,p) and the cc-pVDZ basis-sets, respectively, 

contrasting with 3663 and 3764 reflections within 1 for the unconstrained ELMO 6-31G(d,p) and 

cc-pVDZ wave functions, respectively. On the other hand, for the XC-ELMO/6-31G wave function, 

for which ߯ଶ ൌ 1.27, only the structure factors amplitudes calculated at resolution sin ߠ ⁄ߣ ൐ 0.5	Հିଵ 

agree with the experimental values within 5, while many low-angle structure factors significantly 

exceed the 5 limit, Fig. 4 (d). Moreover, the XC-ELMO/6-31G plot shows a distribution of 

normalized residuals quite similar to that associated with the unconstrained ELMO wave functions 
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(respectively 3689 and 3954 reflections are within the 1 range for the unconstrained and the X-ray 

constrained ELMO 6-31G wave functions, respectively), meaning that the X-ray constraining 

procedure was actually not particularly effective, despite the better agreement indexes. In this respect, 

the comparison between Fig. 4 (d) with 4 (b) and 4 (c) is extremely elucidative because it shows that 

an X-ray constrained wave function is not better than an unconstrained one in the absence of 

polarization functions in the basis-set. This demonstrates that the ELMO/6-31G wave function is 

definitely not flexible enough to fit the experimental data. On the contrary, if sufficient variational 

flexibility is present in the basis-set, even unconstrained ELMO wave functions better reproduce the 

experimentally collected structure factors. 

Here it is noteworthy the fact that, by constraining the molecular orbitals to be strictly localized on 

molecular subunits instead of allowing them to completely delocalize as the traditional canonical 

(Hartree-Fock) molecular orbitals, the ELMO  strategy introduces additional approximations over the 

usual Hartree-Fock method. The question of which effects the ELMO approximation introduces in the 

electron density distributions must be addressed, otherwise one is not sure to what extent the effects 

and trends observed are relative to the ELMO strategy itself rather than the X-ray constraint 

procedure. In order to investigate this point, we have computed unconstrained and X-ray constrained 

Hartree-Fock electron densities (ߩுி and ߩ௑஼ିுி, respectively) for the three selected basis-sets using 

the Tonto package (Jayatilaka & Grimwood, 2003), and compared them with the corresponding 

ELMO and XC-ELMO densities.3 The statistical agreements are shown in Table 2. They are slightly 

better compared to the ELMO indexes, suggesting that the introduction of the localization scheme has 

just a minor effect on the electron density distributions. As discussed in the next section, the 

topological analyses of the unconstrained and constrained Hartree-Fock densities confirm this is 

indeed the case. 

 In Table 2 the energies associated with all the ELMO and XC-ELMO wave functions are reported. 

As already observed (Grimwood & Jayatilaka, 2001; Hudák et al., 2010; Genoni, 2013a), the energies 

of constrained wave functions are always higher, in keeping with what expected in a variational 

procedure when a constraint is added without introducing a new variational parameter. 

6.2. Electron density distribution and its topology 

Figure 5 shows three-dimensional plots of ߩ௑஼ିா௅ெை െ  ா௅ெை for the 6-31G and the 6-31G(d,p)ߩ

basis-sets (the distribution associated with the cc-pVDZ case is shown only in the Supporting 

Information because it is very similar to the 6-31G(d,p) one). While for the 6-31G(d,p) basis-set the 

main consequences of the fitting consist in a large redistribution of the electron density around the 
                                                      
3 XC-HF wave functions were computed at the same ߣ௠௔௫ values as the corresponding XC-ELMO wave 
functions, except for the 6-31G basis-set, for which convergence could not be achieved for  ≥ 0.40  (see Table 
2).  
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nuclei and in only small rearrangements in the bonding regions, the 6-31G fitting procedure entails 

significant changes of the electron density both in the core and in the bonding domains. This is 

especially evident for the oxygen atoms, for which a depletion of electron density in the lone-pairs 

regions is noteworthy. Other important fitting effects are the reduction of electron density associated 

with the C–H bonds and the shifting of electronic charge from the H atoms to the N atoms. Shifts of 

electron density from C3 to C4 and, analogously, from C2 to N2 and from N1 to C1 are also 

observed. 

Topological properties at the bond critical points of ߩா௅ெை and ߩ௑஼ିா௅ெைare gathered in Table 3 and 

they are compared to the results obtained from the periodic B3LYP/6-31G(2d,2p) computation 

 The properties obtained from the XC-ELMO wave functions are in general similar to .(௉ି஻ଷ௅௒௉ߩ)

those obtained from the corresponding unconstrained ELMO calculations, especially the electron 

density at the bond critical points, ߩሺ࢘௕ሻ. Upon closer inspection, we see that the XC-ELMO ߩሺ࢘௕ሻ 

generally approach the P-B3LYP limit for the more complete and polarized basis-sets. 

The analysis of the Laplacian at the bond critical points, ׏ଶߩሺ࢘௕ሻ, show much larger discrepancies. 

As previously discussed (Macchi et al., 1998; Bytheway et al., 2002a), this is a consequence of the 

intrinsic nature of the Laplacian, especially for polar bonds. Figure 6 depicts the plots of ܮ ൌ

െ׏ଶߩሺ࢘ሻ, which shows regions of electron density concentration (L > 0) and depletion (L < 0), in the 

carboxylate group plane of glycylglycine. The constrained or unconstrained plots are qualitatively 

very similar, showing regions of electronic charge concentration along the C–C, and C–O bonds as 

well as in the lone-pairs regions of the oxygen atoms. The atomic graphs of C4, O2 and O3 have the 

expected trigonal arrangement of three charge concentration maxima in both constrained and 

unconstrained cases. Nevertheless, because polar bond critical points lie close to nodal surfaces of the 

Laplacian, small changes in the position of these bond critical points may lead to large changes of 

 ሺ࢘௕ሻ valuesߩଶ׏ ሺ࢘௕ሻ. This explains the large differences between constrained and unconstrainedߩଶ׏

found in Table 3 and stress the importance of correctly locating the critical point along the 

corresponding bond path (Bytheway et al., 2002a). 

