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Ousmane Faye and colleagues1 recently described the chains of transmission for 152 

individuals infected with Ebola virus diseases in Guinea. The resulting transmission 

trees provide unique insights into the individual variation in the number of secondary 

cases generated by an infected index case. A better understanding of this variation 

provides crucial information on epidemic spread, the expected number of 

superspreading events, and the effects of control measures.2 

 

The number of secondary cases in the transmission trees is highly skewed, with 72% 

of individuals not generating further cases (figure). Fitting a negative binomial 

distribution to the data (appendix) provides maximum likelihood estimates of the 

mean (0·95, 95% CI 0·57-1·34) and the dispersion parameter (k = 0·18; 95% CI 0·10-

0·26). The mean corresponds to the basic reproduction number (R0) of the overall 

population. The estimated value of k, which is substantially smaller than 1, suggests 

that the distribution of the individual reproduction number is highly overdispersed.2 

The value for Ebola virus disease is similar to that estimated for severe acute 

respiratory syndrome (k = 0·16).2 This finding suggests that superspreading events for 

Ebola virus disease are an expected feature of the individual variation in 

infectiousness.3 

 

I simulated stochastic trajectories of Ebola virus disease outbreaks starting from one 

infected index case (figure). To this end, I drew the number of secondary cases for 

each case from the fitted negative binomial distribution (appendix). The time from 

disease onset in one case to disease onset in the next case was drawn from the 

reported gamma-distributed serial interval with a mean duration of 15·3 days.4 

Although most outbreaks rapidly become extinct, some epidemic trajectories can 

reach to more than 100 infected cases. This finding is particularly remarkable because 

R0 is less than 1, and shows the potential for explosive outbreaks of Ebola virus 

disease. 

 

R0 during the early phase of the Ebola virus disease epidemic in Guinea has been 

estimated to be roughly 1·5.5 The transmission trees from Faye and colleagues were 

generated from data obtained between February and August, 2014, when the 

reproduction number was fluctuating around unity.1,4 That scenario is similar to the 

present situation in parts of west Africa where the incidence is declining but new 



outbreaks still occur. The observed variation in individual infectiousness for Ebola 

virus disease means that although the probability of extinction is high, new index 

cases also have the potential for explosive regrowth of the epidemic.  
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Figure legend 

 

Figure: Distribution of the number of secondary cases and outbreak trajectories 

for Ebola virus disease. 

(A) The histogram represents the observed frequencies in the number of secondary 

cases as given by the transmission trees in Faye and colleagues’ study.1 The line and 

dots correspond to the fitted negative binomial distribution. (B) Each line represents 

one of 200 stochastic realisations of epidemic trajectories. Dots show when the 

outbreak becomes extinct. A detailed analysis is reported in the appendix. EVD= 

Ebola virus disease. 
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Appendix: Ebola superspreading

Christian L. Althaus (christian.althaus@alumni.ethz.ch)

Overview

This document describes the analysis of the number of secondary cases infected with Ebola virus disease
(EVD), the serial interval distribution, and the resulting outbreak trajectories. All analyses were performed
in the R software environment for statistical computing.1

library(fitdistrplus)

Distribution of secondary cases

The transmission trees in figure 2D from Faye et al.2 can be used to obtain the distribution of the number of
secondary cases generated by an infected index case.

# Number of individuals in the trees
n <- 152

# Number of secondary cases for all individuals
c1 <- c(1,2,2,5,14,1,4,4,1,3,3,8,2,1,1,4,9,9,1,1,17,

2,1,1,1,4,3,3,4,2,5,1,2,2,1,9,1,3,1,2,1,1,2)

c0 <- c(c1,rep(0,n-length(c1)))

# Fitting a negative binomial distribution to the number of secondary cases
fit.cases <- fitdist(c0,"nbinom")

summary(fit.cases)

## Fitting of the distribution � nbinom � by maximum likelihood

## Parameters :

## estimate Std. Error

## size 0.1814 0.0399

## mu 0.9538 0.1981

## Loglikelihood: -177.2 AIC: 358.4 BIC: 364.4

## Correlation matrix:

## size mu

## size 1.0000000 0.0001384

## mu 0.0001384 1.0000000

Fitting a negative binomial distribution to the number of secondary cases provides maximum likelihood
estimates of the mean (0.95, 95% confidence interval [CI]: 0.57-1.34) and the dispersion parameter k = 0.18
(95% CI: 0.1-0.26).

plot(fit.cases)

1
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Figure 1: Empirial and theoretical density distribution and the cumulative density function (CDF) of the
number of secondary cases.

Serial interval distribution

The serial interval distribution of EVD can be obtained from figure 3E of the study by the WHO Ebola
Response Team.3

# Range of reported serial intervals
days <- 0:43

# Observed intervals for each day
frequency <- c(0,1,3,1,4,1,6,1,2,2,11,6,0,1,10,3,5,8,4,3,3,1,

0,2,0,2,0,3,1,1,1,0,0,0,0,0,2,0,1,0,1,1,0,1)

d <- rep(days,frequency)

# Fitting a gamma distribution to the serial interval
fit.serial <- fitdist(d,"gamma")

summary(fit.serial)

## Fitting of the distribution � gamma � by maximum likelihood

## Parameters :

## estimate Std. Error

## shape 2.5931 0.36042

## rate 0.1697 0.02602

## Loglikelihood: -324.6 AIC: 653.1 BIC: 658.2

## Correlation matrix:

## shape rate

## shape 1.0000 0.9065

## rate 0.9065 1.0000

2



Fitting a gamma distribution to the data provides maximum likelihood estimates of the mean serial interval
(15.28 days) and the shape parameter (2.59).

plot(fit.serial)
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Figure 2: Empirial and theoretical density distribution and the cumulative density function (CDF) of the
serial interval.

Simulating outbreaks

Based on the serial interval distribution and the number of secondary cases, one can simulate stochastic
trajectories of EVD outbreaks starting from a single infected index case.

# Set seed for random number generator
set.seed(645)

# Number of simulation runs
runs <- 1e2

# Number of initial cases
seed <- 1

# Initialize plot
plot(NA,xlim=c(0,100),ylim=c(0,100),xlab="Time (days)",

ylab="Cumulative number of EVD cases",frame=FALSE)

# Set color scheme for different trajectories
cols <- sample(terrain.colors(runs))

# Simulate outbreak trajectories
for(i in 1:runs) {

cases <- seed

3



t <- rep(0,seed)

times <- t

while(cases > 0) {

secondary <- rnbinom(cases,size=fit.cases$estimate[1],mu=fit.cases$estimate[2])

t.new <- numeric()

for(j in 1:length(secondary)) {

t.new <- c(t.new,t[j] + rgamma(secondary[j],shape=fit.serial$estimate[1],

rate=fit.serial$estimate[2]))

}

cases <- length(t.new)

t <- t.new

times <- c(times,t.new)

}

lines(sort(times),1:length(times),col=cols[i],lwd=1)

points(max(times),length(times),col=cols[i],pch=16)

}
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Figure 3: Simulated outbreaks of EVD. Each line represents one of 200 stochastic realizations of epidemic
trajectories. Dots indicate that the outbreak goes extinct.
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