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Abstract

Members of the BMP and Wnt protein families play a relevant role in physiologic and pathologic bone turnover. Extracellular
antagonists are crucial for the modulation of their activity. Lack of expression of the BMP antagonist noggin by
osteoinductive, carcinoma-derived cell lines is a determinant of the osteoblast response induced by their bone metastases.
In contrast, osteolytic, carcinoma-derived cell lines express noggin constitutively. We hypothesized that cancer cell-derived
noggin may contribute to the pathogenesis of osteolytic bone metastasis of solid cancers by repressing bone formation.
Intra-osseous xenografts of PC-3 prostate cancer cells induced osteolytic lesions characterized not only by enhanced
osteoclast-mediated bone resorption, but also by decreased osteoblast-mediated bone formation. Therefore, in this model,
uncoupling of the bone remodeling process contributes to osteolysis. Bone formation was preserved in the osteolytic
lesions induced by noggin-silenced PC-3 cells, suggesting that cancer cell-derived noggin interferes with physiologic bone
coupling. Furthermore, intra-osseous tumor growth of noggin-silenced PC-3 cells was limited, most probably as a result of
the persisting osteoblast activity. This investigation provides new evidence for a model of osteolytic bone metastasis where
constitutive secretion of noggin by cancer cells mediates inhibition of bone formation, thereby preventing repair of
osteolytic lesions generated by an excess of osteoclast-mediated bone resorption. Therefore, noggin suppression may be a
novel strategy for the treatment of osteolytic bone metastases.
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Introduction

Skeletal metastasis is a common clinical manifestation in

advanced-stage patients suffering from prostate cancer (CaP)

[1,2] and mammary cancer (CaM) [3]. Bone metastases are the

most important cause of morbidity in these patients, with pain and

complications, including pathological fractures, spinal cord and

nerve compression requiring analgesia, irradiation and orthopedic

surgery, all associated with substantial costs [4].

At the metastatic site, tumor cells perturb the physiological bone

homeostasis controlled by osteoblasts and osteoclasts. CaM bone

metastases tend to elicit an osteolytic response, whereas CaP

metastases are prevalently associated with an osteosclerotic

reaction [5,6]. Both types of lesions compromise the skeletal

integrity and eventually lead to pathological fractures.

The exact mechanisms determining the osteolytic and osteo-

sclerotic lesions in bone metastases are not clearly defined yet. The

prevailing concept indicates that cancer cells secrete an excess of

paracrine factors stimulating directly or indirectly osteoclast or

osteoblast recruitment, thereby leading to unbalanced excess of

bone resorption or formation, respectively [7,8].

It is widely accepted that the osteolytic reaction in bone

metastasis results from an excess of osteoclast-mediated bone

resorption. Cancer cells release paradigmatic ‘‘osteolytic’’ cyto-

kines, such as parathyroid hormone-related protein (PTHrP),

receptor activator of NF-B ligand (RANKL), interleukin-8 (IL-8)

and colony stimulating factor-1 (CSF-1), directly or indirectly

responsible for the increase in osteoclast recruitment, activity and

survival. Subsequent release of growth factors from the bone

matrix fuels cancer cell growth, which in turn further stimulates

bone resorption, thus perpetuating the process and establishing a

‘‘vicious cycle’’ [5,9]. This hypothesis provides the rationale for

inhibition of bone resorption as therapeutic interference with

growth progression in osteolytic bone metastasis. However,

pharmacologic inhibition of bone resorption has only a minimal

or no positive impact on the healing of osteolytic lesions [10]. This

strongly suggests that, besides an increase in osteoclast-mediated

bone resorption, other mechanism(s) contribute to osteolysis.

The osteolytic lesion in multiple myeloma (MM) is not only the

result of an osteoclast-mediated increase in bone resorption [11],

but also of an uncoupling of the bone remodeling process

determined by a decrease in osteoblast-mediated bone formation

[12,13]. Several antagonists of the Wingless (Wnt) signaling

pathway, such as Dickkopf-1 (Dkk-1), secreted Frizzled-related

protein (sFRP) -1 and -2, are over-expressed by MM cells and may

contribute to the inhibition of Wnt-mediated osteoblast recruit-

ment and, therefore, to repression of bone formation [11,14,15].

This view is further corroborated by experimental evidence
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showing that blocking Dkk-1 activity rescues bone formation in

animal models of MM [16].

Previously, we have reported that the osteoinductive and

osteolytic potential in vivo of CaP and CaM cell lines can be

defined in vitro by their differential expression not only of osteolytic

cytokines, but also of the BMP antagonist noggin. Osteoinductive

cancer cell lines lack noggin expression, and the functional

relevance of this finding was emphasized by showing that noggin

forced expression in an osteoinductive CaP cell line abolishes the

osteoblast response induced by its bone metastases in vivo.

Conversely, constitutive noggin expression in vitro seems to be

the hallmark of osteolytic CaP and CaM cell lines [17]. We then

argued that, in analogy to what has been found for Dkk-1 in MM,

constitutive noggin release by osteolytic cancer cells might

contribute, through inhibition of bone formation, to the osteolytic

lesion in bone metastases of solid cancers.

To test this hypothesis, we first explored whether inhibition of

bone formation is a constituent of osteolytic lesions induced in bones

xenografted with the human CaP cell line PC-3. We then

investigated whether short hairpin RNA (shRNA)-mediated noggin

suppression in PC-3 cells, constitutively secreting this protein [17],

could preserve bone formation in the osteolytic lesions.