The topological properties computed for both the ߩுி and ߩ௑஼ିுி densities are deposited in the 

Supplementary Information (Table S9). As anticipated, their comparison with the corresponding 

ELMO and XC-ELMO densities indicates that the ELMO strategy does not introduce significant 

changes in the electron density distributions, relative to the Hartree-Fock approximation. For example, 

the difference in electron density at the bond critical points between ߩா௅ெை and ߩுி and between 

 ௑஼ିுி are usually less than 5% for the 6-31G basis-set, but they drop to c.a.3% forߩ ௑஼ିா௅ெை andߩ

the largest 6-31G(d,p) and cc-pVDZ basis-sets.         

6.3. QTAIM atomic charges and dipoles 
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Bar-graphs of the net atomic charges are shown in Figure 7. Overall, charges from ELMO and XC-

ELMO wave functions are qualitatively similar, addressing negatively charged oxygen and nitrogen 

atoms, positively charged carbon and hydrogen atoms of the amino group and basically neutral 

methylenic hydrogens. For the O, N and C atoms, the XC-ELMO/6-31G charges are relatively close 

to the ELMO/6-31G results with the largest discrepancy around 0.13 au. The differences are even 

smaller for the polarized and more flexible basis-sets. For the hydrogen atoms, the relative changes 

are larger, but these charges are very small, so the largest absolute differences are around 0.04 au. 

Furthermore, the results obtained from the ߩ௑஼ିா௅ெை and ߩ௉ି஻ଷ௅௒௉ densities are similar for all the 

basis-sets, with the XC-ELMO charges slightly larger in absolute values. Surprisingly, the best 

agreement with the ߩ௉ି஻ଷ௅௒௉ results is found for the charges calculated using the smaller 6-31G 

basis-set. However, the results previously discussed indicate that this better agreement must be just 

incidental.  

Atomic dipole moments measure the displacement of the centroid of an atomic charge density from its 

nucleus and can be calculated from the integration of the dipolar density function ࢘ߩሺ࢘ሻ inside the 

atomic basin Ω (Bader, 1990): 

ሺΩሻࣆ ൌ െන࢘ߩሺ࢘ሻ	݀࢘
	

ஐ
							ሺ17ሻ 

Magnitudes of atomic dipole moments are given as bar-graphs in Figure 8. For oxygen atoms, 

ELMO/6-31G and XC-ELMO/6-31G dipole moments are markedly underestimated compared to the 

more polarized basis-sets and P-B3LYP. For these atoms, the extra d-functions are therefore vital to 

describe the internal polarization. Using ߩ௉ି஻ଷ௅௒௉ as benchmark, we see that the X-ray constraining 

improves the dipole moments of oxygen atoms for the 6-31G(d,p) and the cc-pVDZ ELMO wave 

functions, although they remain considerably overestimated. The largest discrepancies between 

unconstrained and constrained calculations are always observed for the carbonylic oxygen O1, with 

decrements of 0.06 and 0.03 au for the 6-31G(d,p) and cc-pVDZ basis-sets, respectively.  

On the contrary, for the nitrogen atoms, the XC-ELMO/6-31G wave function gives a dipole moment 

closer to the one associated with ߩ௉ି஻ଷ௅௒௉. For N1 and N2, the X-ray constraining is helpful, whereas 

the polarization functions are not so necessary. The largest difference between ELMO and XC-ELMO 

dipole moments is 0.07 au for N1, the amino nitrogen involved as “donor” atom in some hydrogen 

bonds with neighboring molecules.  

For carbon and hydrogen atoms, the polarized basis sets usually perform better and the dipole moment 

magnitude improves after the fitting procedure. The directions of the atomic dipole moments is 

substantially similar for all methods, with a maximum difference smaller than 2 º. 
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A more important analysis is that of the molecular dipole moment, which can be expressed in terms of 

two contributions: the integration of the dipolar density function over atomic basins, Equation (17), 

and the net atomic charge ݍሺΩሻ. Therefore, 

ெை௅ࣆ ൌ෍ ሾࣆሺΩሻ ൅ ஐሿࡾሺΩሻݍ
ஐ

							ሺ18ሻ 

where ࡾஐ is the position vector of the nucleus of atom Ω respect to an arbitrary origin. As previously 

shown, both terms are equally important in the description of a molecular dipole (Bader et al., 1987; 

Laidig & Bader, 1990). Magnitudes of the molecular dipole moments for glycylglycine are given as 

bar-graphs in Figure 9 (a). Spackman et al. (2007) have shown that typical enhancements of 

molecular dipole moments from gas-phase to crystals are within 10-40%, depending on the 

polarizability of the molecule and its specific packing in the solid state. The gas-phase B3LYP/6-

312G(2d,2p) molecular dipole moment of glycylglycine is 9.445 au whereas the P-B3LYP molecular 

dipole moment, using the same basis-set, is 11.337 au, corresponding to an enhancement of 20%. In 

our work, the difference between ߩ௉ି஻ଷ௅௒௉ and ߩ௑஼ିா௅ெை dipole moments may inform us on the 

ability of XC-ELMO wave functions to account for intermolecular crystal field effects. In fact, from 

Figure 9 (a), we see that the X-ray constraining procedure makes the molecular dipole moment quite 

closer to the P-B3LYP value, but the increase is smaller than 10% for all the basis-sets. The value 

obtained with the 6-31G basis-set is closer to the P-B3LYP one, but this seems again a consequence 

of the fortuitous agreement on atomic charges described before. In reality, we learn from Fig. 9 (a) 

that, as the basis-sets become more complete and flexible, the dipole moments obtained through the 

X-ray constrained wave functions converges to a value that is ca. 5% smaller than the P-B3LYP one.  

