
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
6
7
5
1
2
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
1
0
.
4
.
2
0
2
4

Exponential convergence of hp-DGFEM for
elliptic problems in polyhedral domains

D. Schötzau, C. Schwab, T. Wihler, M. Wirz

Abstract We review the recent results of [21, 22], and establish the exponential
convergence of hp-version discontinuous Galerkin finite element methods for the
numerical approximation of linear second-order elliptic boundary-value problems
with homogeneous Dirichlet boundary conditions and constant coefficients in three-
dimsional and axiparallel polyhedra. The exponential rates are confirmed in a series
of numerical tests.

1 Introduction

A key feature of the hp-version finite element method (FEM) is the possibility to
achieve exponential convergence rates in terms of the number of degrees of free-
dom. Indeed, in the mid eighties, Babuška and Guo proved that using hp-FEM for
the numerical approximation of elliptic boundary-value problems with piecewise
analytic data in a polygonal domain Ω leads to energy norm error bounds of the
form C exp(−bN1/3), where N is the dimension of the hp-version finite element
space, and C and b are constants independent of N; see [2, 10, 11] and the refer-
ences therein. Exponential convergence is achieved by employing geometric mesh
refinement towards the singular support S of the solutions (i.e., the set of ver-
tices of Ω ), and nonuniform elemental polynomial degrees which increase linearly
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with the elements’ distance from S . The proof of elliptic regularity in countably
weighted Sobolev spaces of the solutions, which constitutes an essential ingredient
of the convergence proof, has been a major technical achievement. Let us mention
that generalizations to conforming methods for higher-order elliptic problems and
hp-version mixed methods for Stokes flow in polygons can be found in [8, 14, 18].

In the nineties, steps to extend the analytic regularity and the hp-convergence
analysis to polyhedral domains in three dimensions were undertaken in [3, 9, 12, 13]
and the references therein. The difficulty in this case is the appearance of anisotropic
edge and corner-edge singularities. It was claimed and confirmed numerically that
the energy norm errors decay exponentially as C exp(−bN1/5), i.e., with an exponent
containing the fifth root of N.

The discontinuous Galerkin finite element method (DGFEM) emerged in the sev-
enties as a stable discretization of first-order transport-dominated problems, and
as a nonconforming discretization of second-order elliptic problems; see the his-
torical survey [1] and the references therein. Later, in the nineties, DGFEM was
employed to realize hp-version methods for first-order transport and for advection-
reaction-diffusion problems in two- and three-dimensional domains (see [15, 16]).
Exponential convergence rates were established for piecewise analytic solutions ex-
cluding, in particular, corner singularities as occurring in polygonal domains. In the
context of purely elliptic problems, the well-posedness of hp-version local discon-
tinuous Galerkin methods was shown in [17]. Finally, exponential convergence of
hp-DGFEM in polygonal domains was proved in [24] for diffusion problems, and
in [23] for Stokes flow, thereby extending the results of Babuška and Guo to the dis-
continuous Galerkin framework. In the recent articles [21, 22], the hp-DGFEM for
the approximation of three-dimensional elliptic problems in polyhedra was consid-
ered. In addition, the paper [25] addresses mixed hp-DGFEM discretizations of the
linear elasticity and Stokes equations in polyhedral domains; this work is based on
the inf-sup stability of mixed hp-DGFEM (based on uniform isotropic, but variable
polynomial degrees) for our class of hp-discretizations, which has been established
in [19, 20].

In this paper, we will review the recent results of [21, 22], and, in particular, the
proof of exponential convergence with a fifth root in N for an hp-version DGFEM
for elliptic problems with constant coefficients in axiparallel polyhedra. Our proof
is based on the recent analytic regularity results of [5], which measure corner,
edge and corner-edge singularities in analytic classes of anisotropically weighted
Sobolev spaces. We begin by introducing hp-version DG approximations on general
meshes consisting of axiparallel and possibly anisotropic cuboids, along with ele-
mental degree vectors which may also be anisotropic. Moreover, we review the well-
posedness of the resulting finite element methods, show the Galerkin orthogonality
property, and derive abstract error estimates for the DG energy errors. To resolve
singularities, we shall then construct a family of anisotropically and geometrically
refined meshes, characterized by a subdivision ratio σ ∈ (0,1) and a number ` of re-
finements. The corresponding degree vectors are linearly increasing with slope s > 0
away from corners and edges. This family of hp-discretizations contains, in particu-
lar, three-dimensional and anisotropic generalizations of all mesh-degree combina-
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tions which were found to be optimal in the univariate case in [7]. By proceeding as
in [22], we will then specify suitable polynomial interpolation operators, and show
that our estimates lead to the exponential convergence bound C exp(−bN1/5) in the
DG energy norm. We will also present a series of new numerical tests which verify
the exponential convergence in three dimensions. In particular, we confirm the fifth
root in N for corner-edge singularities.