The osteolytic lesions in bones xenografted with PC-3 cells

showed morphological and histomorphometric parameters of

enhanced osteoclast-mediated bone resorption and decreased

osteoblast-mediated bone formation. In contrast, bones xenograft-

ed with noggin-silenced PC-3 cells were characterized by

structural and histological modifications indicative of bone

formation/repair activity. Therefore, noggin suppression in the

osteolytic cell line PC-3 seems to preserve the bone formation that

normally follows bone resorption, as an effect of the ‘‘coupling

phenomenon’’. Conversely, cancer cell-secreted noggin prevents

the repair of osteolytic lesions by uncoupling bone formation from

the osteoclast-mediated bone resorption, which is stimulated by

cancer cell-derived osteolytic cytokines.

Results

Silencing of Noggin mRNA and protein expression in the
PC-3/Fluc Cell clone by shRNA

The human osteolytic CaP cell line PC-3, constitutively

expressing the BMP antagonist noggin [17], was first transfected

with a luciferase-encoding vector to generate luc-positive clones. A

cell clone, PC-3/Fluc, was selected based on stable luc expression

and on gene expression profile in vitro, tumor take and bone

reaction after intra-osseous inoculation in vivo equivalent to those

of the parental PC-3 cells (Figure S1).

The PC-3/Fluc clone was subsequently transfected with a

combination of three different noggin-specific shRNA or with a

non-targeting shRNA to derive noggin knock-down (Nog-KD) and

negative control (mock) clones, respectively. Two Nog KD clones

(Nog-KD 14 and Nog-KD 17) were selected based on the

substantial reduction in noggin mRNA expression, as compared to

PC-3/Fluc cells (Figure 1A). Immunoblot analysis of noggin

protein secretion in the culture supernatant from the Nog-KD

clones 14 and 17 showed a reduction of 93% and 98%,

respectively (Figure 1B). Mock 5 clone showed an increase in

noggin mRNA expression. However, noggin protein expression in

this clone and in mock 4 was not affected.

Cell proliferation and expression of osteotropic factors of
the Noggin-silenced PC-3/Fluc cells in vitro

Cell proliferation in vitro of the mock and Nog-KD clones was

not affected, as compared to parental PC-3/Fluc (Figure 2A).

In order to verify whether noggin silencing would affect mRNA

expression of relevant osteotropic factors, the expression of Dkk-1,

PTHrP, RANKL, CSF-1 and IL-8 was also investigated

(Figure 2B). The expression of Dkk-1 and PTHrP was not

modified in all transfected clones, as compared to the PC-3/Fluc.

Consistently with previous investigations in parental PC-3 cells

[17], RANKL expression was undetectable in PC-3/Fluc, mock

and Nog-KD clones. CSF-1 was moderately up-regulated in all

mock and Nog-KD clones, although the elevation did not reach

significance. IL-8 expression was significantly higher in the mock

clones and, especially, in Nog-KD 17.

It has been shown in osteoblasts in vitro that expression of noggin

is BMP-dependent, indicating that a probable feedback mecha-

nism is necessary to maintain a BMP/noggin balance, thereby

limiting the BMP action on these cells [23]. A similar feedback has

also been reported in some prostate cancer-derived cell lines

[17,24]. The mRNA expression of BMP-2,-3,-6 and -7 was not

modified in both Nog-KD clones as compared to parental PC-3,

while BMP-4 mRNA was undetectable in both parental and Nog-

KD cells (not shown). Therefore, noggin silencing in PC-3 cells

does not alter either the level or the spectrum of their BMP

expression.

Effect on bone in vivo of Noggin-silenced PC-3/Fluc cells
A first experiment was terminated at day 25 after injection for

all groups of animals, while in a following experiment the

observation period for the Nog-KD clones was prolonged to 33

days. In both experiments the radiographic analysis detected the

onset of an equivalent osteolytic reaction in all groups of cancer

cell-bearing bones as early as day 14 after tumor cell xenografting

(not shown). At day 21 all xenografted tibiae still showed a similar

number and extension of osteolytic lesions, and an enlargement of

the bone shaft, as compared to sham-operated tibiae. However, in

Figure 1. Noggin silencing mediated by shRNA inhibits noggin
mRNA and protein expression. A. Noggin mRNA expression in PC-
3/Fluc cells, non targeting-vector-transfected clones (mock 4 and 5) and
Noggin-KD clones (Nog-KD 14 and 17). The mRNA expression levels (+/
2 SD) are quantified by real-time RT-PCR and normalized to b-actin as
endogenous control; mRNA level in PC-3/Fluc cells is set as 100%; the
mean of 2 to 3 independent experiments is shown. ***P,0.001, Nog-KD
clones versus PC-3/Fluc and mock clones. B. Noggin protein secreted in
the conditioned medium (CM) from PC-3/Fluc, mock and Nog-KD
clones. Equivalent amounts of proteins from concentrated CM were
immunoblotted with anti-noggin antibody. Equivalent protein loading
was verified by staining with Coomassie blue the total protein content
in the CM.
doi:10.1371/journal.pone.0016078.g001

Role of Noggin in Osteolytic Bone Metastasis
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tibiae xenografted with Nog-KD clones the residual bone

interposed between areas of osteolysis showed some evidence of

a more radio-dense aspect (Figure S2). In the first experiment,

both the radiography and the m-CT reconstruction performed at

the conclusion of the experiment (day 25) indicated further

development of predominantly osteolytic lesions in PC-3/Fluc- and

mock clone-bearing tibiae (Figure 3A and B). In contrast, in the

tibiae xenografted with the Nog-KD clones an evident increase in

radiodensity of the residual bone and, in addition, development of

bone spiculae projecting outside the cortex was invariably

observed (Figure 3A and B). In the second experiment the

observation period was prolonged in order to allow progression of

the bone response. The animals inoculated with the PC-3/Fluc

clone needed to be sacrificed at day 23 due to severe osteolysis of

the xenografted bones and swelling of the limb, and to signs of

pain and distress. In contrast, bones xenografted with the Nog-KD

clones showed a more preserved structural integrity and a less

pronounced swelling of the limb, with no signs of pain and distress.