7. Fitting effects on the multipole model-projected ELMO electron densities 

In order to avoid potential ambiguities due to the multipolar expansion used to model the benchmark 

experimental electron density, we have also projected the P-B3LYP, all the ELMO and XC-ELMO 

electron densities in terms of Hansen & Coppens multipoles, using the very same MM2 model 

discussed in Section 5.  This will enable us to compare all the densities, affected in the same way by 

the inherent limitations of the multipolar expansion (Fischer et al., 2011). Of course, all the atomic 

coordinates and ADPs (for XC-ELMO) were kept fixed to those from the MM2 refinement against 

experimental data. 

7.1. Deformation density 

Figure 10 shows the deformation densities ߩெெ/௑஼ െ ெெ/௉ି஻ଷ௅௒௉ߩ ூ஺ெ andߩ െ  ூ஺ெ forߩ

glycylglycine. As expected, the plots clearly show an accumulation of electron density in all the 

covalent bonds and in the lone-pairs domains of the oxygen atoms. Electron density depletions are 

mainly concentrated around the nuclei. 
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In Figure 11, we show the deformation density plots (ߩெெ/ா௅ெை െ ெெ/௑஼ିா௅ெைߩ) ூ஺ெ) andߩ െ

 ூ஺ெ) using the 6-31G and 6-31G(d,p) basis-sets. At the ELMO/6-31G level, Fig. 11 (a), the electronߩ

accumulation in the bonding regions is significantly smaller, especially for the N2-C3 and all the C-O 

bonds. The experimental constraint gives only a slight improvement, Fig. 11 (b). This result confirms 

that constraining an ELMO wave function to experimental structure factors leads to a meaningful 

electron density distribution only if the basis-set is sufficiently flexible. In fact, the deformation 

densities derived from the unconstrained and constrained ELMO/6-31G(d,p) wave functions, Fig. 11 

(c) and (d), are significantly closer to the ߩெெ/௑஼ and ߩெெ/௉ି஻ଷ௅௒௉ deformation densities.  

The ߩெெ/ா௅ெை deformation density calculated with the polarized 6-31G(d,p) basis-set, Fig. 11 (c), is 

already very similar to the ߩெெ/௉ି஻ଷ௅௒௉ deformation density, Fig. 10 (b), although only the latter 

takes into account crystalline environment effects through a fully periodic approach.  

A finer analysis shows that Figure 11 (d) (deformation density for ߩெெ/௑஼ିா௅ெை with 6-31G(d,p) 

basis-set) is closer to Fig. 10 (a) (ߩெெ/௑஼) than to Fig. 10 (b) (ߩெெ/௉ି஻ଷ௅௒௉), in particular for the 

lone pair domains of the O atoms. This means that some features of the deformation densities are 

genuinely due to the X-ray constraint rather than to a crystal field effect (at least if calculated at 

B3LYP level). This is particularly encouraging because it shows the ability of XC-ELMO to extract 

information from experimental intensities.  

7.2. Topological properties, charges and dipoles 

A full topological analysis of all the electron density distributions projected to the Hansen & Coppens 

MM2 multipole model is given in the Supporting Information. The results are in good agreement with 

the topological features shown in Table 3, i.e. the multipole model projections are not significantly 

different from the corresponding non-projected electron distributions: ߩሺ࢘௕ሻ differ by less than 5%, 

the BCP positions are on average within 0.08 au. As expected, ׏ଶߩሺ࢘௕ሻ change more significantly. In 

general, ߩெெ/௑஼ିா௅ெை are closer to the ߩெெ/௑஼ and ߩெெ/௉ି஻ଷ௅௒௉ benchmark densities than 

-ெெ/ா௅ெை and, more importantly, the agreement is better when larger basis-sets 6-31G(d,p) and ccߩ

pVDZ are used.  

Having multipolar projected electron densities, it is possible to thoroughly analyze the hydrogen 

bonds and comment on the performances of the XC-ELMO approach, in particular verifying if there 

is any improvement upon the fitting. Figure 1 (b) shows the pattern of strongest hydrogen bonds in the 

crystal structure of glycylglycine and Table 4 collects their topological features. All these bonds are of 

N–H···O type, with H···O distance ranging from 1.77 (2) to 1.98 (2) Å.  

Topological features of hydrogen bonds from experimental electron density analyses have been often 

used to classify various types of interactions (Rozas et al., 2000; Espinosa et al., 1999). However, 
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Spackman (1999) observed that for many medium-weak hydrogen bonds, the electron density, its 

topology and the local energy densities can be well approximated even using the pro-molecule, that is 

the electron density distribution calculated from IAM model. As a matter of facts, the topological 

properties of hydrogen bonds calculated from all the electron density models for glycylglycine are 

rather similar. Wave functions computed with the 6-31G basis-set provide slightly larger electron 

densities than the 6-31G(d,p) and the cc-pVDZ ones. However, the effect of X-ray constraining is 

extremely small. This observation, along with the small dipole moment enhancements discussed in 

subsection 6.3, suggests that the long-range crystal interactions do not polarize the electron density in 

the H-bond BCP regions. This is quite different from what happens in the electron lone-pairs and 

intramolecular bonding regions, where the effects due to the crystal field or the X-ray constraining are 

more evident (see the previous section). Grimwood & Jayatilaka (2001) have briefly discussed the 

effects of long-range interactions on the electron density of oxalic acid dihydrate by means of a 

relatively large molecular cluster calculation. They concluded that, even when considering the 

electron distributions of intra-molecular bonds and lone-pairs, the influence of the crystalline 

environment is not significant, at least when the long-range interactions are modeled at DFT level. 

However, in our opinion, much more work is needed before finding a more general understanding. 

The crystal environment effect on ELMO and XC-ELMO wave functions will be extensively 

analyzed in a future publication. 

Integrated atomic charges calculated from the Hansen & Coppens multipole model-projected electron 

densities differ by 5-10% from those calculated from the respective primary densities, corresponding 

to an average absolute value of about 0.1 au. The largest differences are observed for the oxygen 

atoms at the 6-31G level. In this respect, the influence of the basis-set on the integrated charges is 

much more pronounced than the influence of the multiple projection itself, see Figure 7 and Table S6. 

