
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
6
8
7
5
9
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
5
.
4
.
2
0
2
4

J
H
E
P
0
5
(
2
0
1
4
)
0
9
4

Published for SISSA by Springer

Received: January 21, 2014

Revised: March 27, 2014

Accepted: April 18, 2014

Published: May 21, 2014

The mass-hierarchy and CP-violation discovery reach

of the LBNO long-baseline neutrino experiment

The LAGUNA-LBNO collaboration
S.K. Agarwalla,o L. Agostino,ag M. Aittola,z A. Alekou,h B. Andrieu,af D. Angus,w

F. Antoniou, h A. Ariga,b T. Ariga,b R. Asfandiyarov,u D. Autiero,e P. Ballett,w

I. Bandac,k D. Banerjee,a G. J. Barker,r G. Barr,s W. Bartmann, h F. Bay,a

V. Berardi,aa I. Bertram,ad O. Bésida,k A.M. Blebea-Apostu,al A. Blondel,u

M. Bogomilov,q E. Borriello,am S. Boyd,r I. Brancus,al A. Bravar,u

M. Buizza-Avanzini,ag F. Cafagna,aa M. Calin,d M. Calviani,h M. Campanelli,aj

C. Cantini,a O. Caretta,ae G. Cata-Danil,an M.G. Catanesi,aa A. Cervera,f

S. Chakraborty,am L. Chaussard,e D. Chesneanu,al F. Chipesiu,al G. Christodoulou,t

J. Coleman,t P. Crivelli,a T. Davenne,ae J. Dawson,ag I. De Bonis,ab J. De Jong,s
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Abstract: The next generation neutrino observatory proposed by the LBNO collaboration

will address fundamental questions in particle and astroparticle physics. The experiment

consists of a far detector, in its first stage a 20 kt LAr double phase TPC and a magnetised

iron calorimeter, situated at 2300 km from CERN and a near detector based on a high-

pressure argon gas TPC. The long baseline provides a unique opportunity to study neutrino

flavour oscillations over their 1st and 2nd oscillation maxima exploring the L/E behaviour,

and distinguishing effects arising from δCP and matter.

In this paper we have reevaluated the physics potential of this setup for determining the

mass hierarchy (MH) and discovering CP-violation (CPV), using a conventional neutrino

beam from the CERN SPS with a power of 750 kW. We use conservative assumptions on

the knowledge of oscillation parameter priors and systematic uncertainties. The impact

of each systematic error and the precision of oscillation prior is shown. We demonstrate

that the first stage of LBNO can determine unambiguously the MH to > 5σ C.L. over the

whole phase space. We show that the statistical treatment of the experiment is of very high

importance, resulting in the conclusion that LBNO has ∼ 100% probability to determine

the MH in at most 4-5 years of running. Since the knowledge of MH is indispensable to

extract δCP from the data, the first LBNO phase can convincingly give evidence for CPV

on the 3σ C.L. using today’s knowledge on oscillation parameters and realistic assumptions

on the systematic uncertainties.

Keywords: Oscillation, Neutrino Detectors and Telescopes, CP violation
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1 Introduction

The main goals of the proposed LBNO [1] next-generation long-baseline neutrino and an-

tineutrino oscillation experiment are to discover CP-violation in the leptonic sector (CPV

or δCP 6= 0 and π) and determine the neutrino mass hierarchy (MH or sign(∆m2
31) = ±1).

Discovery is defined according to usual practice in experimental high-energy physics as the

ability to exclude the wrong hypothesis with at least a 5σ confidence level (C.L.), while

– 1 –
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a 3σ C.L. would correspond to an evidence for the tested hypothesis. Since propagation

through Earth impacts neutrinos and antineutrinos differently, neutrino oscillations in mat-

ter can mimic a CP-asymmetry induced by δCP and also affect the determination of the

δCP value. Hence, to decouple genuine CP-phase from matter induced effects, the strategy

of LBNO is to exploit the L/E dependence of the νµ → νe and ν̄µ → ν̄e appearance proba-

bilities with a wide-band beam at a baseline of 2300 km. Separate information on neutrinos

and antineutrinos is obtained by changing the horn focusing polarity of the beam. The

disappearance channels (νµ → νµ and ν̄µ → ν̄µ) will constrain the atmospheric parame-

ters and the muon charge identification will independently determine the νµ/ν̄µ fluxes at

the far distance. The νµ → ντ and ν̄µ → ν̄τ appearance channels will also be accessible

with an unprecedented precision. Unlike the attempts of infering MH with atmospheric

neutrinos, the accelerator-based approach of LBNO addresses both fundamental problems

of CPV and MH in clean and straightforward conditions, profiting from the ability to re-

verse the focusing horns polarity and from the well-controlled fluxes, which characterise

accelerator-based neutrino beams.

In this paper, we present an updated study of the sensitivity of LBNO, and discuss

the impact of systematic errors and of the a priori knowledge of oscillation parameters.

Following a realistic and incremental approach [2], the initial phase of LBNO foresees an

underground ∼20 kton fiducial mass double-phase liquid Argon TPC complemented by a

magnetised muon detector and coupled to a conventional neutrino beam from the CERN

SPS, monitored by a magnetised near detector system. We show that this first realistic

phase already provides conclusive and well-motivated physics opportunities. We employ

a Monte-Carlo technique simulating a very large number of toy experiments to estimate

the confidence level of the MH and CPV measurements. With the capability of reversing

the horn focusing polarity, and even under pessimistic assumptions on systematic errors,

a few years of running at the CERN SPS suffice for LBNO alone to produce a direct and

guaranteed discovery of MH (> 5σ C.L.) over the full phase space of oscillation parameters,

and a unique sensitivity to CPV through the exploration of the first and second oscillation

maxima. Neglecting any systematic error, LBNO in its first phase, has the power to reach

a CPV discovery level > 5σ’s C.L., the actual significance depending on how far from

zero and π the true value of δCP is. The actually attainable CPV reach is sensitive to

the prior knowledge of the oscillation parameters and to the achievable systematic errors

on fluxes, cross-sections and detector-related effects. With conservative assumptions on

the systematic errors and after ∼12 years of running at the CERN SPS, a significance

for CPV above > 3σ’s C.L. will be reached for ∼ 25(40)% of the δCP values, under the

expectation that sin2 2θ13 will be known from reactor experiments with a precision of

±10(2.5)%. Several sources of systematic effects need to be addressed, in order to reduce

the overall error balance and reach a discovery level. In particular, improvements in the

present knowledge of the neutrino interaction differential cross-sections could increase the

expected CPV discovery reach. Alternatively, a second phase of LBNO with an increased

exposure with far more detector mass and beam power, aimed at reducing the statistical

error around the 2nd oscillation maximum, would allow to reach a > 5σ CPV discovery

level over a wide range of δCP values, even under the present conservative assumptions on

systematic errors, thanks to the increased dependence on δCP at the 2nd maximum.