The outline of the article is as follows: In Section 2, we introduce a model prob-
lem, and recapitulate its analytic regularity in the weighted Sobolev spaces of [5].
In Section 3, we introduce and analyze an hp-version interior penalty DGFEM with
anisotropic elemental polynomial degrees on meshes of anisotropic and axiparallel
elements. Section 4 is devoted to proving our exponential convergence estimate on
geometric mesh families. Finally, Section 5 contains a series of numerical results.

2 Model problem and analytic regularity

We consider the boundary-value problem

−∇ · (A∇u) = f in Ω ⊂ R3, (1)
u = 0 on Γ = ∂Ω , (2)

where Ω is an axiparallel Lipschitz polyhedron, A a constant symmetric positive
definite coefficient matrix, and f an analytic right-hand side (more precise assump-
tions will be made in Proposition 1 below).

We specify the precise regularity of the solution u of (1)–(2) in countably normed
weighted Sobolev spaces. To that end, we follow [5], but mention the papers [9, 12,
13] where alternative definitions of countably normed weighted Sobolev spaces in
terms of local spherical coordinates have originally been defined and studied.

Let us denote by C the set of corners c, and by E the set of edges e of Ω . The
singular support of the solution u is given by

S =

(⋃
c∈C

c

)
∪

(⋃
e∈E

e

)
⊂ Γ . (3)

For c ∈ C , e ∈ E and x ∈ Ω , we define the distance functions:

rc(x) = dist(x,c), re(x) = dist(x,e), ρce(x) = re(x)/rc(x). (4)

For each corner c ∈ C , we define by Ec = {e ∈ E : c∩ e 6= /0} the set of all
edges of Ω which meet at c. For any e ∈ E , the set of corners of e is given by
Ce = {c ∈ C : c∩ e 6= /0}. Then, for c ∈ C , e ∈ E respecticely e ∈ Ec, and a param-
eter ε > 0, we define the neighborhoods



4 D. Schötzau, C. Schwab, T. Wihler, M. Wirz

ωc = {x ∈ Ω : rc(x) < ε ∧ ρce(x) > ε ∀e ∈ Ec },
ωe = {x ∈ Ω : re(x) < ε ∧ rc(x) > ε ∀c ∈ Ce },

ωce = {x ∈ Ω : rc(x) < ε ∧ ρce(x) < ε }.
(5)

By choosing ε sufficiently small, we may then partition the domain Ω into four
disjoint parts,

Ω = Ω0
.
∪ ΩC

.
∪ ΩE

.
∪ ΩC E , (6)

where
ΩC =

⋃
c∈C

ωc, ΩE =
⋃

e∈E

ωe, ΩC E =
⋃

c∈C

⋃
e∈Ec

ωce. (7)

We shall refer to the subdomains ΩC , ΩE and ΩC E as corner, edge and corner-
edge neighborhoods of Ω , respectively, and define the remaining interior part of the
domain Ω by Ω0 := Ω \ΩC ∪ΩE ∪ΩC E .

To each c ∈C and e ∈ E , we associate a corner and an edge exponent βc,βe ∈R,
respectively. We collect these quantities in the multi-exponent

β = {βc : c ∈ C }∪{βe : e ∈ E } ∈ R|C |+|E |. (8)

Inequalities of the form β < 1 and expressions like β ± s are to be understood com-
ponentwise.