For all the basis-sets, the atomic charges obtained from X-ray constrained calculations are closer to 

the ߩெெ/௑஼ ones.   

The atomic dipole moments from the multipole-projected ELMO and XC-ELMO electron densities 

are in reasonable agreement with those from the respective primary densities using the 6-31G(d,p) and 

cc-pVDZ basis-sets (differences in the 10-20% range), whereas larger discrepancies (up to 80%) are 

observed for the 6-31G basis-set. As for the non-projected densities, the multipole-projected atomic 

dipole moments calculated for oxygen atoms using the 6-31G basis-set are markedly underestimated 

compared to the values determined using the larger basis-sets or P-B3LYP. Again, the ߩெெ/௑஼ିா௅ெை 

electron distributions generally give more accurate atomic dipole moment magnitudes. 

Molecular dipole moment magnitudes obtained from the multipole-projected electron densities are 

shown in Figure 9 (b). Both unconstrained and constrained ELMO dipole moments are larger than the 

 ெெ/௉ି஻ଷ௅௒௉ values. Compared to the values obtained from the primary densities, Fig. 9ߩ ெெ/௑஼ andߩ
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(a), the multipole-projection produces an underestimation of the molecular dipole moments of about 

20%, corresponding to ca. 1.5 au. The underestimation due to multipolar projection is even larger for 

P-B3LYP. 

8. Influence of fractional coordinates and ADPs for the X-ray constrained calculations 

Since the current version of the X-ray constrained ELMO strategy does not allow to refine atomic 

positions and thermal parameters, all the XC-ELMO wave functions considered in the previous 

sections have been carried out using parameters refined from the multipole model MM2 (Section 5).  

On the contrary, if XC-ELMO computations are performed using the IAM coordinates and ADPs, the 

statistical agreements and the energy values (Table 5) do not sensitively change, but the convergence 

toward ߯ଶ ൌ 1 is much slower, as it occurs for a larger ߣ௠௔௫ . On the other hand, since the desired 

agreements is anyway reached (at least for the more flexible basis-sets), the small biases in the initial 

coordinates and ADPs have been artificially “absorbed” into the wave function and this would affect 

the electron density and its topology: ߩሺ࢘௕ሻ are not much affected (with changes smaller than 0.03 

au); the distances of the bond critical points from the nuclei differ by less than 5%; ׏ଶߩሺ࢘௕ሻ	change 

more significantly (up to 15%, corresponding to about 0.05 au). The same holds true for atomic dipole 

moment magnitudes, the largest differences being of the order of 3%, representing absolute 

differences around 0.04 au.  

It is important to point out that the IAM was refined against a high-resolution dataset and therefore 

non-hydrogen atomic positions and ADPs are already quite accurate, certainly more than those of 

typical crystal structure determinations. Significantly different results are expected in case of an IAM 

refined against structure factors up to a lower resolution, for which a multipolar model would also not 

be reliable. 

9. Conclusions and perspectives 

We have demonstrated that XC-ELMO is a new and potentially useful tool for the determination and 

the analysis of experimental electron densities. All the X-ray constrained wave function methods use 

the X-ray data in order to capture, at least in part, the effects due to the electron correlation and the 

crystal environment. XC-ELMO has the additional advantage to resume the atomistic interpretation 

typical of the pseudoatom approaches, since the orbitals are one electron functions accounting for the 

electron distributions of atoms, bonds or functional groups, depending on the localization scheme. 

This work is part of a long project aiming at studying the efficiency of XC-ELMO wave functions in 

molecular crystals and testing the transferability of the ELMO to larger systems in order to devise 

new strategies for refining crystallographic structures and electron densities of macromolecules, such 

as proteins or polymers. In this first step, we have reported a detailed comparison between 
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unconstrained and X-ray constrained ELMO wave function, using traditional multipolar electron 

density or periodic density functional as benchmarks. The main conclusions can be summarized as 

follows: 

1) Sufficiently flexible basis-sets are fundamental to obtain a meaningful fitting of the wave function. 

In fact, all calculations confirm that the desired agreements with the experimental data is reached only 

if polarized basis functions are used. 

2) The fractional coordinates and ADPs used for XC-ELMO have a strong influence on the 

convergence: the more accurate the initial parameters are, the faster the convergence is. The 

inaccuracy of the initial set of coordinates and ADPs is absorbed into the molecular orbital 

coefficients, thus affecting the electron density. A strategy for the direct refinement of atomic 

coordinates and ADPs in the framework of the XC-ELMO strategy is currently in preparation. 

3) When ߯ଶ ൌ 1 is reached, the constrained ELMO wave-function is of course in much better 

agreement with the X-ray data than the unconstrained one, but in less good agreement than a standard 

multipole model, for which there is not a strict “control” on the desired precision. In fact, while XC-

ELMO only partially uses (through ) the information contained in the X-ray intensities, the multipole 

models MM2 and MM3 fully exploit the experimental observations through global least square 

refinements of the available diffraction data, which leads to ߯ଶ values much lower than 1.0. 

Therefore, for a definitive and fair comparison with the traditional multipole models, we should push 

the X-ray constrained computations beyond the usual ߯ଶ ൌ 1.0 limit (namely, we should consider 

larger ߣ). Whitten et al. (2006) have proposed to pursue the fitting until the weighted residual ܴݓ 

values approach that obtained in the multipole refinement of the same X-ray structure factors 

magnitudes. This idea could be reformulated using ߯ଶ as a criterion, but, unfortunately, this is 

partially hampered by the problem of determining the optimal value for the Lagrange multiplier ߣ (see 

final discussion in section 3.2). However, also in this case, theoretical approaches to overcome this 

last important drawback are under investigation.  