Accordingly, the animals xenografted with Nog-KD 17 and Nog-

KD 14 clones were kept for a period of 30 and 33 days,

respectively. Consistently with the evolution of the bone response

observed in the first experiment, tibiae xenografted with Nog-KD

clones showed enhanced radiodensity of the residual bone and

pronounced bone spiculae projecting outside the cortex (Figure

S3A and B).

Modification of bone structural parameters induced in
vivo by Noggin-silenced PC-3/Fluc cells

Quantitative m-CT analysis confirmed that the tibiae xenograft-

ed with the PC-3/Fluc and mock clones had significantly lower

BV/TV ratio than the sham-operated ones. On the contrary, the

tibiae inoculated with the Nog-KD clones had higher BV/TV

ratio than with PC-3/Fluc and mock clones and were not different

from the sham-operated ones (Figure 4A).

Total bone mineral content measured by pQCT was lower in

the tibiae xenografted with the PC-3/Fluc and mock clones, as

compared with the sham-operated ones, but significance was

reached only for mock 5-xenografted bones. In contrast total bone

mineral content in the Nog-KD clones-xenografted tibiae was

higher than in PC-3/Fluc and mock clones-xenografted ones, but

reached significance only when compared to the mock clones

(Figure 4B).

Histomorphometry
In the tibiae xenografted with PC-3/Fluc and mock clones there

was a significant increase in osteoclast number and percentage of

surface covered by osteoclasts, as compared to the sham-operated

tibiae (Figure 5A and C). This was accompanied by a significant

decrease in osteoblast number and percentage of surface covered

by active osteoblasts (Figure 5B and D).

Tibiae xenografted with the Nog-KD clones showed signifi-

cantly lower number of osteoclasts and percentage of surface

covered by osteoclasts than those xenografted with PC-3/Fluc and

mock clones (Figure 5A and C). Conversely, they showed a

significantly higher number of active osteoblasts and percentage of

surface covered by osteoblasts than those inoculated with PC-3/

Fluc and mock clones. In Nog-KD clones-xenografted tibiae the

number of osteoblasts was higher than in the sham-operated

tibiae, but this increase was significant only for Nog-KD 14

(Figure 5B and D). Despite the fact that the mRNA expression of

IL-8, known to stimulate osteoclast recruitment, was significantly

up-regulated in vitro in the Nog-KD 17 clone, as compared to the

Nog-KD 14 clone, there was no obvious difference in the

osteoclast number between the bones xenografted with the two

Figure 2. Noggin silencing has no effect on cell proliferation
and affects only minimally the expression of osteotropic
factors, in vitro. A. In vitro proliferation of mock and Nog-KD clones
was measured by BrdU incorporation for 4 days and compared to PC-3/
Fluc cells. Average values of 3 independent experiments performed in
quadruplicate wells (+/2 SD). B. Expression of Dkk-1, PTHrP, RANKL,
CSF-1 and IL-8 mRNA. mRNA expression levels (+/2 SD) are quantified
by real-time RT-PCR and normalized to b-actin as endogenous control.
The mRNA expression level in PC-3/Fluc cells is set as 100%; the mean of
2 to 3 independent experiments is shown. ***P,0.001, mock and Nog-
KD 17 clones versus PC-3/Fluc and Nog-KD 14 clones.
doi:10.1371/journal.pone.0016078.g002

Figure 3. Noggin silencing promotes increase in radiodensity
and partial bone repair in advanced osteolytic lesions. A.
Representative images of radiography and B. 3-D reconstruction (m-CT)
of tibiae (top) and of 1 mm thick cross sections (bottom) of sham-
operated and cancer cell-xenografted tibiae at day 25 after intra-
osseous inoculation.
doi:10.1371/journal.pone.0016078.g003

Role of Noggin in Osteolytic Bone Metastasis
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Nog-KD clones. This suggests that the difference in IL-8 mRNA

expression was functionally irrelevant.

Growth characteristics in vivo of Noggin-silenced
PC-3/Fluc cells

Tumor take was 100% for all xenografted clones. Weekly

monitoring and quantification of intra-osseous tumor growth by

BLI revealed that, in both experiments, noggin suppression in

cancer cells had a moderate impact on their proliferation in vivo.

Initially, the Nog-KD clones grew similarly to PC-3/Fluc and

mock clones. However, their growth progressively slowed down

and they could not reach the same tumor burden as for PC-3/Fluc

and mock clones (Figure 6). In the second experiment, where

tumor growth was monitored for longer periods, a growth arrest

was even observed (Figure S3C).

Metastatic potential of Noggin-silenced PC-3/Fluc cells
In order to investigate whether noggin silencing influences the

metastatic ability of PC-3 cells, systemic metastases were induced

by injection into the left cardiac ventricle.

The kinetics of development and the number of bone metastases

per mouse 28 days after intra-cardiac injection of Nog-KD 17 cells

did not differ from that induced by PC-3/Fluc and mock clones

(not shown). After intra-cardiac injection of PC-3/Fluc cells

systemic bone metastases develop asynchronously at variable bone

sites, making difficult a direct comparison of the radiographic

aspect and growth progression of metastatic lesions at the same

bone site among different animals. Furthermore, PC-3/Fluc cells,

like the parental PC-3, almost invariably metastasize to the jaw,

thereby impairing the nutritional status of the animals and,

consequently, limiting the length of the experimental observation.

These drawbacks prevented us to verify whether in this model the

bone response and the tumor growth induced by the Nog-KD

clone progress equally to those observed in the intra-osseous

model.