– 2 –
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2 Phenomenology for LBNO

The discovery that neutrinos change flavour while propagating in space — the phenomenon

of neutrino oscillations — has historically been triggered by deep underground astrophysics

experiments with neutrinos, first observing the Sun and, later on, the neutrinos generated

in the interaction of cosmic rays with the Earth’s atmosphere — the atmospheric neutrinos.

At the same time the detection of a handful of neutrinos from the supernova SN1987A gave

a fundamental input on astrophysical models. The firmly established flavour oscillations

imply that neutrinos have small though non-vanishing and non-degenerate rest masses, and

the existence of a physically observable mixing in the leptonic sector.

New physics is a key ingredient to resolve questions that the Standard Model (SM)

cannot answer. In this context, neutrino masses and oscillations are, to this day, the only

experimentally established Beyond the Standard Model (BSM) physics. In the framework

of three neutrino family scenario, the weak eigenstates να (α = e,µ,τ) are given as linear

combinations of the mass eigenstates νi (of definite mass mi, i=1,2,3) via the Pontecorvo-

Maki-Nakagawa-Sakata (PMNS) [3, 4] matrix U as να =
∑

i Uαiνi. The 3 × 3 unitary

matrix U is generally parameterized by the three mixing angles θ12, θ13, θ23, and the phase

δCP (where we have neglected Majorana phases):

U =

 Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3

 =

 1 0 0

0 c23 s23
0 −s23 c23


 c13 0 s13e

−iδ

0 1 0

−s13eiδ 0 c13


 c12 s12 0

−s12 c12 0

0 0 1

 (2.1)

where cij and sij represent cos(θij) and sin(θij), respectively. The parameter δCP is the

phase that controls the CP asymmetry.

The present level of understanding of the PMNS matrix already represents an incredible

experimental achievement, which will culminate in the determination of the phase δCP.

Global analyses [5–8] of all neutrino oscillation data, including the recent highest precision

measurements, indicate that the “minimal” three-neutrino PMNS framework is sufficient to

completely describe the observed oscillation phenomenology (apart from some “anomalies”

in terrestrial short baseline experiments). The question of the CP-violation in the leptonic

sector (CPV) remains an unresolved and urgent problem of particle physics. All data are

self-consistent and are compatible with any value for δCP in 0 ≤ δCP ≤ 2π within the 2σ

confidence range.

The neutrino mass hierarchy (MH) or the sign of ∆m2
31 ≡ m2

3−m2
1 is also not yet known:

whether m3 is the heaviest mass eigenvalue (normal hierarchy, ∆m2
31 > 0) or m3 is the

lightest one (inverted hierarchy, ∆m2
31 < 0) remains to be experimentally determined, and

presently there is no evidence indicating a preference for either value. Such an experimental

determination is a crucial ingredient to resolve the problem of CPV. It is also relevant for the

understanding of the origin of neutrino masses, which is expected to relate to BSM physics.

In particular, an inverted hierarchy would be a strong hint that some unexpected physics

is underlying the masses and flavour problem, and an important ingredient for leptogenesis

scenarios. The mass hierarchy is important to interpret cosmological observations probing

the hot dark matter fraction. Likewise, future data from supernova bursts will be more

– 3 –
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easily interpreted with the MH known. Finally, the existence of an inverted mass hierarchy

would be an useful input for neutrino-less double beta decay searches, which aim at testing

the Majorana nature of neutrinos (see e.g. [9]).

Both CPV and MH problems can be addressed with accelerator-based long-baseline

neutrino oscillation experiments via the electron appearance channels νµ → νe and ν̄µ → ν̄e.

Including higher order terms and the effect of coherent forward scattering pointed out

by Wolfenstein in case of neutrino oscillations in matter [10], the νµ → νe oscillation

probability can be approximated as [11]:

P (νµ → νe) ' 4c213s
2
13s

2
23

{
1 +

a

∆m2
31

· 2(1− 2s213)

}
sin2 ∆m2

31L

4E

+c213s13s23

{
− aL

E
s13s23(1− 2s213)

+
∆m2

21L

E
s12(−s13s23s12 + cδc23c12)

}
sin

∆m2
31L

2E

−4
∆m2

21L

2E
sδc

2
13s13c23s23c12s12 sin2 ∆m2

31L

4E
(2.2)

where cij = cos θij , sij = sin θij , cδ = cos δCP, sδ = sin δCP, and a = 2
√

2GFneE, with ne
representing the electron density of the traversed medium. The corresponding probability

for ν̄µ → ν̄e transition is obtained by replacing δCP → −δCP and a → −a. The CP-

violating effects of δCP are modulated by those of all three mixing angles and their interplay,

resulting in complicated dependencies and leading to an a priori eight-fold parameter

degeneracy [12]. In addition, coherent forward scattering in matter affects oscillations, and

also produces an asymmetry between neutrinos and anti-neutrinos.

Several ideas have emerged worldwide in order to advance the field, and have converged

into rather well defined projects such as LBNO [1], LBNE [13] and Hyper-Kamiokande [14].