4) The multipolar models seem to be much more sensitive to the valence electron density than the 

XC-ELMO strategy. Figure 2 shows that the two most flexible multipolar models reproduce the low 

angle diffracted intensities much better than the high angle ones, whereas this is not true for the XC-

ELMO technique that seems more “tempered”. This might be interpreted as an over-fitting of the low 

angle data by the multipolar models, which, in fact, converge to lower ߯ଶ, or otherwise as the 

evidence of a too restricted model that could be improved by a more flexible treatment of the core 

electrons, as suggested by Fischer et al. (2011). A model with strictly hybridized atoms, MM1, is 

instead closer to ߯ଶ ൌ 1, and shows a more uniform agreement with the observed structure factors, 

like the XC-ELMO calculations (Figure 4). However, one would normally consider MM1 as too rigid 
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(i.e., insufficient to exhaust the present data quality) and many indicators address the more flexible 

MM2 (or the statistically equivalent MM3) as more reliable. Once more, this observation prompts a 

revision of the current recipes for the X-ray constrained wave function calculations that could be too 

much biased by the quantum-mechanical part of the functional in Equation (5) and not sufficiently 

influenced by the experimental data, the second part of the functional. 

5) Many properties of the XC-ELMO reconstructed electron density suggests that the constrained 

wave function approaches the “exact” electron density in the crystal, using as benchmark the 

experimental multipole model or the periodic calculations at density functional level. However, some 

atomic charges and molecular dipole moments are not properly reproduced. In particular the XC-

ELMO calculations generally underestimate the molecular dipole moment and this might be ascribed 

to the inability of XC-ELMO to include all the effects of the crystalline environment, in particular the 

polarization of the molecule. Interestingly, also the multipolar model underestimate the dipole 

moment in this case. 

6) For the intermolecular interactions, here represented by medium strength N-H···O hydrogen bonds, 

there is limited perturbation by the crystal packing, therefore it is not possible to judge the efficiency 

of the X-ray constrained procedure. 

We want to stress that, although X-ray constrained methods have been known and used for more than 

a decade, until now it has not been reported such an accurate comparison with respect to traditional 

multipolar expansions refined against X-ray intensities or theoretical calculations with periodic 

boundary conditions. Therefore, we believe that our results could be important not only to appreciate 

the advantages of XC-ELMO, but more generally to understand the necessities and pitfalls of all kinds 

of X-ray constrained wave function calculations. 

In view of these results, we plan to further investigate the XC-ELMO technique in order to better 

analyse the ability of the XC-ELMO wave functions to include electronic correlation and crystal field 

effects into the electron density. This may enable us to establish better criteria for the best Lagrange 

multiplier, which is a crucial parameter in the X-ray constrained wave function strategies. Moreover, 

we will analyse the performances of the XC-ELMO wave functions on a broad spectrum of 

molecules, including metal complexes and stronger hydrogen bond adducts.   
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Table 1 Crystallographic details and results of IAM and multipolar refinements for glycylglycine. 

Crystal data 

Chemical formula C4H8N2O3

Mr (g.mol-1) 132.12

Crystal system, space group Monoclinic, P21/c

Temperature (K) 100.0 (5)

a, b, c (Å) 7.9798 (1), 9.5201 (1), 7.7643 (1)

β (°) 106.151 (1)

V (Å3) 566.56 (1)

Z 4

F(000) 280

θ range (°) for cell measurement 2.7–52.4

µ (mm−1) 0.13

Crystal size (mm) 0.20 × 0.17 × 0.07

Data collection 

Diffractometer Agilent SuperNova diffractometer

Radiation type Mo Kα

Absorption correction Analytical (Clark & Reid, 1995)

Tmin, Tmax 0.974, 0.991

No. of measured, independent and 

observed [F> 3σ(F)] reflections 
38933, 6597, 5467  

Redundancy 5.9 

Rint
(a) 0.029

θ values (°) θmax = 52.6, θmin = 2.1

(sin θ/λ)max (Å-1) 1.118

Range of h, k, l h = −17→17, k = −21→21, l = −17→17 
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Spherical, independent atom refinement 

Refinement on F2 (for F > 0)

R[F > 3σ(F)], Rall, wR, S, 2  (b) 2.82, 4.15, 4.16, 1.06, 2.60 

  

No. of parameters 107 

(Δ/σ)max 0.001 

Δρmax, Δρmin (e Å−3) 0.54, −0.37 

Extinction coefficient 0.007 (4) 

Multipole refinement 

Refinement on F2 (for F > 3σ(F))

R[F > 3σ(F)], Rall, wR, S, 2 (b)   

1.97, 3.30, 2.14, 1.03, 0.91 (MM1) 

1.72, 2.93, 1.71, 0.80, 0.57 (MM2) 

1.70, 2.91, 1.68, 0.80, 0.55 (MM3) 

No. of parameters (c) 271

(Δ/σ)max (c) 0.00001

Δρmax, Δρmin (e Å−3) (c) 0.14, −0.14

Extinction coefficient (c) 0.315 (15)

(a) ܴ௜௡௧ ൌ ∑ หࢎܨ,௢௕௦
ଶ െ ௢௕௦,ࢎܨ〉

ଶ 〉หࢎ ∑ ௢௕௦,ࢎܨ
ଶ

ൗࢎ  (summation is carried out only where more than one symmetry 

equivalent reflection is averaged). 