Near corners c ∈ C and edges e ∈ E , we shall use local coordinate systems in ωe
and ωce, which are chosen such that e corresponds to the direction (0,0,1). Then, we
denote quantities that are transversal to e by (·)⊥, and quantities parallel to e by (·)‖.
In particular, if α ∈ N3

0 is a multi-index corresponding to the three local coordinate
directions in ωe or ωce, then we have α = (α⊥,α‖), where α⊥ = (α1,α2) and α‖ =
α3. Following [5, Definition 6.3], we introduce the anisotropically weighted semi-
norm

|u|2Mm
β

(Ω) = |u|2Hm(Ω0) + ∑
e∈E

∑
α∈N3

0
|α|=m

∥∥r
βe+|α⊥|
e Dα u

∥∥2
L2(ωe)

+ ∑
c∈C

∑
α∈N3

0
|α|=m

(∥∥rβc+|α|
c Dα u

∥∥2
L2(ωc)

+ ∑
e∈Ec

∥∥rβc+|α|
c ρ

βe+|α⊥|
ce Dα u

∥∥2
L2(ωce)

)
,

(9)

for m ∈ N0, and define the norm ‖u‖Mm
β

(Ω) by ‖u‖2
Mm

β
(Ω) = ∑

m
k=0 |u|

2
Mk

β
(Ω). Here,

|u|2Hm(Ω0) is the usual Sobolev semi-norm of order m on Ω0, and the operator Dα

denotes the partial derivative in the local coordinate directions corresponding to
the multi-index α . The space Mm

β
(Ω) is the weighted Sobolev space obtained as

the closure of C∞
0 (Ω) with respect to the norm ‖·‖Mm

β
(Ω). Finally, for a weight γ ∈

R|C |+|E |, we define the analytic class
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Aγ(Ω) =
{

u ∈
⋂

m≥0

Mm
γ (Ω) : ∃Cu > 0 s.t. |u|Mm

γ (Ω) ≤Cm+1
u m! ∀m ∈ N0

}
. (10)

The following shift theorem from [5, Corollary 7.1] now establishes the analytic
regularity of solutions to problem (1)–(2).

Proposition 1. There exist bounds βE ,βC > 0 (depending on Ω and the coefficients
in (1)) such that, for all weight vectors β satisfying

0 ≤ βe < βE , 0 ≤ βc <
1
2

+βC , e ∈ E , c ∈ C , (11)

the following property holds: if the right-hand side f in (1) belongs to A1−β (Ω),
then the solution u of (1)–(2) belongs to A−1−β (Ω).

3 Discretization

3.1 Finite element spaces

We consider (a family of) meshes M consisting of axiparallel cuboids {K}. Hence,
each element K is the image of the reference cube Q̂ = (−1,1)3 under a compo-
sition ΦK : Q̂ → K of a translation and a dilation. We allow for anisotropic el-
ements and irregular meshes. Additional assumptions will be introduced in (22)
below. With each cuboid K ∈ M , we associate a polynomial degree vector pK =
(pK,1, pK,2, pK,3) ∈ N3, whose components correspond to the coordinate directions
in Q̂ = Φ

−1
K (K). The polynomial degree is isotropic if pK,1 = pK,2 = pK,3 = pK . We

combine the elemental polynomial degrees pK into the polynomial degree vector
p = { pK : K ∈M }, and introduce the hp-version finite element space

Sp(M ) =
{

u ∈ L2(Ω) : u|K ∈QpK (K), K ∈M
}

. (12)

The local polynomial approximation space QpK (K) is defined as follows: first, on
the reference element Q̂ and for a polynomial degree vector p = (p1, p2, p3) ∈ N3

0,
we introduce the tensor product polynomial space:

Qp(Q̂) = Pp1(Î)⊗Pp2(Î)⊗Pp3(Î) = span
{

x̂α1
1 x̂α2

2 x̂α3
3 : αi ≤ pi, 1 ≤ i ≤ 3

}
. (13)

Here, for p ∈ N0, we denote by Pp(Î) the space of all polynomials of degree at
most p on the reference interval Î = (−1,1). Then, if K is an axiparallel element
of M with associated elemental mapping ΦK : Q̂ → K and polynomial degree vec-
tor pK = (pK,1, pK,2, pK,3), we set

QpK (K) =
{

u ∈ L2(K) : (u|K ◦ΦK) ∈QpK (Q̂)
}

. (14)
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If the polynomial degrees are uniform and isotropic, i.e., pK,1 = pK,2 = pK,3 = pK =
p ≥ 1 for all K ∈M , we simply write Sp(M ) instead of Sp(M ).