A general consensus, reflected in the above mentioned setups, is that new generation very

large scale and deep underground neutrino detectors will be needed to satisfactorily address

open questions such as CPV and MH. In this context, it is handy to define two asymmetries

between the probability of oscillations of neutrinos and antineutrinos, one related to the

CP effect computed in vacuum Avac
CP(δCP):

Avac
CP(δCP) ≡

(
P vac(ν)− P vac(ν̄)

P vac(ν) + P vac(ν̄)

)
(2.3)

and the other to the matter effects ACP(ρ) computed in matter for a fixed value of δCP:

ACP(ρ) ≡
(
Pmat(ν)− Pmat(ν̄)

Pmat(ν) + Pmat(ν̄)

)
(2.4)

where ρ represents the traversed Earth matter density (in the constant density approxima-

tion). These two variables, plotted in the two dimensional plane of the neutrino energy Eν
versus the baseline L, are shown in figure 1. In these graphs, the black regions correspond

to combinations of neutrino energy and baseline at which the oscillation phenomena is

– 4 –
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Figure 1: The asymmetries, abs(Avac
CP(δCP)) and abs(ACP(ρ)) (as defined eqs. (2.3)

and (2.4)) in the (Eν ,L) plane. (left panel) CP asymmetry in vacuum for δCP = 270◦.

(right panel): matter asymmetry for a given Earth density and with δCP = 0◦. The 1st,

2nd and 3rd oscillation maxima are represented by yellow lines at constant L/Eν ’s.

insensitive to the effect, while the light (blueish) regions correspond to those where the

effect is largest.

These features lead to the following phenomenological observations, which were taken

into account in the definition of the LBNO experimental setup:

• The CP asymmetries increase from the first to higher orders oscillation maxima. This

is understood by the fact that Avac
CP(δCP) has an envelope determined by [11]:

2sδc12s12
s13

cot θ23
∆m2

21L

2E
(2.5)

which grows as L/E. The 2nd maximum is hence more sensitive to CPV than the 1st

maximum. Hence, access to the 2nd maxima extends the sensitivity to CPV, in par-

ticular when the measurement at the first maximum becomes systematic dominated.

• A large matter asymmetry is visible in a broad energy region just below the first

maximum.

• The energy dependence of the probability can resolve several parameter degeneracies,

and allows in particular disentangling the CP-driven and the matter-driven effects,

if the baseline is large enough.

• Conversely, if the mass hierarchy is unknown, or if the matter effects are treated as a

source of systematic error, degeneracies reduce the ability to significantly detect CPV.

• Assuming an energy threshold of about 1 GeV, which is a realistic value taking into

account on-axis conventional neutrino beam fluxes from high energy protons, and the

vanishing neutrino cross-sections at low energies (in particular for antineutrinos), the

measurement of the 2nd maximum requires a baseline greater than 1500 km:

E2ndmax
ν & 1 GeV =⇒ L & 1500 km (2.6)

– 5 –
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In order to attack the challenging problem of CPV and the related MH determination,

LBNO adopts a combination of methods, by precisely measuring the disappearance and

appearance energy spectrum shapes (in particular, peak position and height for 1st and

2nd oscillation maximum and minimum) with high resolution, and by comparing neutrino-

and antineutrino-induced oscillations. The liquid Argon and magnetized iron detectors

will in fact provide complementary studies of all three active transitions νµ → νµ, νµ →
νe and νµ → ντ charged current events over the optimized range of neutrino energies.

They can also probe the active-sterile transition with neutral current events. A precise

investigation of the oscillation probabilities as a function of energy and a comparison of

neutrino and antineutrino behaviours will verify if they follow the expectations from 3-

generation neutrino mixing.

As will be exposed in this paper, LBNO is optimised to best perform these measure-

ments and yields a definitive resolution of MH and a significant exploration of CPV. The

goal of the near detectors will be to precisely predict the unoscillated neutrino fluxes,

using well-developed and tested techniques in present long-baseline experiments, such as

T2K [15]. Hadro-production and neutrino cross-section campaigns will cover the relevant

region for LBNO. The 2300 km baseline is adequate to have an excellent separation of the

asymmetry due to the matter effects (i.e. the mass hierarchy measurement) and the CP

asymmetry due to the δCP phase, and thus to break the parameter degeneracies. Therefore,

the existence of matter and CP-violation induced effects will be examined without over-

relying on theoretical modelling and assumptions, and the standard neutrino paradigm

will be tested explicitly. Hence, the LBNO approach to extract MH and δCP value is clean

and straightforward.

3 The LBNO experimental setup — An incremental approach

As today’s state-of-art is set by the Super-Kamiokande detector (SK) with its 22.5 kton

fiducial mass, new detectors should be more than an order of magnitude larger than SK or

use technologies which can outperform the Water Cherenkov technique, such as the liquid

Argon (LAr) Time Projection Chamber [16]. Taking into account the latest knowledge of

oscillation parameters, the construction feasibility of such a large underground laboratory,

the detector itself and the involved costs, the LBNO Expression of Interest [1] proposes an

incremental approach at the Pyhäsalmi mine. The incremental approach is motivated by

physics, technical and financial aspects. From the point of view of oscillation physics, the

priority for the underground far detectors is the initial 20 kton double phase LAr LEM-

TPC (GLACIER [17, 18]) combined with a magnetized muon detector (MIND [19, 20]) in

one of two large underground caverns (see ref. [1] for details). Schematic views of a 20 kton

LAr detector and a 35 kt MIND detector are shown in figure 2. In the current engineering

concept, the 20 kton LAr detector has a total LAr mass of 32.5 kton, and an instrumented

active mass of 22.8 kton [1]. In the simulations performed for this paper, the field cage

of the 20 kton detector is approximated with a cylinder of radius 33 m and height 20 m,

corresponding to an instrumented volume of 17100 m3 and an active mass of 23.9 kton.