Discussion

Here we show for the first time that in the PC-3 xenograft

model of osteolytic bone metastasis the increase in osteoclast

number is associated with impairment in osteoblast number and

activity. This indicates that the osteolytic lesion is not only the

result of increased bone resorption, but also of an additional

Figure 4. Noggin silencing corrects the alterations of bone
structural parameters in osteolytic lesions. A. The ratio of bone
volume over total volume (BV/TV, +/2 SD) was determined by m-CT at
day 25 after tumor cells inoculation; n = 6–7 animals for each
experimental group. ***P,0.001, mock 5 versus Nog-KD clones and
sham; **P,0.01, Nog-KD 14 versus PC-3/Fluc and mock 4; *P,0.05,
sham and Nog-KD 17 versus PC-3/Fluc and mock 4. B. Total bone
mineral content (TBMC; mg/mm +/2 SD) was measured by pQCT at day
25 after tumor cells inoculation; n = 6–7 animals for each experimental
group. ***P,0.001, mock 5 versus Nog-KD 14; *P,0.05, sham and Nog-
KD 17 versus mock 5, and Nog-KD 14 versus mock 4.
doi:10.1371/journal.pone.0016078.g004

Figure 5. Noggin silencing normalizes the bone histomorpho-
metric indexes of bone formation and resorption in osteolytic
lesions. A. Number of osteoclasts (N.Oc/BS; /mm, +/2 SD) on the
endosteal surface in trabecular and cortical bone of sham-operated
tibiae or on residual bone adjacent to cancer cells of tibiae xenografted
with PC-3/Fluc, mock and Nog-KD clones. n = 6–7 animals for each
experimental group. ***P,0.001, PC-3/Fluc and mock clones versus
sham, and mock clones versus Nog-KD 17; **P,0.01, Nog-KD 17 versus
PC-3/Fluc, and Nog-KD 14 versus PC-3/Fluc and mock clones. B. Number
of osteoblasts (N.Ob/BS; /mm, +/2 SD) on the endosteal surface in
trabecular and cortical bone of sham-operated tibiae or on residual
bone adjacent to cancer cells of tibiae xenografted with PC-3/Fluc,
mock and Nog-KD clones. n = 6–7 animals for each experimental group.
***P,0.001, PC-3/Fluc and mock clones versus Nog-KD clones, and
mock 4 versus sham; **P,0.01, sham versus PC-3/Fluc and mock 5;
*P,0.05, Nog-KD 14 versus sham. C. Percentage of endosteal surface in
cortical and trabecular bone occupied by osteoclasts (Oc.S/BS; %, +/2
SD) in sham-operated and cancer cell-xenografted tibiae. n = 6–7
animals for each experimental group. ***P,0.001, mock clones versus
sham and Nog-KD clones, and PC-3/Fluc versus sham and Nog-KD 17;
**P,0.01, Nog-KD 14 versus PC-3/Fluc. D. Percentage of endosteal
surface in cortical and trabecular bone occupied by osteoblasts (Ob.S/
BS; %, +/2 SD) in sham-operated and cancer cell-xenografted tibiae.
n = 6–7 animals for each experimental group. ***P,0.001, PC-3/Fluc and
mock clones versus sham and Nog-KD clones.
doi:10.1371/journal.pone.0016078.g005
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inhibition of bone formation. We also demonstrate that shRNA-

mediated suppression of the constitutive expression of the BMP

antagonist noggin in PC-3 cells, without interfering with the host

microenvironment–derived noggin, restores the osteoblast number

and bone formation in bone lesions induced by these cells.

Accordingly, the bone response is converted from a purely

osteolytic to a mixed osteoblastic/osteolytic one. Collectively,

these results provide novel evidence strongly suggesting that

noggin secretion by CaP cells mediates the inhibition of the

osteoblast recruitment/activity. The resulting inhibition of bone

formation prevents the repair of the osteolytic lesion generated by

cytokine-stimulated, osteoclast-mediated bone resorption. Consis-

tently with this notion, noggin may represent a potential

therapeutic target in osteolytic CaP bone metastasis.

The molecular mechanisms governing the osteoblastic and the

osteolytic response in bone metastases by solid cancers are subject

of intensive investigation. In the osteolytic response, the attention

has been predominantly focused on extracellular factors and

signaling pathways that mediate the crosstalk between tumor cells

and the bone microenvironment leading to the vicious cycle of

tumor proliferation and bone resorption [25]. This hypothesis

postulates that factors such as PTHrP [26], RANKL [27] and IL-8

[28] are secreted by cancer cells and stimulate osteoclast

recruitment and activity. The consequent increase in bone

resorption releases matrix-embedded growth factors, such as

insulin-like growth factor (IGF) and transforming growth factor

beta (TGF-b), which, in turn, promote further cancer cell growth.

The influence of cancer cells on osteoblast recruitment and

activity has been studied almost exclusively in MM. Paradigmatic

molecules inducing directly osteoblast recruitment and, conse-

quently, bone formation, are members of the BMP and Wnt

protein families. Extracellular antagonists are crucial for the

modulation of their activities [29]. In a seminal study it has been

demonstrated that in MM secretion of the Wnt antagonist Dkk-1

by the neoplastic cells inhibits osteoblast recruitment and activity.

Accordingly, the osteolytic lesion in MM is not only the result of

increased bone resorption, but also of repressed bone formation

[30]. Furthermore, down-regulation of Dkk-1 expression seems to

mediate the osteoinductive activity of endothelin-1 (ET-1) [31].

Another extracellular antagonist of the Wnt pathway, sFRP-2,

may also contribute to this mechanism of inhibition of bone

formation [32].