3.2 Element boundary operators

We denote the set of all interior faces in M by FI(M ), and the set of all boundary
faces by FB(M ). In addition, let F (M ) = FI(M )∪FB(M ) signify the set of
all (smallest) faces of M . Furthermore, for an element K ∈ M , we denote the set
of its faces by FK = { f ∈F : f ⊂ ∂K }. If f ∈ FK , then we denote by h⊥K, f the
diameter of K perpendicular to the face f . Similarly, if pK is the polynomial degree
vector on K, we denote by p⊥K, f the polynomial degree perpendicular to f .

Next, we recall the standard DG trace operators. For this purpose, consider an in-
terior face f = ∂K]∩∂K[ ∈FI(M ) shared by two neighboring elements K],K[ ∈
M . Furthermore, let v and w be a scalar-valued function and a vector-valued func-
tion, respectively, both sufficiently smooth inside the elements K],K[. Then we de-
fine the following trace operators along f :

[[v]] = v|K]nK] + v|K[nK[ , 〈〈w〉〉= 1/2
(
w|K] +w|K[

)
. (15)

Here, for an element K ∈ M , we denote by nK the outward unit normal vector
on ∂K. For a boundary face f = ∂K ∩ ∂Ω ∈ FB(M ) for K ∈ M , and sufficiently
smooth functions v,w on K, we let [[v]] = v|KnΩ , 〈〈w〉〉 = w|K , where nΩ is the out-
ward unit normal vector on ∂Ω .

3.3 Discontinuous Galerkin discretizations

For a given mesh M and associated polynomial degree distribution p, we define the
hp-version symmetric interior penalty DG solution uDG ∈ Sp(M ) by

uDG ∈ Sp(M ) : aDG(uDG,v) =
∫

Ω

f vdx ∀v ∈ Sp(M ), (16)

where the bilinear form aDG(u,v) is given by

aDG(u,v) =
∫

Ω

(A∇hu) ·∇hvdx−
∫

F (M )
〈〈A∇hv〉〉 · [[u]]ds

−
∫

F (M )
〈〈A∇hu〉〉 · [[v]]ds+ γ

∫
F (M )

j [[u]] · [[v]]ds.
(17)

Here, ∇h is the elementwise gradient, and γ > 0 is the interior penalty parameter
that will be chosen sufficiently large. Furthermore, j ∈ L∞(F (M )) is the face-wise
constant function given by
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j | f =



max
(

p⊥K], f , p⊥K[, f

)2

min
(

h⊥K], f ,h
⊥
K[, f

) if f = ∂K]∩∂K[ ∈FI(M ),

(p⊥K, f )
2

h⊥K, f
if f = ∂K∩∂Ω ∈FB(M ).

(18)

We remark that we have omitted an explicit dependence of the penalty jump terms
on the diffusion tensor A.

3.4 Well-posedness

We show the well-posedness of the hp-DGFEM in the standard DG energy norm
defined by

|||v|||2DG =
∫

Ω

|∇hv|2 dx+ γ

∫
F

j |[[v]]|2 ds, (19)

for any v∈ Sp(M )+H1(Ω). To that end, we recall the anisotropic polynomial trace
inequality from [21, Lemma 4.3 a)]: let K = (0,h1)× (0,h2)× (0,h3) be an axipar-
allel element, then there exists a constant CI > 0 only depending on the reference
element such that

‖q‖L2( f ) ≤CI(p⊥K, f )
2(h⊥K, f )

−1 ‖q‖2
L2(K) (20)

for all f ∈FK , K ∈M , and q ∈QpK (K).
Proceeding as in [21, Theorem 4.4], the following result can be shown.