LBNO builds upon the results of several years of design studies funded by the Eu-

ropean Commission (EC). LAGUNA was organized as a 3-years long project, to carry

– 6 –
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Figure 2: Schematic view of the 20 kt LAr detector (left panel) and the 35 kt MIND

detector (right panel).

out underground sites investigations and develop a concept for a facility able to host the

new underground neutrino observatory. It was primarily motivated by the fact that, al-

though Europe currently has four national underground laboratories (at Boulby (UK),

Canfranc (Spain), Gran Sasso (Italy), and Modane (France)), none of them is large enough

to host a next-generation observatory. LAGUNA selected seven potential underground

sites (Boulby (UK), Canfranc (Spain), Fréjus (France), Pyhäsalmi (Finland), Sieroczow-

ice (Poland), Slanic (Romania), Umbria (Italy)) to study, and compared them in order

to identify the scientifically and technically most appropriate and cost-effective strategy

towards a large scale European neutrino observatory. One of the key conclusion of LA-

GUNA is that all of the seven considered underground sites are in principle technically

feasible, and able to host the desired types of detectors. With the reduced impact of all the

other factors, site selection should be based on physics arguments. A second phase called

LAGUNA-LBNO has been funded by the EC and initiated in October 2011. It further

evaluated the findings of LAGUNA, and in particular, it assessed the underground con-

struction of the large detectors, their commissioning, and the long-term operation of the

facility. LAGUNA-LBNO is in addition specifically considering long-baseline beams from

CERN [21]. From the seven pre-selected LAGUNA sites, the two deepest, Fréjus (overbur-

den of 4800 m.w.e.) and Pyhäsalmi (overburden of 4000 m.w.e.), were found particularly

attractive and retained further attention. Careful simulations and a detailed analysis of

the key findings of LAGUNA have motivated the choice of the CERN-Pyhäsalmi baseline

(2300 km) as the first priority. Two main physics criteria were considered in order to op-

timize the choice of the site, informed by the first indications of large θ13 [22], which have

since then being strongly confirmed by reactors [23] and T2K [24, 25].

4 The LBNO physics programme

For long-baseline physics in the post-θ13 discovery era, the LAr and magnetized iron detec-

tors provide complementary studies of the three active transitions νµ → νµ, νµ → νe and
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νµ → ντ charged current events over a range of neutrino energies optimized via tuning of

the conventional beam focusing, and can also probe the active-sterile transition by mea-

suring neutral current events. A precise investigation of the oscillation probabilities as a

function of energy and a comparison of neutrino and antineutrino behaviours will verify if

they follow the expectations from 3-generation neutrino mixing. The 2300 km baseline is

optimised to break the parameter degeneracies and provide a definitive resolution of MH

and a significant exploration of CPV in the neutrino sector.

The chosen location in one of the deepest mine in Europe (∼ 4000 m.w.e.) will also

provide a unique opportunity to observe very rare phenomena with a LAr detector, in-

dependent of the CERN beam events. Proton decay can be explored in many different

— often background free — decay channels. After 10 years of exposure, the sensitivity

on the proton lifetime will reach τp ≥ 2 × 1034 years at 90% C.L. in the p → Kν̄ chan-

nel. In addition, other exclusive decay channels will be investigated, such as p → e+π0

and p → µ+π0. Measuring many different channels helps to distinguish between models.

Furthermore, 5600 atmospheric neutrino events per year will be measured. Atmospheric

neutrinos, detected with good energy- and angular resolution and flavor identification are

a new tool to perform oscillation physics complementary to the CERN beam, and could

be a new method to obtain a radiography of the Earth’s interior via matter effects. The

neutrino burst from a galactic supernova (SN) explosion would be observed with high

statistics in the electron neutrino channel, providing invaluable information on the inner

mechanism of the SN explosion and on neutrino oscillations, not accessible to other setups.

For a supernova explosion at 10 kpc, ∼ 10,000 neutrino interactions will be recorded in

the active LAr volume. Unknown sources of astrophysical neutrinos, like for instance those

that could arise from annihilation processes of WIMP particles in astrophysical objects

could also be observed.

5 New CERN beam layout

The beam under design is a conventional third generation neutrino beam facility based on

the CNGS [26] technology. Initially, the facility will use protons from an upgraded CERN

SPS accelerator, reaching 750 kW of nominal beam power. This high-intensity operation

goes beyond the record intensity of 565 kW ever achieved in the SPS [27], and 60% above

the operational beam power for CNGS. The main limitations to achieve such intensities

come from beam losses in both PS and SPS, and due to limited RF power at SPS. In

table 1 the expectations for the SPS potential in delivering intense beams for a future

neutrino program are described, coming as stretched goal within the foreseen LHC injector

upgrades (LIU) project [28]. Table 2 summarises the key parameters for the beam. The

quoted yearly intensities correspond to 200 days of running mode with 80% efficiency for

the accelerators, and 60÷ 85% of beam sharing with other users for the case of SPS.

To profit from existing infrastructures for the target hall and near detector, in the

baseline option, the LBNO beam could be located near the SPS North Area as shown in

figure 3. Under this hypothesis, for the first stage using the 400 GeV from SPS, the primary

beam would be extracted from the TT2 channel and transported for about 400 m in the
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CNGS RECORD LBNO

ESPS [GeV] 400 400 400

Bunch spacing [ns] 5 5 5

Ibunch [×1010] 1.05 1.3 1.7

Nbunches 4200 4200 4200

ISPS [×1013] 4.4 5.3 7.0

IPS [×1013] 2.3 3.0 4.0

PS cycle length [s] 1.2 1.2 1.2/2.4

SPS cycle length [s] 6.0 6.0 6.0/7.2

EPS [GeV/c] 14 14 14

Beam power [kW] 470 565 747/622

Table 1: Present, All-time Record, and Possible Future SPS Parameters for Neutrino

Type Beams.

Parameter SPS beam HP-PS beam

Ebeam[GeV ] 400 50÷ 75

Ibeam[ppp] 7× 1013 2.5÷ 1.7× 1014

Cycle length [s] 6 1

Pbeam[MW ] 0.750 2

POTyear [1021] 0.10÷ 0.14 3.46÷ 2.35

Table 2: Key parameters of the assumed LBNO proton beam from the SPS and HP-

PS [29].

existing TT20 line. Then it would branch off to a new 480 m long transfer line required

to match the direction and more importantly create the 10.4◦ downward slope required to

point to the far detector. For the fast extraction from SPS in the Long Straight section-2

(LSS2), a novel scheme was developed to bypass the lack of space to install new kickers in

the region whilst maintaining the elements required for the slow extraction to fixed-target

experiments. The new scheme uses a non local extraction combining kickers in LSS6 and

LSS2 sections. First tests with beam have shown encouraging results, further studies are

planned after the restart of the CERN accelerators in 2015 [30].