(b) ܴሺܨሻ ൌ 100. ∑ ቚหࢎܨ,௢௕௦ห െ หࢎܨ,௖௔௟௖หቚࢎ ∑ หࢎܨ,௢௕௦หࢎൗ ሻܨሺܴݓ , ൌ

100. ቂ∑ ௢௕௦ห,ࢎܨ൫หࢎݓ െ หࢎܨ,௖௔௟௖ห൯
ଶ

ࢎ ∑ ࢎࢎݓ ௢௕௦,ࢎܨ
ଶൗ ቃ

ଵ ଶ⁄
, ܵ ൌ ቂ∑ ௢௕௦,ࢎܨ൫ࢎݓ

ଶ െ ௖௔௟௖,ࢎܨ
ଶ ൯

ଶ
ࢎ ሺܰ െ ܲሻൗ ቃ

ଵ ଶ⁄
 with ࢎݓ ൌ

1 ௢௕௦,ࢎߪ
ଶ 	⁄ , N as the number of reflections and P as the number of parameters. ߯ଶ is given by Equation (6), see 

main text.  Both in the spherical model and in the multipole model refinements the calculated structure factor 

magnitudes are properly multiplied by a scale factor ߟ and by an additional factor Yࢎሺ߳ሻ that corrects for 

secondary extinctions. For the spherical model, 	Yࢎሺ߳ሻ ൌ ൣ1 ൅	0.001	߳	ࢎܨ,௖௔௟௖	
	ଶ ଷߣ	 sinሺ2ࢎߠሻ⁄ 	൧

ିଵ ସ⁄
, while, for the 

multipole model, 	Yࢎሺ߳ሻ has been chosen following the Becker & Coppens equations (1974). 

(c) For MM2 model. 
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Table 2 Statistical agreements (a) and energy values corresponding to all the unconstrained and constrained calculations performed on the glycylglycine 

considering the geometry and the ADPs resulting from the Multipole Model refinement. 

 ELMO Calculations (b)  XC-ELMO Calculations 
 

Basis-set 
 

߯ଶ 
 

%R(F) 
 

%wR(F) 
 

Energy (a.u.) 
 

 

 ௠௔௫ߣ
 

߯ଶ 
 

%R(F) 
 

%wR(F) 
 

Energy (a.u.) 

6-31G 2.56 2.62 3.44 -489.161  0.40 1.27 2.17 2.43 -489.060 

6-31G(d,p) 1.74 2.38 2.84 -489.385  0.12 1.00 2.04 2.15 -489.357 

cc-pVDZ 1.66 2.36 2.78 -489.394  0.12 0.98 2.03 2.13 -489.368 

 Hartree-Fock Calculations  XC-Hartree-Fock Calculations 

6-31G 2.11 2.47 3.13 -489.310  0.38 (c) 1.15 2.05 2.17 -489.227 

6-31G(d,p) 1.41 2.25 2.56 -489.549  0.12 0.85 1.93 1.98 -489.528 

cc-pVDZ 1.31 2.20 2.47 -489.574  0.12 0.83 1.93 1.97 -489.556 

(a) ߯ଶ ൌ ൫1 ൫ ௥ܰ െ ௣ܰ൯⁄ ൯	∑ ห	௖௔௟௖,ࢎܨห	ߟ൫ࢎݓ െ	 หࢎܨ,௢௕௦	ห൯
ଶ
ࢎ	 , %ܴሺܨሻ ൌ 100	 ቂ∑ 	ቚߟหࢎܨ,௖௔௟௖	ห െ	 หࢎܨ,௢௕௦	หቚࢎ ∑ ห	ࢎܨ,௢௕௦	หࢎൗ ቃ, %ܴݓሺܨሻ ൌ 100	ൣ߯ଶ ∑ ௢௕௦,ࢎܨ	ࢎݓ

ଶ
ൗࢎ ൧

ଵ ଶ⁄
 with ࢎݓ ൌ

1 ௢௕௦,ࢎߪ
ଶ ሺࢎܨ,௢௕௦	ሻ⁄ . 

(b) The scale factors ߟ have been optimized using the density matrices obtained from the corresponding unconstrained calculations. 

(c) ) ߯ଶ	reaches an asymptotic values above  = 0.3 but no convergence is found for  ≥ 0.40. 
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Table 3 Bond critical point data (a) for all glycylglycine electron densities resulting from 

unconstrained and constrained ELMO calculations. Data for the ߩ௉ି஻ଷ௅௒௉ density are also shown. 

଺ିଷଵீሺଶௗ,ଶ௣ሻߩ 
௉ି஻ଷ௅௒௉ ଺ିଷଵீߩ 

ா௅ெை ଺ିଷଵீሺௗ,௣ሻߩ 
ா௅ெை ௖௖ି௣௏஽௓ߩ 

ா௅ெை ଺ିଷଵீߩ 
௑஼ିா௅ெை ߩ଺ିଷଵீሺௗ,௣ሻ

௑஼ିா௅ெை ௖௖ି௣௏஽௓ߩ 
௑஼ିா௅ெை 

O1–C2        

dA 0.825 0.799 0.833 0.835 0.806 0.835 0.837 

(rb) 0.397 0.386 0.406 0.401 0.398 0.405 0.404 

– 2(rb) 0.409 0.922 0.346 0.243 0.917 0.158 0.123 

O2–C4        

dA 0.837 0.811 0.849 0.850 0.819 0.851 0.851 

(rb) 0.380 0.368 0.388 0.383 0.375 0.389 0.387 

– 2(rb) 0.532 0.908 0.387 0.330 0.842 0.217 0.229 

O3–C4        

dA 0.834 0.807 0.845 0.846 0.813 0.846 0.847 

(rb) 0.385 0.374 0.395 0.389 0.381 0.393 0.390 

– 2(rb) 0.519 0.952 0.413 0.342 0.888 0.223 0.194 

N1–C1        

dA 0.879 0.957 1.012 1.004 0.907 1.000 0.981 

(rb) 0.252 0.218 0.240 0.235 0.233 0.249 0.246 

– 2(rb) 0.642 0.326 0.271 0.307 0.521 0.502 0.575 

N2–C2        

dA 0.836 0.798 0.885 0.879 0.854 0.890 0.888 

(rb) 0.350 0.335 0.363 0.355 0.327 0.346 0.344 

– 2(rb) 1.282 1.110 1.153 1.213 0.959 0.846 0.927 

N2–C3        

dA 0.874 0.957 0.995 0.989 0.897 0.988 0.975 

(rb) 0.263 0.227 0.248 0.243 0.250 0.259 0.256 

– 2(rb) 0.712 0.259 0.203 0.253 0.629 0.429 0.528 
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C1–C2        