Proposition 2. There is a threshold parameter γmin > 0 such that for γ ≥ γmin the
DG bilinear form aDG(·, ·) is continuous and coercive over Sp(M ). That is, we have

|aDG(v,w)| ≤C1|||v|||DG|||w|||DG ∀v,w ∈ Sp(M ),

aDG(v,v)≥C2|||v|||2DG ∀v ∈ Sp(M ).

The constants γmin, C1 and C2 only depend on γ appearing in (17) and (19), the
coefficient matrix A, and the constant CI in the trace inequality (20).

Next, we discuss the Galerkin orthogonality of the DG scheme (16) under the
assumption that the solution u of (1)–(2) belongs to M2

−1−β
(Ω) for a weight vector β

as in (11). We notice that, in this case, it is not obvious that the expression aDG(u,v)
is well defined for v ∈ Sp(M ), since u may exhibit corner and/or edge singularities.
Here, integrals of the form∫

f
A∇u · vds, f ∈FK ∩FB(M ), (21)
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appearing in the bilinear form aDG require some special care, in particular, for
faces f which abut at the singular support S . However, in [21, Section 4.5], it is
shown that the regularity u ∈ M2

−1−β
(Ω) implies A∇u ∈ L1( f ), f ∈FK ∩FB(M ).

Thus, the above integrals are in fact properly defined as bilinear forms on L1( f )×
L∞( f ). Consequently, a Green’s formula can be established which leads to the fol-
lowing result; see [21, Theorem 4.9].

Proposition 3. Let the solution u of (1)–(2) satisfy u ∈ M2
−1−β

(Ω) for β as in (11),
and let uDG be the DG approximation of (16) obtained with γ ≥ γmin (cf. Proposi-
tion 2). Then we have the Galerkin orthogonality property aDG(u−uDG,v) = 0 for
all v ∈ Sp(M ).

3.5 Error estimates

To derive error estimates, we shall now assume the following bounded variation
property in the mesh size: there is a constant λ ∈ (0,1) such that

λ ≤ h⊥K[, f /h⊥K], f ≤ λ
−1, (22)

for all interior faces f = ∂K[∩K] ∈FI(M ), uniformly in the mesh family.
To account for the singular solution behavior near corner and edges, we disjointly

partition M into
M = O

.
∪ T, (23)

where elements in O are bounded away from S , and elements in the terminal
layer T have a nontrivial intersection with the singular support S .

Let now u ∈ M2
−1−β

(Ω) be the solution of problem (1)–(2), and uDG ∈ Sp(M )
be the DG approximation from (16). As usual we split the error into the two parts

u−uDG = η +ξ , with η = u−Πu and ξ = Πu−uDG ∈ Sp(M ), (24)

for an appropriate hp-version (quasi)interpolation operator Πu ∈ Sp(M ) of u.
To bound |||ξ |||DG in terms of quantities involving η , we apply the coercivity of

the DG form in Proposition 2, the Galerkin orthogonality property in Proposition 3,
and the anisotropic trace inequality: given a cuboid K = (0,h1)× (0,h2)× (0,h3),
v ∈W 1,t(K) for t ≥ 1, there exists a constant Ct > 0 only depending on t and the
reference element such that

‖v‖t
Lt ( f ) ≤Ct(h⊥K, f )

−1
(
‖v‖t

Lt (K) +(h⊥K, f )
t ∥∥DK, f ,⊥v

∥∥t
Lt (K)

)
, (25)

for any f ∈FK ; cf. [21, Lemma 4.2]. Here, the operator DK, f ,⊥ signifies the partial
derivative on element K in direction perpendicular to f .

Consequently, we find the following generic error bound; see [21, Theorem 4.10]
for details.
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Theorem 1. Assume (22) and let u ∈ M2
−1−β

(Ω) with β as in (11). Then we have
the error estimate

|||u−uDG|||2DG ≤C|p|4 (EO[η ]+ET[η ]) , (26)

where

EO[η ] = ∑
K∈O

(
max
f∈FK

(
h⊥K, f

)−2
‖η‖2

L2(K) +‖Dη‖2
L2(K)

)
+ ∑

K∈O
∑

f∈FK

(
h⊥K, f

)2∥∥DK, f ,⊥Dη
∥∥2

L2(K) ,

(27)

and

ET[η ] = ∑
K∈T

(
max
f∈FK

(
h⊥K, f

)−2
‖η‖2

L2(K) +‖Dη‖2
L2(K)

)
+ ∑

K∈T
∑

f∈FK

| f |−1 h⊥K, f ‖Dη‖2
L1( f ) .