A key constraint in the location and design of the secondary beam comes from the

steep 18.1% slope required due to the long-baseline. The combination of high-intensity

and high beam energy put a constraint on the minimum distance between the target and

the near detector location to ensure that the high-energy muons are absorbed in the beam

dump and the earth, preventing them from generating background in the near detector.

Considering the first phase with the primary beam at 400 GeV and assuming a rock density

of 2.3 g/cm3, preliminary Monte Carlo calculations suggest that a distance of at least 800 m

is necessary if a passive concrete shielding of about 100 m long is used in the beam dump.

As a consequence, the near detector cavern will be 144 m deeper than the target. Therefore,

the option to branch off from the TT20 line at its upmost point very close to the surface is

– 9 –
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Figure 3: The baseline layout for the LBNO neutrino facility in the vicinity of the CERN

North Area.

very attractive, as it allows the whole installation to be at smaller depths with significant

cost savings. In this configuration the target cavern is located at -41 m, the hadron stop

at -100 m and the near detector at -185 m, almost at the same level as the deepest point

of LHC.

Three upgrade scenarios are being considered for the neutrino beam. These primarily

involve upgrade or alternative scenarios for the proton injector to the same target area

beyond the initial operation with the present SPS: (i) use of an upgraded high-energy

PS or SPS, machines discussed in the HE-LHC option, (ii) use of a new dedicated HP-

PS synchrotron [29], (iii) use of a Neutrino Factory beam concept. The prospects for a

major upgrade of the LBNO neutrino beam are very attractive, offering a long term vision.

The realization of the HP-PS accelerator with MW power would expand the capability of

the LBNO facility and provide an interesting way to increase the exposure by a significant

factor without prohibitively extending the running time. The chosen baseline of 2300 km is

suitable to implement a Neutrino Factory, opening the path towards an ultimate exploration

and an era of high-precision oscillation studies.

6 Beam optimisation and expected raw event rates

The neutrino beamline design is a central component of the LBNO optimisation, since it will

directly impact the long-baseline physics reach, affecting for instance the mass hierarchy

sensitivity, the CP violation reach and the study of the other oscillation channels like

the tau neutrino appearance. Different beamline designs have been investigated and a

preliminary design has been established in an effort to illustrate the compelling physics

reach of the experiment.
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Figure 4: Neutrino and anti-neutrino flux for the CERN to Pyhäsalmi beam.

The neutrino beam line is tentatively composed of a target, two horns and a decay vol-

ume. The target is modelled as a 1 m long cylinder of graphite with density ρ = 1.85 g/cm3

and 2 mm radius. The focusing system is based on a pair of parabolic horns which we will

denote as horn (upstream) and reflector (downstream) according to the current terminol-

ogy. The decay tunnel is 300 m long and 3 m wide. A new beam optimisation is currently

under way to investigate different possible beam optics, which should lead to enhanced

rates and an optimised beam profile for the LBNO physics program. A further optimisa-

tion of the decay tunnel could also increase the neutrino flux. The unoscillated neutrino

and anti-neutrino beam flux is shown in figure 4.

The expected charged (CC) and neutral current (NC) interaction rates are computed

using the optimisation of the focusing optics for 400 GeV and are shown in table 3. The

rates under the assumption of the potential 2nd phase at 2 MW with the new HP-PS

50 GeV are listed in table 4 for completeness. The oscillated rates are computed using the

oscillation parameters from the global fit of ref. [8]. The NC interactions rate are for events

with visible energy > 0.5 GeV. The rate is given for an exposure of 50 kt.yrs, so 2.5 years

with the 20 kton baseline LAr detector.

For comparison, the rates for LBNE with the baseline of 1300 km are also shown and

normalised to the same exposure. The parameters and flux of the LBNE beam correspond

to those described in ref. [31].

Although the LBNE baseline of 1300 km is significantly shorter than the LBNO baseline

of 2300 km, the expected rate of oscillated events in both setups are very similar, in both

neutrino and antineutrino mode. This is explained by the fact that the longer baseline

requires also higher energy neutrinos in order to keep the L/E parameter of both setups

around the atmospheric region. The resulting higher boost of the parent mesons, and the

resulting higher neutrino energies, compensate for the increase distance, by making the

beam more pencil-like and profiting from the linearly increasing total neutrino interaction

cross-section.
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Beam νµ unosc. νµ osc. νe beam νµ νµ → ντ νµ → νe CC

CC CC CC NC CC δCP = −π/2, 0, π/2

LBNO: 2300 km NH

400 GeV, 750 kW

1.5× 1020 POT/year

50kt years ν 3447 907 22 1183 215 246 201 162

50kt years ν̄ 1284 330 5 543 98 20 27 29

LBNO: 2300 km IH

400 GeV, 750 kW

1.5× 1020 POT/year

50kt years ν 3447 853 22 1183 239 71 43 32

50kt years ν̄ 1284 330 5 543 99 61 77 89

LBNE Low energy beam

120 GeV, 700 kW, NH

6× 1020 POT/year

50kt years ν 4882 1765 44 1513 61 217 174 126

50kt years ν̄ 2506 890 13 620 22 44 54 56

LBNE Low energy beam

120 GeV, 700 kW, IH

6× 1020 POT/year

50kt years ν 4882 1713 44 1513 67 120 82 58

50kt years ν̄ 2506 875 13 620 23 59 69 82

Table 3: Raw ν oscillation event rates at the far site with Eν < 10 GeV normalised to 50kt

years, corresponding to 2.5 years of data-taking with the 20 kton baseline LAr detector.

See text.