dA 0.747 0.777 0.786 0.788 0.757 0.749 0.751 

(rb) 0.256 0.242 0.277 0.270 0.240 0.267 0.262 

– 2(rb) 0.560 0.509 0.862 0.772 0.505 0.770 0.703 

C3–C4        

dA 0.757 0.787 0.797 0.802 0.776 0.764 0.771 

(rb) 0.254 0.240 0.275 0.268 0.238 0.266 0.260 

– 2(rb) 0.551 0.503 0.867 0.778 0.505 0.771 0.705 

N1–H1        

dA 0.808 0.771 0.792 0.804 0.776 0.798 0.807 

(rb) 0.322 0.322 0.354 0.339 0.316 0.336 0.326 

– 2(rb) 1.849 -1.590 2.094 1.925 1.553 1.900 1.825 

N1–H2        

dA 0.785 0.741 0.763 0.774 0.741 0.768 0.776 

(rb) 0.352 0.346 0.378 0.364 0.342 0.353 0.346 

– 2(rb) 2.083 1.710 2.232 2.001 1.679 1.937 1.837 

N1–H3        

dA 0.804 0.763 0.784 0.797 0.768 0.793 0.803 

(rb) 0.325 0.324 0.356 0.342 0.324 0.338 0.330 

– 2(rb) 1.873 1.581 2.085 1.855 1.600 1.887 1.802 

C1–H4        

dA 0.708 0.696 0.692 0.697 0.695 0.709 0.723 

(rb) 0.269 0.268 0.297 0.290 0.267 0.287 0.284 

– 2(rb) 0.893 0.817 1.163 1.142 0.813 1.114 1.134 

C1–H5        

dA 0.692 0.680 0.674 0.684 0.676 0.690 0.703 

(rb) 0.287 0.282 0.312 0.304 0.276 0.298 0.294 



Acta Crystallographica Section A    research papers 

35 

 

– 2(rb) 1.036 0.921 1.290 1.255 0.878 1.188 1.197 

N2–H6        

dA 0.789 0.750 0.768 0.779 0.759 0.779 0.788 

(rb) 0.331 0.332 0.363 0.348 0.332 0.349 0.339 

– 2(rb) 1.899 1.610 2.093 1.815 1.640 1.942 1.814 

C3–H7        

dA 0.678 0.641 0.629 0.639 0.647 0.655 0.667 

(rb) 0.289 0.298 0.327 0.318 0.285 0.300 0.297 

– 2(rb) 1.041 1.019 1.396 1.330 0.973 1.168 1.179 

C3–H8        

dA 0.646 0.631 0.619 0.638 0.620 0.630 0.642 

(rb) 0.317 0.316 0.345 0.335 0.289 0.303 0.301 

– 2(rb) 1.277 1.172 1.565 1.489 1.013 1.187 1.205 

(a)  For each bond critical point (BCP) A–B, dA is its distance from the nucleus A in Å, (rb) is its electron 

density value in au and 2(rb) is its Laplacian value in au. 
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Table 4 Bond critical point data (a) corresponding to all the unconstrained and constrained multipole model-projected electron densities for the shortest 

hydrogen bonds in the crystal structure of glycylglycine. Data for the ߩ௉ି஻ଷ௅௒௉ density are also shown.  

଺ିଷଵீሺଶௗ,ଶ௣ሻߩ 
௉ି஻ଷ௅௒௉ ଺ିଷଵீሺଶௗ,ଶ௣ሻߩ ெெ/௑஼ߩ 

ெெ/௉ି஻ଷ௅௒௉ ଺ିଷଵீߩ
ெெ/ா௅ெை ߩ଺ିଷଵீሺௗ,௣ሻ

ெெ/ா௅ெை ௖௖ି௣௏஽௓ߩ 
ெெ/ா௅ெை ߩ଺ିଷଵீ

ெெ/௑஼ିா௅ெை ଺ିଷଵீሺௗ,௣ሻߩ
ெெ/௑஼ିா௅ெை ௖௖ି௣௏஽௓ߩ

ெெ/௑஼ିா௅ெை

H1···O2i          

dH 0.713 0.680 0.695 0.679 0.663 0.661 0.675 0.665 0.663 

(rb) 0.024 0.030(3) 0.033 0.032 0.029 0.029 0.031 0.030 0.030 

2(rb) 0.081 0.109(1) 0.102 0.105 0.098 0.097 0.109 0.098 0.097 

3 0.14 0.20 0.20 0.20 0.18 0.18 0.20 0.19 0.18 

H2···O3ii          

dH 0.610 0.650 0.644 0.641 0.624 0.624 0.651 0.628 0.630 

(rb) 0.038 0.043(4) 0.041 0.041 0.037 0.038 0.042 0.039 0.040 

2(rb) 0.130 0.115(1) 0.103 0.126 0.116 0.107 0.116 0.109 0.103 

3 0.24 0.26 0.24 0.26 0.24 0.23 0.25 0.24 0.23 

H3···O2iii          

dH 0.627 0.666 0.679 0.652 0.647 0.644 0.641 0.646 0.642 

(rb) 0.038 0.036(4) 0.038 0.037 0.033 0.033 0.039 0.033 0.034 

2(rb) 0.107 0.111(1) 0.110 0.134 0.129 0.126 0.116 0.119 0.117 
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3 0.22 0.23 0.23 0.25 0.22 0.22 0.24 0.22 0.22 

H6···O1iv          

dH 0.904 0.964 0.968 0.950 0.944 0.946 0.942 0.953 0.954 

(rb) 0.014 0.011(1) 0.011 0.011 0.010 0.011 0.012 0.011 0.011 

2(rb) 0.046 0.047(1) 0.047 0.048 0.044 0.045 0.051 0.046 0.047 

3 0.07 0.07 0.07 0.07 0.06 0.07 0.08 0.07 0.07 

(a)  For each bond critical point (BCP) H···O, dH is its distance from the nucleus H in Å, (rb) is its electron density value in au, 2(rb) is its Laplacian value in au and 3 is 

its positive curvature in au. Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x+1, y, z+1; (iii) −x+1, −y, −z+1; (iv) −x+1, y−1/2, −z+3/2. 
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Table 5 Statistical agreements (a) and energy values corresponding to all the unconstrained and constrained calculations performed on the glycylglycine 

considering the geometry and the ADPs resulting from the Independent Atom Model refinement. 