The modulation of the osteoblast recruitment/activity and the

possible contribution of inhibition of bone formation in osteolytic

bone metastasis by solid cancers have received little attention. A

limited number of quantitative histomorphometric studies in

osteolytic metastases by a variety of epithelial cancers have shown

that, besides the increase in bone resorption, there is also

impairment in bone formation, especially in advanced lesions

[33,34,35]. It has been suggested that in these lesions bone

resorption is uncoupled from the subsequent bone formation

phase, which usually follows in normal bone remodeling [36]. This

phenomenon may be mediated by a direct, negative influence of

cancer cells on osteoblast recruitment, survival and activity, as

shown in vitro for osteolytic CaM and CaP cell lines [37,38,39].

The present investigation, showing that indexes of bone formation

are impaired in tibiae xenografted with PC-3 cells, further

supports the clinical findings above and strongly suggests that a

mechanism of uncoupling bone formation from resorption is also

operating in this model. However, the identity of the molecules

mediating this inhibitory effect on osteoblasts is yet unknown.

Antagonism of BMP activity by noggin is critical for embryonic

chondro-osteogenesis and joint formation [40]. Osteoblast-target-

ed over-expression of noggin results in osteopenia as the result of

impaired osteoblast recruitment [41,42], indicating that the

extracellular modulation of the BMP concentration is also essential

in adult life for the control of bone formation during bone

remodeling. BMPs and noggin reciprocally induce their expression

in osteoblasts [23], indicating that a positive feedback is necessary

for maintaining an optimal balance between BMP and noggin

concentrations in the bone microenvironment. Bone metastatic

cancer cells may interfere with this balance by secreting an excess

of either BMPs or noggin. It has been reported that BMP-6

expression positively correlates with CaP progression [43,44] and

that BMP-6 is the BMP primarily responsible for inducing an

osteoblast response in mouse models of CaP bone metastasis

[17,45]. However, in one of these reports we demonstrated that, in

addition, osteoinductive cancer cells lack secretion of the BMP

inhibitor noggin and that noggin forced expression in these cells

abolishes their osteoinductive activity in vivo. Therefore, an

unopposed effect of an excess of BMP-6 locally released by cancer

cells is also a determinant of the osteoblast response both in CaP

and CaM bone metastasis [17]. Likewise, low expression of the

Wnt antagonist Dkk-1 seems to favor the Wnt-induced osteoblast

response in CaP bone metastasis [46]. These two studies proved

for the first time that in osteoblastic bone metastases the

physiological, tight balance between osteoinductive BMP-6 and/

or Wnt proteins and their antagonists is tilted toward the first and,

thus, favors an abnormal osteoblast response. In contrast,

osteolytic CaM cell lines express BMP-2 and -4, while the

osteolytic CaP cell line PC-3 expresses BMP-3 [17,47]. However,

both CaP and CaM osteolytic cell lines express low or no BMP-6

[17,45] and BMP-7 [48,49] and, most importantly, secrete

constitutively relative high amounts of noggin [17]. Thus, in

osteolytic bone metastases the balance between BMPs and noggin

seems to be altered in a direction opposite to that of osteoblastic

bone metastases. The present study proves that this noggin-tilted

balance is responsible for the suppression of bone formation and,

thus, prevents repair of the osteolytic lesion. Furthermore, the

demonstration that specific targeting of the cancer cell-derived

noggin preserves bone formation/repair strongly suggests noggin

as a major ‘‘un-coupling factor’’ in osteolytic bone metastasis and

Figure 6. Noggin silencing limits growth of PC-3/Fluc cells in
bone xenografts. Bioluminescent signal (photons +/2 SD) emitted
from the cancer cell-xenografted tibiae was quantified at day 7, 14, 21
and 25 after intra-osseous inoculation of tumor cells; n = 6–7 animals for
each experimental group. ***P,0.001, Nog-KD clones versus PC-3/Fluc
at day 25; *P,0.05, Nog-KD 14 versus PC-3/Fluc at day 21.
doi:10.1371/journal.pone.0016078.g006
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further emphasizes the relevance of BMP antagonism in

pathological bone remodeling.

Here we clearly show that noggin silencing in osteolytic PC-3

cells, although not correcting the bone architecture, restores the

bone mass of the xenografted tibiae, as assessed by radiography, m-

CT and pQCT. This effect on the bone mass is the result of

normalization or even enhancement of bone formation, as

indicated by histomorphometric parameters of osteoblast number

and activity. Noggin silencing in PC-3 cells does not alter either

the level or the spectrum of their BMP expression. As a result, the

physiological BMP/noggin balance in bone could be tilted in favor

of first by an excess of cancer cell-derived BMPs, which may

explain the trend toward increase in bone formation observed in

bone xenografted with Nog-KD PC-3 cells.

The bone repair is evident in advanced bone lesions, suggesting

that a time interval is necessary to restore bone formation,

consistently with the temporal organization of the physiological

bone remodeling (bone coupling). A similar mechanism of

restoration of bone coupling has been proposed to explain the

reparative bone formation in bone metastasis by solid cancers as

an effect of anti-cancer therapy [33,36,50].