Beam νµ unosc. νµ osc. νe beam νµ νµ → ντ νµ → νe CC

CC CC CC NC CC δCP = −π/2, 0, π/2

LBNO: 2300 km NH

50 GeV, 2 MW

3.0× 1021 POT/year

50kt years ν 8616 2266 54 2955 539 615 502 406

50kt years ν̄ 3325 828 13 1360 249 44 65 73

LBNO: 2300 km IH

50 GeV, 2 MW

3.0× 1021 POT/year

50kt years ν 8616 2132 54 2955 596 177 109 79

50kt years ν̄ 3325 828 13 1360 249 154 192 224

Table 4: Same as table 3 but under the assumption of the HP-PS 50 GeV accelerator

at 2 MW operation. These rates are shown for completeness, they are not used in the

calculations shown in this paper.
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Figure 5: Oscillation probability of νµ → νe (blue) and ν̄µ → ν̄e (red-dashed) for differ-

ent values of δcp for (left) normal hierarchy ∆m2
31 > 0 (NH), (right) inverted hierarchy

∆m2
31 < 0 (IH), and sin2 2θ13 = 0.09. The spectral information provides an unambiguous

determination of the oscillation parameters and allows in principle to distinguish the two

CP-conserving scenarios, namely δCP = 0 and δCP = π.

7 Mass hierarchy and CP violation measurements at LBNO

7.1 General principle

Our primary goal is to determine the mass hierarchy and measure CP violation by observing

νµ to νe oscillations, through a precise measurement of the neutrino spectrum and the

comparison of neutrino- and antineutrino-induced oscillations. The 2300 km baseline is

adequate to have an excellent separation of the asymmetry due to the matter effects (i.e.

the mass hierarchy measurement) and the CP asymmetry due to the δCP phase, and thus

to break the parameter degeneracies. The probabilities of νµ → νe and ν̄µ → ν̄e oscillations

contain the spectral information which provides an unambiguous determination of the

oscillations parameters and allows discriminating between the two CP-conserving scenarios,

namely δCP = 0 and δCP = π.

Once the distance between source and detector is fixed, the oscillatory behaviour of

the neutrino flavour conversion can be easily translated to that for the expected neutrino

energy spectrum of the oscillated events. If the neutrino energy spectrum of the oscillated

events can be reconstructed with sufficiently good resolution in order to distinguish first

and second maxima, the spectral information obtained is invaluable for the unambiguous

determination of the oscillation parameters.

The probabilities of νµ → νe and ν̄µ → ν̄e oscillations for sin2 2θ13 = 0.09 and dif-

ferent values of δCP and normal hierarchy (NH) and inverted hierarchy (IH) are shown

in figure 5, as they are expected in LBNO at the 2300 km baseline. The plots illustrate

qualitatively that the spectral information provides an unambiguous determination of the

oscillation parameters and allows discriminating between the two CP-conserving scenarios.

The δCP-phase and matter effects introduce a well-defined energy dependence of the oscil-

lation probability. As a consequence, the neutrino energy spectrum of the oscillated events

need to be experimentally reconstructed with sufficiently good resolution in order to distin-

– 13 –



J
H
E
P
0
5
(
2
0
1
4
)
0
9
4

guish first and second maximum, and extract unambiguous information on the oscillation

parameters. Using these signals, it is also possible to test the standard 3-neutrino mixing

framework, by looking for deviations from the expected L/E dependence and by compar-

ing neutrinos and antineutrinos. For instance, neutrino decays and neutrino decoherence

effects, due to the coupling to the environment, could lead to damping in the amplitude of

the oscillations at large L/E; non-standard interactions, due to new neutrino interactions,

can lead to a modification of matter effects with a suppression of the conversion probability

at high energy and a change of the resonance energy, if they are sufficiently strong; CPT

and/or Lorentz violating effects can produce a markedly different behaviour for neutrinos

and antineutrinos and specific L/E signatures, especially at low energy.

At the same time, the matter effects at 2300 km are large and the NH and IH scenarios

induce to an almost complete swap of behaviours between neutrinos and antineutrinos.

This is clearly exhibited in figure 5. Hence, CP- and matter-induced asymmetries are very

different and distinguishable.

A sample of electron-like (e-like) events is thus a primary source of information. We

consider the following background contributions to the signal e-like events:

• Intrinsic νe contamination present in the beam (intrinsic νe),

• Electron events from ντ charged current interaction with subsequent leptonic τ decay

(ντ → e contamination),

• Neutral current νµ events with π0 production (NCπ0),

• Mis-identified muons from νµ CC interactions (mis-id νµ).

In addition, we use µ-like events in the disappearance channel (νµ → νµ survival proba-

bility) to constrain the atmospheric oscillation parameters, ∆m2
31 and sin2 θ23. A detailed

description of neutrino event simulations and selection efficiency can be found in ref. [1].

7.2 Experimental observables

We use reconstructed neutrino energy Erec
ν and missing momentum in the transverse plane,

defined by the incoming neutrino beam direction, pmiss
T of each e-like event to construct

bi-dimensional distributions useful to discriminate signal from background. Examples of

such distributions are shown in figure 6 for a value of δCP = 0 and the case of normal mass

hierarchy. As can be seen in the figure, the shapes of signal and background contributions

in the Erec
ν −pmiss

T phase-space differ. In particular, NC π0 interactions are characterized by

low Erec
ν values, while events originating from ντ CC interactions tend to have larger pmiss

T

than the νe CC events because of the two neutrinos in the final state. This allows a better

signal-background discrimination against neutral currents and tau charged current events,

than if one were to use Erec
ν information only. In the future, a cut-based or neural network

analysis could be employed to further improve the purity of the e-like sample. In the case

of the µ-like events, only the reconstructed neutrino energy is used, since backgrounds are

less severe.
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 energy (GeV)νReco 

0 2 4 6 8 10

 p
tm

is
s 

(G
eV

)
ν

R
ec

o
 

0

0.5

1

1.5

2
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(e) ντ → e contamination
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(f) Mis-id νµ

Figure 6: Example event distributions for various channels contributing to the e-like

sample for δCP = 0 and the case of the normal mass hierarchy.