(28)

The constant C > 0 is independent of the elemental aspect ratios, mesh sizes, and
polynomial degree vectors. The quantity | f | is the surface measure of a face f ,
and |p|= maxK∈M max{pK,1, pK,2, pK,3} is the maximal polymial degree.

4 Exponential convergence on hp-version subspaces

4.1 Geometric meshes

To construct geometrically refined meshes, we start from a coarse regular and shape-
regular, quasi-uniform partition M 0 = {Q j}J

j=1 of Ω into J convex axiparallel hex-
ahedra. Each of these elements Q j ∈ M 0 is the image under an affine mapping G j

of the reference patch Q̃ = (−1,1)3, i.e., Q j = G j(Q̃). The mappings G j are again
compositions of (isotropic) dilations and translations.

We then introduce three canonical geometric refinements towards corners, edges
and corner-edges of Q̃, which are referred to as extensions (Ex2), (Ex3), and (Ex4)
in [21], and which are illustrated in Figure 1. The extension (Ex1) introduced in [21]
corresponds to the case where no refinement is considered on Q̃.

Geometric meshes in Ω are now obtained by applying the patch mappings G j

to transform these canonical geometric mesh patches on the reference patch Q̃ to
the macro-elements Q j ∈ M 0. More precisely, we denote by M̃ j = {K̃}K̃∈M̃ j

the

elements in the canonical geometric mesh patch associated with Q j ∈ M 0. The
patches Q j away from the singular support S (i.e., with Q j ∩S = /0) are left unre-
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Fig. 1 Canical geometric refinements in Q̃ with subdivision ratio σ = 1
2 . (Ex2): isotropic towards

the corner c (left), (Ex3): anisotropic towards the edge e (center), (Ex4): anisotropic towards the
edge-corner pair ce (right). The sets c,e,ce are shown in boldface.

fined by taking M̃ j = {Q̃}. Then, we denote by M j = {K = G j(K̃) : K̃ ∈ M̃ j} the
patch mesh on Q j, and a geometric mesh in Ω is given by

M =
J⋃

j=1

M j. (29)

It is important to note that the geometric refinements in the canonical patches have to
be suitably selected, oriented and combined in order to achieve a proper geometric
refinement towards corners and edges of Ω . By construction, each element K ∈M
is the image of the reference cube Q̂ = (−1,1)3 under an element mapping ΦK =
G j(K) ◦HK : Q̂ → K ∈ M , where HK : Q̂ → K̃, K̃ ⊂ M̃ j, is a possibly anisotropic
dilation combined with a translation, and G j(K) : Q̃ → Q j is the patch map.

In what follows, we will consider a sequence of σ -geometrically refined meshes
denoted by Mσ = {M (`)

σ }`≥1. Here, σ ∈ (0,1) is a fixed parameter defining the ratio
of the geometric subdivisions in the canonical refinements in Figure 1. The index `

is the refinement level. There holds: if K ∈ M
(`)
σ , then there exists K′ ∈ M

(`−1)
σ

such that K ⊂K′. We shall refer to the sequence Mσ as a σ -geometric mesh family;
see [21, Definition 3.4].

In addition to the mesh refinements, the extensions (Ex1)–(Ex4) in [21, Sec-
tion 3] also provide appropriate polynomial degree distributions {p(`)}`≥1. They
increase s-linearly away from the singular set S . In particular, in the edge and
corner-edge patches the polynomial degrees are anisotropic. On elements in the in-
terior of the domain, they are uniform, isotropic and proportional to the number ` of
geometric refinements.

Let us point out that the geometric mesh family constructed in [21, Section 3] sat-
isfies the bounded variation property (22) with a constant λ ∈ (0,1) depending on σ

and M 0. In addition, the associated family of polynomial degree vectors {p(`)}`≥1
satisfies a similar property in the polynomial degrees: there is a constant µ ∈ (0,1)
depending on the slope parameter s such that

µ ≤ p⊥K[, f /p⊥K], f ≤ µ
−1, (30)
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for all interior faces f = ∂K[∩K] ∈FI(M ) and `≥ 1.