The positive effect of noggin silencing on bone formation

supports our original hypothesis and suggests noggin as one of the

essential cancer cell-derived inhibitors of the osteoblast recruit-

ment/activity contributing to the osteolytic lesions in CaP bone

metastases. We have chosen a CaP model of osteolytic bone

metastasis to be consistent with our previous study demonstrating

that, conversely, lack of noggin has a relevant role in the

osteoblastic response in CaP bone metastases [17]. However, a

predominantly osteolytic phenotype is observed only in a small

percentage of CaP bone metastases, while it represents the

majority of the CaM metastases [5,6]. Therefore, in order to

extend the relevance of noggin in cancer-mediated osteolysis, it

will be important to confirm the present findings in a CaM model

of osteolytic bone metastasis. Nevertheless, it has already been

shown that inhibition of Dkk-1 by neutralizing antibodies in MM

in vivo [51,52], or in CaM cells in vitro [53], or by shRNA-mediated

interference in CaP cells in vitro [54] is also able to restore bone

formation suppressed by neoplastic cells. Furthermore, Dkk-1

serum levels are elevated in CaM patients with bone metastases,

but not in CaM patients with soft tissue metastases, and it has been

suggested that Dkk-1-induced inhibition of bone formation may

contribute to the osteolytic lesion in CaM [55]. Collectively, these

and the present investigation support the view that cancer cell-

derived antagonists of both BMP and Wnt signaling pathways

contribute to the severity of the osteolytic process not only in MM,

but also in various types of epithelial cancer. The BMP and Wnt

signaling pathways clearly cooperate and regulate each other, but

the exact hierarchy of these two pathways in stimulating osteoblast

recruitment and activity is still debated [56,57,58,59].

In the late phase of the experimental observation, concomitantly

to bone repair, noggin silencing in cancer cells also reduces tumor

growth. The fact that the growth rate in vitro of noggin-silenced

clones is not affected suggests that this effect in vivo may be exerted

through an influence of the bone environment. Restoration of

bone formation may physically limit the intramedullary space

available for cancer cell expansion [60]. However, in this case

cancer cells would most probably invade the surrounding soft

tissue through trans-cortical, vascular channels, as it has been

observed when bone resorption is inhibited [61,62]. Most likely,

osteoblasts may secrete factors inhibiting tumor growth directly

[63]. One of these factors could be BMP-7, which we have

previously demonstrated to inhibit tumor growth in animal models

of osteolytic bone metastasis [48,49]. Osteolytic cancer cell-

derived noggin may antagonize endogenous, osteoblast-derived

BMP-7 and, therefore, allow escape from its inhibitory effect on

tumor growth. Alternatively, osteoblasts may affect tumor growth

indirectly, acting through an inhibition of osteoclast recruitment

[39,60]. The latter, indirect mechanism is also suggested by the

decreased osteoclast number and activity observed in tibiae

xenografted with noggin-silenced PC-3 cells. Taken together,

these observations indicate that restoration of bone formation may

limit growth progression in osteolytic bone metastasis.

The establishment of systemic bone metastases induced by

injection into the left cardiac ventricle of noggin-silenced PC-3

cells is not impaired. This suggests that interference with the

constitutive secretion of noggin by cancer cells does not affect the

early steps of the bone metastatic colonization (adhesion and

extra-vasation) and, especially, the growth initiation by the

osteolytic process.

It has been previously reported that exogenous noggin inhibits

BMP-2- and BMP-4-induced invasion and migration of PC-3 cells,

in vitro, and that noggin over-expression in the same cells limits

their expansion and osteolytic activity, in vivo [64]. This finding is

apparently in contradiction with our present study, showing that

noggin silencing, rather than over-expression, limits tumor growth

and osteolysis in the same PC-3 bone xenograft model. Most likely,

noggin over-expression in PC-3 cells antagonizes the overall BMPs

secreted by both cancer cells and the bone microenvironment and,

accordingly, interferes not only with their direct, stimulatory effect

on the invasive capacity of PC-3 cells, but also with their normal,

stimulatory role in bone formation. In contrast, noggin silencing in

PC-3 cells targets exclusively the noggin of cancer cell origin,

thereby eliminating its interference with the physiological BMP/

noggin balance within the bone microenvironment. Accordingly,

noggin silencing seems to be a more targeted mean to understand

the role of noggin in osteolytic bone metastasis.

Based on the present results we postulate a revised model for the

pathogenesis of osteolytic bone metastasis by solid cancers, where

the osteolytic lesion is not only the result of excess of bone

resorption induced by cancer cell-derived factors stimulating

osteoclast recruitment and activity, but also of uncoupling bone

formation through noggin constitutively secreted by cancer cells.

Conversely, suppression of cancer cell-derived noggin restores the

bone formation phase, which is physiologically coupled to the

initial phase of bone resorption. As a result of this anabolic effect,

tumor progression is contained by yet unidentified, osteoblast-

derived factors (Figure 7). Thus therapeutic neutralization of

noggin may not only favor bone repair, but also control bone

metastatic growth.

Targeting of the RANK/RANKL axis has been proven to

successfully inhibit osteolysis in numerous animal models of bone

metastasis [65] and this evidence has contributed significantly to

the strategy to develop a humanized monoclonal antibody against

RANKL for treating osteolytic bone disease [66]. The evidence

presented in this investigation, suggesting that a dual mechanism

of stimulated bone resorption and inhibited bone formation is

responsible also for the osteolytic lesion by solid cancers, provides

the rationale for a combinatorial targeting of both, the RANK/

RANKL axis and the BMP antagonist noggin for a more effective

control of bone metastatic growth.

Materials and Methods

Ethics statement
Experimental animal protocols, anesthesia, surgical procedure

and post-surgical analgesia were approved by the Committee for

Animal Experimentation and the Veterinary Authorities of the
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Bern State (Permit Number: 15/07). Mice were housed in

individual ventilated cages in strict accordance to the Swiss

Guidelines for the Care and Use of Laboratory Animals.

Autoclaved water and sterile mouse chow were provided ad

libitum. Animals xenografted with human cancer cells were

carefully monitored for signs of pain or distress, loss of body

weight and radiological signs of severe osteolysis and imminent risk

fracture. When any of these signs appeared or at the end of the

experimental period, the mice were sacrificed by CO2 euthanasia.

Animals
BALB/c nude mice were purchased from Charles River France

(L’Arbresle, France) and they were 7-8 weeks old when used for

the intra-osseous inoculation of tumor cells and 5 weeks old for the

intra-cardiac injection. For surgical manipulation, mice were

anesthetized as described previously [18].