7.3 Analysis method

To evaluate the physics potential of the experiment it is mandatory do develop a sophisti-

cated analysis package, which takes into account all the available experimental information

and the sources of systematic uncertainties. The LBNO collaboration has developed such

specific tools.

We perform a fit of the oscillation parameters by minimizing the following χ2 with

respect to the oscillation parameters o that are not fixed and systematic parameters f

(tables 5 and 6):

χ2 = χ2
appear + χ2

disa + χ2
syst. (7.1)

The χ2
appear is the term corresponding to the electron appearance. It is given by:

χ2
appear = 2

∑
+/−

∑
Erec
ν ,pmiss

T

ne(E
rec
ν , pmiss

T ; otest, ftest)− ne(Erec
ν , pmiss

T ; otrue, ftrue)

+ ne(E
rec
ν , pmiss

T ; otrue, ftrue) ln
ne(E

rec
ν , pmiss

T ; otrue, ftrue)

ne(Erec
ν , pmiss

T ; otest, ftest)
,

(7.2)

where the subscript true (test) refers to the true (test) values of the o and f parameters.

The true parameters are those chosen by Nature, while test refer to the parameter at

which we compute the likelihood with respect to the true value. The first sum in eq. (7.2)

corresponds to adding the contributions from the neutrino and anti-neutrino beam running.
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The number of the e-like events in a given Erec
ν − pmiss

T bin is determined according to:

ne(E
rec
ν , pmiss

T ; o, f) = fsigne−sig(E
rec
ν , pmiss

T ; o)

+ fνenνe(E
rec
ν , pmiss

T ; o) + fντne,ντ (Erec
ν , pmiss

T ; o)

+ fNC(nNCπ0(Erec
ν , pmiss

T ; o) + nmis−νµ(Erec
ν , pmiss

T ; o)),

(7.3)

where ne−sig, nνe , ne,ντ , nNCπ0 , and nmis−νµ are the number of events for signal, intrinsic

beam νe, electrons from tau decay, neutral current, and mis-identified νµ, respectively.

The information from the disappearance channel is contained in the χ2
disa term of total

χ2 in eq. (7.1), which is given by

χ2
disa = 2

∑
+/−

∑
Erec
ν

nµ(Erec
ν ; otest, ftest)− nµ(Erec

ν ; otrue, ftrue)

+ nµ(Erec
ν ; otrue, ftrue) ln

nµ(Erec
ν ; otrue, ftrue)

nµ(Erec
ν ; otest, ftest)

.

(7.4)

The number of µ-like events is the sum of signal (nµ−sig) and τ → µ background (nµ,ντ )

contributions and is calculated as

nµ(Erec
ν ; o, f) = fsignµ−sig(E

rec
ν ; o) + fντnµ,ντ (Erec

ν ; o). (7.5)

The oscillation and the systematic parameters are constrained through the χ2
syst term:

χ2
syst =

∑
i

(a0,i − ai)2

σ2ai
, (7.6)

where a0,i (ai) is the prior (test) value of the ith parameter and σai is the corresponding

prior uncertainty. As will be shown in section 7.5, we use 6 priors for the neutrino oscillation

parameters, and 4 for the normalisation uncertainties of signal and background.

In order to study the sensitivity of LBNO to CP violation, we define a test statistic ∆χ2

∆χ2 = χ2
δCP
− χ2

best, (7.7)

where χ2
δCP

is the minimized χ2 of eq. (7.1) at a fixed value of δCP (true or test), while

χ2
best is the minimum χ2 obtained when δCP is allowed to vary over the full range of

possible values.

To evaluate sensitivity of the experiment to MH, we define the following test statistic T :

T = χ2
IH − χ2

NH (7.8)

where χ2
IH (χ2

NH) is obtained by minimizing the χ2 of eq. (7.1), marginalising with respect

to systematic and oscillation parameters (including δCP) around the negative (positive)

∆m2
31. The value of T depends on δCP.

The statistical method to determine MH and CPV is described in detail in the

next section.
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7.4 Statistical approach to MH and CPV determination

The sensitivity of an experiment to MH and CPV can be defined using the frequentist

approach to the test of simple hypothesis, which we will review briefly.

The aim is to establish a criterion to assess that a “null hypothesis” H0 is considered

true and that an “alternative hypothesis” H1 can be rejected. One chooses a test statistic

T that will be computed from the experimental data. This quantity is a stochastic variable

with a certain probability density function (PDF ) which should be different whether H0

or H1 is true. One then defines a “critical region” such that, when T has values within

this region, H0 is accepted as the true hypothesis. The probability to obtain a value of T

outside the critical region and consequently to reject H0 even though it is true (“type I”

error or “loss”) is usually denoted as α. The confidence level (CL) with which one accepts

H0 as true is therefore

CL = 1− α. (7.9)

In addition, one must also consider the probability that H0 is accepted as true even though

H1 is true (“type II” error or “contamination”). This probability is usually denoted as β.

The power of the test p, namely the probability of rejecting H0 when it is false, is then

p = 1− β. (7.10)

To calculate the CL and the power of the test, one has to know the respective PDF s

of T for H0 and H1. It has recently been pointed out [32, 33] that for the case of MH and

T as in eq. (7.8), the PDF can be approximated by a Gaussian whose width is related to

its mean ±|T0| as σ =
√

2|T0|. Since in general the values of |T0| for NH and IH could be

different, one has

PDF (T |NH) = N
(
|TNH

0 |,
√

2|TNH
0 |

)
PDF (T |IH) = N

(
− |T IH

0 |,
√

2|T IH
0 |

)
.

(7.11)

For the long baseline oscillation experiments whose sensitivity comes primarily from the

electron appearance channel, |TNH
0 | and |T IH

0 | also have a strong dependency on the

presently unknown CPV phase δCP. We assume that also in the future MH will be de-

termined without precise knowledge on δCP, hence study the problem as a function of the

assumed true value of δCP.