4.2 Exponential convergence rates

The main result of this review is the following exponential convergence result
from [22, Theorem 6.1].

Theorem 2. Assume that the right-hand side f of the boundary-value problem (1)–
(2) belongs to A1−β (Ω) for a weight vector β as in (11) (hence, the solution u is
in A−1−β (Ω) due to Proposition 1).

Let Mσ = {M (`)
σ }`≥1 be a σ -geometric mesh family with a geometric refinement

factor σ ∈ (0,1) and {p(`)}`≥1 the associated (possibly anisotropic) s-linear degree
distribution vectors with a slope parameter s > 0, generated by the hp-extensions
(Ex1)–(Ex4) in [21, Section 3]. Consider the resulting hp-version finite element
spaces

V (`)
σ ,s := Sp(`)

(M (`)
σ ), `≥ 1. (31)

Then, for each `≥ 1, the DG approximation uDG ∈V (`)
σ ,s is well defined for γ ≥ γmin

(see Proposition 2), and we have the error estimate

|||u−uDG|||DG ≤C exp(−bN1/5), (32)

where N = dim(V (`)
σ ,s). The constants C > 0 and b > 0 are independent of N, and

solely depend on the constants in the trace inequalities (20) and (25), respectively,
the parameters σ , s, the initial mesh M 0, the analyticity constant Cu in (10) of the
solution u, the weight vector β , the diffusion tensor A, and the penalty parameter γ .

Remark 1. As proved in [22, Theorem 6.1 and Corollary 5.19], the exponential con-
vergence result (32) also holds for spaces with uniform and isotropic polynomial
degrees, i.e., for the family

V `
σ = Sp(`)

(M (`)
σ ), `≥ 1, (33)

provided that p(`) ' `. However, in this case, the constant b in the exponent has to
be replaced by a smaller value b > 0.

4.3 Ingredients of the proof

Let us give some insights into the proof of Theorem 2. We apply the error esti-
mates of Theorem 1. To that end and according to (23), we subdivide the geometric
mesh M

(`)
σ into
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M
(`)
σ = O

(`)
σ

.
∪ T

(`)
σ . (34)

After specification of the hp-version interpolation operator Πu in (24), Theorem 1
requires bounding the two terms E

O
(`)
σ

[η ] and E
T

(`)
σ

[η ] in (27) and (28), respectively.
Since the approximation spaces are discontinuous, we can choose different interpo-
lation operators in the two submeshes O

(`)
σ and T

(`)
σ .

Bounding E
O

(`)
σ

[η ]: In the elements away from S , we choose Πu to be an elemen-
twise tensorized operator of univariate hp-interpolation operators: for an element
K ∈O

(`)
σ and a polynomial degree pK = (p1, p2, p3), we set

(Πu)|K = π
1
p1,2⊗π

2
p2,2⊗π

3
p3,2u|K , K ∈O

(`)
σ , (35)

where π i
pi,2 is a properly scaled version of the C1-conforming univariate projector

into polynomials of degree pi, constructed and analyzed in [6, Section 8] and acting
in coordinate direction xi.

To take into account different weighting of the singularities in the different neigh-
borhoods, we shall further subdivide O

(`)
σ into discrete corner, edge, corner-edge and

interior neighborhoods of the form

O`
σ = O`

C

.
∪O`

E

.
∪O`

C E

.
∪O`

int. (36)

In each of these neighborhoods, the geometrically refined elements can be grouped
into certain subsets of elements with identical scaling properties in terms of their
relative distance to the sets C and E . Hence, combining the analytic regularity
properties in each of the discrete neighborhoods with classical hp-approximation
techniques for u−Πu (similarly to the two-dimensional case) yields

E
O

(`)
σ

[η ]≤C exp(−2b`), (37)

with constants C > 0 and b > 0 independent of `. We refer to [22, Sections 5.2
and 5.3] for details.