Cell lines and cell culture
The osteolytic human CaP cell line PC-3 (ATCC/LGC

Promochem, Molsheim, France) was grown in Dulbecco’s

modified Eagle’s medium supplemented with 10% FBS (Biochrom

AG, Berlin, Germany) and antibiotics. Cells were shown to be free

of mycoplasma by PCR (Venor GeM, Minerva Biolabs GmbH,

Berlin, Germany).

PC-3 cell-derived clones
For in vivo tracking, PC-3 cells were permanently transduced with

the firefly luciferase (Fluc) using a self-inactivating lentiviral vector [19]

and cloned by limiting dilution. The PC-3/Fluc clone was

electroporated (Nucleofector, Amaxa, Lonza, Verviers, Belgium)

with either the combination of three vectors containing shRNA

targeting the noggin transcript or a non-targeting sequence

(SureSilencing, SABiosciences, LucernaChem, Lucerne, Switzerland)

to generate Noggin knock-down (Nog-KD) and negative control

(mock) clones, respectively. The sequences of the shRNA used are

listed in Supporting Information (Table S1). Individual stably

transfected clones were derived by selection with Puromycin (1 ug/

ml) and Neomycin (200 ug/ml) (Sigma-Aldrich, Buchs, Switzerland).

Generation of conditioned media
Cells were seeded at a density of 2.56104 cells/cm2 in 10 cm

culture dishes. After 1 day, the medium was replaced with 10 ml

serum-free medium and the cells were cultured for further

48 hours. The cell-conditioned media (CM) were centrifuged

and stored at –20uC for later use. The cell number was determined

and the volume of CM was adjusted for differences in cell density

between samples. CM were dialyzed against serum-free medium

and concentrated 10-fold by lyophilisation.

Cell proliferation assay
Cells were seeded at a density of 104 cells/cm2 in microtiter

plates and cultured for 4 days. Cell proliferation was determined

by measuring bromodeoxyuridine (BrdU) incorporation with a

colorimetric ELISA (Cell Proliferation ELISA, BrdU; Roche

Diagnostics, Rotkreuz, Switzerland) according to the manufactur-

er’s protocol.

Figure 7. Model of osteolysis integrating a dual mechanism of stimulated bone resorption and ‘‘uncoupled’’ bone formation. The
osteolytic lesion is the net result of two different mechanisms leading to uncoupling of normal bone remodeling: A. Excess of bone resorption,
consequent to enhanced osteoclast recruitment and activity induced by cancer cell-derived osteolytic cytokines. The subsequent release of bone
matrix-integrated growth factors further stimulates cancer cell growth. B. Suppression of bone formation, consequent to interference with osteoblast
recruitment and activity induced by cancer cell-derived noggin. C. Noggin silencing in cancer cells re-establishes osteoblast recruitment and activity,
and, thus, ‘‘bone coupling’’, with consequent bone formation/repair. As an effect of the rescued osteoblast activity, tumor progression is contained
by yet unidentified osteoblast-derived factors.
doi:10.1371/journal.pone.0016078.g007
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Real-time polymerase chain reaction (PCR)
Total RNA extraction from subconfluent cultures of PC-3/Fluc

cells and the various clones was performed with RNeasy (Qiagen,

Hombrechtikon, Switzerland). Reverse transcription was per-

formed with M-MLV-RT (Promega, Wallisellen, Switzerland) and

random primers (Roche Diagnostics). Human-specific real-time

PCR primers and probes (Applied Biosystems, Rotkreuz, Switzer-

land) are listed in Supporting Information (Table S2).

Immunoblotting
Noggin secretion by PC-3/Fluc cells and by the different clones

was determined in concentrated CM, normalized by the total cell

number collected from each sample. Proteins were separated on

12% sodium dodecyl sulfate-polyacrylamide gels (Mini Protean

Gel BioRad) and transferred on Hybond-P membranes (GE

Healthcare, Glattburg, Switzerland). Membranes were incubated

overnight with 40 ng/ml of a rat monoclonal antibody against the

human native noggin protein [20] (RP57-16; kindly provided by

Dr. A.N. Economides, Regeneron Pharmaceuticals, Inc.) and

detected with a horseradish peroxidase-labeled anti-rat secondary

antibody (1:1000; GE Healthcare). Immunoreactivity was visual-

ized with the ECL Advanced chemiluminescence substrate (GE

Healthcare) using the VersaDoc imaging system (Bio-Rad

Laboratories, Reinach, Switzerland) and signal intensity was

quantified with QuantityOne imaging software (Bio-Rad Labora-

tories). Equivalent protein loading was verified by staining with

Coomassie blue the total protein content in the CM.

Intra-osseous inoculation of PC-3/Fluc cells, mock and
Nog-KD clones

The cells were inoculated into the marrow cavity of the left tibia

at a concentration of 56105/10 ml of phosphate-buffered saline

(PBS), as previously described [18]. Groups of seven animals each

were inoculated with either PC-3/Fluc cells, mock or Nog-KD

clones. Another group of 7 animals, inoculated with phosphate-

buffered saline alone served as control ( = sham). In a first

experiment tumor growth was allowed to progress until day 25, at

which time animals from all groups were sacrificed because of the

severe osteolysis and imminent risk of fracture in the PC-3/Fluc

and mock groups. In a further experiment the animals xenografted

with the PC-3/Fluc clone were sacrificed at day 23 for the same

reason above, while the groups xenografted with Nog-KD 14 and

17 clones were kept for a period of 30 and 33 days, respectively.

The xenografted and sham-operated tibiae were dissected and

fixed in 4% paraformaldehyde (PFA).