 ELMO Calculations (b)  XC-ELMO Calculations 
 

Basis-set 
 

߯ଶ 
 

%R(F) 
 

%wR(F) 
 

Energy (a.u.) 
 

 

 ௠௔௫ߣ
 

߯ଶ 
 

%R(F) 
 

%wR(F) 
 

Energy (a.u.) 

6-31G 3.04 2.83 3.75 -489.158  0.42 1.45 2.29 2.59 -489.036 

6-31G(d,p) 2.03 2.52 3.06 -489.384  0.18 0.98 2.04 2.14 -489.335 

cc-pVDZ 2.01 2.51 3.05 -489.396  0.18 0.98 2.04 2.13 -489.350 

(a) ߯ଶ ൌ ൫1 ൫ ௥ܰ െ ௣ܰ൯⁄ ൯	∑ ห	௖௔௟௖,ࢎܨห	ߟ൫ࢎݓ െ	 หࢎܨ,௢௕௦	ห൯
ଶ
ࢎ	 , %ܴሺܨሻ ൌ 100	 ቂ∑ 	ቚߟหࢎܨ,௖௔௟௖	ห െ	 หࢎܨ,௢௕௦	หቚࢎ ∑ ห	ࢎܨ,௢௕௦	หࢎൗ ቃ, %ܴݓሺܨሻ ൌ 100	ൣ߯ଶ ∑ ௢௕௦,ࢎܨ	ࢎݓ

ଶ
ൗࢎ ൧

ଵ ଶ⁄
 with ࢎݓ ൌ

1 ௢௕௦,ࢎߪ
ଶ ሺࢎܨ,௢௕௦	ሻ⁄ . 

(b) The scale factors ߟ have been optimized using the density matrices obtained from the corresponding unconstrained calculations. 
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Figure 1 Experimental molecular structure of crystalline -glycylglycine (a) and strongest hydrogen 

bond network (b). Thermal ellipsoids are drawn at 70% probability level. Symmetry codes: (i) −x+1, 

y+1/2, −z+3/2; (ii) x+1, y, z+1; (iii) −x+1, −y, −z+1; (iv) −x+1, y+1/2, −z+3/2. 
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Figure 2 Normalized residuals of the structure factors amplitudes versus the scattering resolution for 

the (a) IAM and the different multipole models (b) MM1, (c) MM2 and (d) MM3 refined against the 

experimental set of structure factors.  
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Figure 3 The variation of 2 agreement statistic with the Lagrange multiplier  for the XC-ELMO  

6-31G (green), 6-31G(d,p) (blue) and cc-pVDZ (red) calculations, using geometry and ADPs from the 

Multipole Model MM2. 
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Figure 4 Normalized residuals of the structure factors amplitudes versus the scattering resolution for 

the unconstrained ELMO (a) 6-31G, (b) 6-31G(d,p) and (c) cc-pVDZ wave functions and for the XC-

ELMO (d) 6-31G, (e) 6-31G(d,p) and (f) cc-pVDZ wave functions.  
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Figure 5 Three-dimensional plots of the electron density difference ߩ௑஼ିா௅ெை െ  ா௅ெை for the (a)ߩ

6-31G and the (b) 6-31G(d,p) basis-sets. The isosurface value is set to 0.005 au, with negative 

isosurfaces in red and positive isosurfaces in blue.  
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Figure 6 Plots of ܮ ൌ െ׏ଶߩሺ࢘ሻ for the (a) ELMO/6-31G(d,p) and (b) XC-ELMO/6-31G(d,p) wave 

functions of glycylglycine in the carboxylate plane. Contours are drawn at intervals of ( 2,  4,  8) 

 10n e.Å-5 (n = – 3 to 3). Blue lines denote regions of charge concentration (L > 0) and red lines 

denote regions of charge depletion (L < 0).  
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Figure 7 Integrated atomic charges (au) from unconstrained (ߩா௅ெை) and constrained (ߩ௑஼ିா௅ெை) 

ELMO densities and from the ab initio periodically calculated density (ߩ௉ି஻ଷ௅௒௉).  
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Figure 8 Atomic dipole moments (au) from unconstrained (ߩா௅ெை) and constrained (ߩ௑஼ିா௅ெை) 

ELMO densities and from the ab initio periodically calculated density (ߩ௉ି஻ଷ௅௒௉).  
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Figure 9 Molecular dipole moments (au) from unconstrained (ߩா௅ெை) and constrained (ߩ௑஼ିா௅ெை) 

ELMO densities and from the ab initio periodically calculated density (ߩ௉ି஻ଷ௅௒௉). Dipole moments 

calculated from both (a) the primary densities and (b) the multipole-projected densities are shown.  
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Figure 10 Three-dimensional plots of the deformation electron densities (a) ߩெெ/௑஼ െ  ூ஺ெ andߩ

(b) ߩெெ/௉ି஻ଷ௅௒௉ െ  ூ஺ெ for glycylglycine. The isosurface value is set to 0.02 au, with negativeߩ

isosurfaces in red and positive isosurfaces in blue. 
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Figure 11 Deformation electron density plots for glycylglycine obtained from unconstrained 

ெெ/ா௅ெைߩ) െ ெெ/௑஼ିா௅ெைߩ) ூ஺ெ) and constrainedߩ െ -ூ஺ெ) ELMO wave functions. (a) ELMO/6ߩ

31G; (b) XC-ELMO/6-31G; (c) ELMO/6-31G(d,p); (d) XC-ELMO/6-31G(d,p). The isosurface value 

is set to 0.02 au, with negative isosurfaces in red and positive isosurfaces in blue.  
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