Bounding E
T

(`)
σ

[η ]: For elements K ∈ T
(`)
σ at the boundary of Ω , the zero interpo-

lation operator Πu ≡ 0 is sufficient; indeed, this may be motivated by the fact that
the exact solution u satisfies homogeneous Dirichlet boundary conditions. In addi-
tion, the weights appearing in the ‖.‖M2

−1−β

-norm from (9) carry negative exponents

for |α| = 0,1, which results in exponentially small scaled element contributions
in T

(`)
σ . Thence, the following bound can be obtained:

E
T

(`)
σ

[η ]≤C exp(−2b`), (38)

with constants C > 0 and b > 0 independent of `, see [22, Section 5.4].
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Counting the degrees of freedom: From Theorem 1 and the bounds (37), (38), we
conclude that

|||u−uDG|||DG ≤C exp(−b`).

Then we note that N = dim(V (`)
σ ,s) ' b`5 + O(`4) for ` → ∞, which implies the

bound (32).

5 Numerical experiments

For the numerical experiments the software library deal.ii [4] is employed. Our
computations are based on the geometrically (with ratio σ = 1/2) refined hp-
spaces V `

σ from (33) featuring uniform and isotropic polynomial degree p ' `,
where ` is the number of mesh layers. We test the hp-DGFEM (16) for the three ref-
erence situations ’corner patch’, ’edge patch’, ’corner-edge patch’, as displayed in
Figure 1 (and scaled to the unit cube (0,1)3). They correspond to the hp-extensions
(Ex2), (Ex3), (Ex4) in [21], respectively. In all experiments, the penalty parameter
in (17) is chosen to be γ = 10. Then, we monitor the decay of the error measured in
the DG-energy norm (19) as the number of refinements ` is increased. In all experi-
ments we prescribe the exact solution u, and choose the right-hand side f in (1) (as
well as the (nonhomogeneous) Dirichlet boundary conditions) accordingly.

• Corner patch (Ex2): The exact solution is chosen to be uc(rc) = rγc
c , with γc = 1/3,

where rc denotes the distance to the origin. This solution has an isotropic sin-
gularity at 0, and is resolved using the isotropic geometric corner mesh shown
in Figure 1 (left). The number of degrees of freedom N in the corresponding
hp-spaces is proportional to `4 ' p4. In Figure 2, we observe that the DG en-
ergy error decays with a nearly constant slope in a semi-logarithmic plot, thereby
confirming exponential convergence (with respect to N1/4).

• Edge patch (Ex3): Here, we choose ue(re) = rγe
e , for γe = 1/2, with re signifying

the distance to the edge e = {x1 = 0}×{x2 = 0}×{0 < x3 < 1}. The solution
exhibits an anisotropic and non-local edge singularity along e, and is refined
by means of the anisotropic geometric edge-mesh depicted in Figure 1 (center).
Again, the number of degrees of freedom is proportional to `4 ' p4, and the
exponential decay of the DG energy error is clearly visible in Figure 2.

• Corner-edge patch (Ex4): Finally, we consider the anisotropic corner-edge sin-
gularity solution uce(rc,re) = rγc

c rγe
e , with γc = 1/3 and γe = 1/2. It is refined by

employing the anisotropic corner-edge mesh presented in Figure 1 (right). This
is the most complex of the three model cases discussed here; in fact, in contrast
to the previous examples, it features N ' `5 ' p5 degrees of freedom. Corre-
spondingly, the DG energy error is plotted against the fifth root of N. As before,
exponential convergence is achieved already after a few initial refinements.

Our experiments show that the hp-DGFEM (16) on the proposed geometric hp-
meshes is able to resolve isotropic as well as anisotropic singularities, and, in par-
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Fig. 2 Performance of the hp-DGFEM in corner and edge patches.
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Fig. 3 Performance of the hp-DGFEM in corner-edge patch.

ticular, that exponential rates of convergence are attained in all the reference config-
urations shown in Figure 1.
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6 Concluding remarks

Ongoing research is concerned with extensions of the exponential convergence the-
ory for hp-DGFEM in three dimensions to elliptic problems with mixed and Neu-
mann boundary conditions (which are considerably more involved than the homo-
geneous Dirichlet boundary conditions considered in this paper), to problems with
more complicated geometries and non-constant coefficients, as well as to more gen-
eral elliptic systems.
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