Intra-cardiac injection of PC-3/Fluc cells, mock and
Nog-KD clones

The cells were injected into the left cardiac ventricle at the

concentration of 105/100 ml in PBS, as previously described [18].

Groups of ten animals each were injected with either PC-3/Fluc or

mock 4 or Nog-KD 17 clones. Animals were sacrificed 28 days

after injection.

Radiography
Radiographs of the mice were taken weekly using a Faxitron

radiography system (MX-20, Faxitron X-Ray Corporation,

Edimex, Le Plessis, France) to monitor changes in bone structure

and radiodensity.

In vivo bioluminescent imaging (BLI)
Tumor growth was monitored non-invasively in the living

animals by bioluminescent imaging (BLI) at weekly intervals as

previously described [18] using an ultrasensitive charge-coupled

device (CCD) camera (NightOWL LB, Berthold Technologies,

Bad Wilbad, Germany). In vivo photon counts were normalized for

the in vitro luciferase activity by PC-3/Fluc clone, mock and Nog-

KD clones.

Three-dimensional micro-computer tomography (m-CT)
of bone lesions

To obtain qualitative and quantitative assessment of the tumor-

induced modifications of the bone structure, sham and tumor-

bearing tibiae were scanned ex vivo, at the end of the experimental

period, with a m-CT40 scanner (SCANCO Medical AG,

Brüttisellen, Switzerland) at a resolution of 6 mm. The region of

interest was selected from the scout view and 1600 micro-

tomographic slices were acquired, covering three quarters of the

length of the tibia. Tridimensional images were obtained through

reconstruction of cross sectional images. Quantitative analysis of

primary parameters such as total volume (TV) and bone volume

(BV) was performed on a volume of interest equivalent to 166

slides (1 mm in length) at approximately 2.5 mm distal from the

cleft of the knee joint as reference point.

Peripheral quantitative computed tomography (pQCT)
Bone mineral content in the xenografted tibiae was determined

ex vivo with a small animal pQCT scanner (XCT Research SA;

Norland Stratec, Pforzheim, Germany) at the end of the

experimental period. Measurements were performed at 2 and

3 mm distal from the reference point (cleft of the knee joint).

Bone histomorphometry
Fixed tibiae were decalcified in a solution of PFA 0.5%/EDTA

15% for 20 days and processed for paraffin embedding. Four-mm

sections were stained for tartrate-resistant acid phosphatase

(TRAP) as described previously [21], counterstained with

hematoxylin and examined by light microscopy. Osteoclasts were

counted as multinucleated TRAP-positive cells on the endosteal

surface of cortical and trabecular bone in sham-operated tibiae,

and on the residual bone adjacent to tumor cells in cancer cell-

xenografted tibiae. The number of osteoclasts (N.Oc/BS; /mm)

and of active osteoblasts (N.Ob/BS; /mm), the bone surface

covered by osteoclasts (Oc.S/BS; %) and osteoblasts (Ob.S/BS; %)

were determined using the OsteoMeasure histomorphometry

software (OsteoMetrics Inc., Decatur, GA, USA). Osteoclasts

and osteoblasts were counted in randomly selected fields of an area

.1 mm2, approximately at 1.5 mm from the growth plate. Bone

parameters were expressed as recommended in the report of the

ASBMR Histomorphometry nomenclature committee [22].

Statistical analysis
Graph Pad Prism version 4.00 for Windows (GraphPad

Software, San Diego, CA, USA) was used for all statistical

analyses. The parametric one-way ANOVA test with a Bonferroni

post-test was used to analyze the RNA expression data, the bone

architecture parameters obtained by m-CT and pQCT, and the

histomorphometric data. To compare the cell proliferation rate in

vitro and in vivo the parametric two-way ANOVA test was

employed. P values smaller than or equal to 0.05 were considered

as significant.

Supporting Information

Figure S1 Luciferase expression does not modify the
osteolytic potential of PC-3 cells and moderately affects
their gene expression in vitro. A. Representative images of
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radiography of tibiae xenografted with PC-3 or PC-3/Fluc cells at

day 28 after intra-osseous inoculation. B. Expression of noggin,

Dkk-1, PTHrP, RANKL, CSF-1 and IL-8 mRNA. mRNA

expression levels (+/2 SD) are quantified by real-time RT-PCR

and normalized to b-actin as endogenous control. mRNA

expression level in PC-3 cells is set as 100%; the mean of 2 to 3

independent experiments is shown. ***P,0.001, PC-3/Fluc versus

PC-3 cells.

(TIF)

Figure S2 Noggin silencing promotes increase in radio-
density in advanced osteolytic lesions. Radiographic aspect

of sham-operated and cancer cell-xenografted tibiae at day 21

after intra-osseous inoculation.

(TIF)

Figure S3 Noggin silencing promotes partial bone
repair in advanced osteolytic lesions and limits late
tumor growth. A. Radiographic aspect and B. 3-D reconstruc-

tion (m-CT) of tibiae xenografted with PC-3/Fluc and Nog-KD

clones, at day 23 (PC-3/Fluc), day 30 (Nog-KD 17) and day 33

(Nog-KD 14) after inoculation. C. Growth in vivo of PC-3/Fluc and

Nog-KD clones. Bioluminescent signal (photon counts +/2 SD)

emitted from the cancer cell-xenografted tibiae was quantified at

day 7, 14, 21, 23, 28, 30 and 33 after intra-osseous implantation of

tumor cells; n = 6–7 animals for each experimental group.

***P,0.001, Nog-KD clones versus PC-3/Fluc at day 21.

(TIF)

Table S1 The sequence of the different shRNA obtained from

Superarray is shown.

(DOC)

Table S2 Assay ID of the real-time primers and probes obtained

from Applied Biosystems are listed.

(DOCX)
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