To verify that eqs. (7.11) are applicable for the LBNO case, we generated 20,000

toy data samples for different exposures, several values of δCP, and both hierarchy cases.

Each data sample was then analyzed and T was calculated according to eq. (7.8). The

distributions of T values for NH and IH obtained assuming δCP = π/2 and a total exposure

of 2.25×1020 POT (50%ν : 50%ν̄ running), or about two years of data taking, are shown in

the left panel of figure 7. Each distribution is fitted with a Gaussian function to determine

the mean T0 and the width σT . The right panel of figure 7 shows the ratio of σT /
√
T0 as

a function of T0. As can be seen, the results from toy distributions deviate in some cases

from the σT = 2
√
T0 rule. The effect of these deviations is, however, expected to be small

and therefore we will subsequently assume that PDF for T is given by eqs. (7.11).
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POT (or approx. 2 years of running) and δCP = π/2 (left) and width of the distributions

as a function of the average value T0 (right).

To present the statistical treatment in the case of the MH determination, we begin

by considering NH as our H0. If one wants to achieve a given CL for determining of the

MH, we should consider values of T larger than a given critical value as suggesting NH

to be true. We should thus define a critical value TαC , depending on the corresponding α,

such that

1− α =

∫ ∞
TαC

PDF (T |NH) dT (7.12)

gives a desired CL. The power of the test is given by

p = 1− β = 1−
∫ TαC

−∞
PDF (T |IH) dT. (7.13)

The procedure is formally similar for IH as H0.

As pointed out in [34], if the PDF s of T follow the distributions of equation (7.11),

the critical value and the power become simple analytically functions of the chosen α. For

the case H0 = NH, we have

TαC = TNH
0 −

√
8TNH

0 · Erfc−1(2α) (7.14)

and

p = 1− β = 1− 1

2
Erfc

T IH
0 + TαC√

8T IH
0

 (for MH). (7.15)

The calculation must be repeated for the case H0 = IH, with TNH
0 and T IH

0 interchanged.

The values of TNH
0 and T IH

0 depend on the unknown δCP. As explained in [34], one

should therefore set TαC in the most pessimistic case, i.e. for the smallest absolute value of

T0 in either case. As shown later, this corresponds to choosing TNH
0 (T IH

0 ) for δCP = π/2

(δCP = 3π/2). We thus compute TαC as

TαC (TNH
0 (δCP = π/2)) for H0 = NH,

TαC (T IH
0 (δCP = 3π/2)) for H0 = IH.

(7.16)
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Figure 8: Distribution of the ∆χ2 test statistic for δCP = 0 (left) and δCP = π/2 (right)

for an exposure of 15× 1020 POT.

Once TαC is fixed, the statistical power will be a function of δCP. For the test of NH, it

will be largest for δCP = π/2 and smallest for δCP = 3π/2 (where T IH
0 is smallest), while

the opposite is true for IH.

A similar approach was used to study the δCP phase determination. In this case, H0

corresponds to δCP = 0 or π and H1 to 0 < δCP < 2π (both hypotheses are composite). We

are in the case of “nested hypotheses”. The distribution of the ∆χ2 test statistic computed

according to eq. (7.7) follows a χ2 distribution with 1 d.o.f. when the null hypothesis is

true, as shown in figure 8(left), and is independent of the exposure. In the case of the

alternative hypothesis, the distribution, shown in figure 8(right) for the case of δCP = π/2,

is obtained using toy Monte Carlo simulations. To construct it, we generate toy data

samples assuming the true values for δCP of 0 and π. We then compute the ∆χ2 statistic

as defined in eq. (7.7) for a given test value of δCP for both cases, i.e,

∆χ2
0 = χ2(δtestCP |δtrueCP = 0)− χ2

best(|δtrueCP = 0)

∆χ2
π = χ2(δtestCP |δtrueCP = π)− χ2

best(|δtrueCP = π).
(7.17)

Finally, we take the smallest of the two ∆χ2s:

∆χ2 = min (∆χ2
0,∆χ

2
π). (7.18)

For computational purposes we approximate the resultant distribution analytically with a

skew normal distribution. It should be noted that the average of this distribution defines

the sensitivity for a given value of δCP 6= 0, π and this is the quantity that will be shown

in the figures of section 9.

Hence, for the CPV discovery, the null hypothesis will be accepted at a given CL

when the value of ∆χ2 is below a critical computed from the quantiles of the χ2(1 d.o.f.)

distribution. The power of the test is the integral of the skew normal distribution above

the critical value.

7.5 Assumption on parameters and systematics

Assumptions on the oscillation parameters and uncertainties as well as on the beam line

characteristics are shown in table 5. Values take into account the results from ongoing
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Name Value error (1σ) error (%)

L 2300 km exact exact

∆m2
21 7.6× 10−5 eV 2 exact exact

|∆m2
31| × 10−3 eV 2 2.420 ±0.091 ±3.75 %

sin2 θ12 0.31 exact exact

sin2 2θ13 0.10 ±0.01 ±10%

sin2 θ23 0.440 ±0.044 ±10%

Average density of traversed matter (ρ) 3.20 g/cm3 ±0.13 ±4%

Table 5: Assumptions on the values of the oscillation parameters and their uncertainties.

Name Value error (1σ)

Signal normalization (fsig) 1 ±5%

Beam electron contamination normalization (fνe) 1 ±5%

Tau normalization (fντ ) 1 ±20%−±50%

ν NC and νµ CC background (fNC) 1 ±10%

Table 6: Assumptions on event normalization uncertainties (bin-to-bin correlated errors).

experiments, in particular reactor experiments, and are based on the global analyses pub-

lished in the literature [6–8]. Uncertainties are given at 1σ and in percent. We have chosen

to use the values available as of today, therefore our assumptions are conservative. Con-

cerning the value of θ23, we assume the first octant solution for all the sensitivity studies.

Nevertheless, since a second octant solution is not excluded at present, we will take into

account the effect of varying θ23 between the two octants on the MH and CP sensitivity

(See section 8 and 9.3.2).

In order to describe matter effects, we use a constant average density approximation.

We have compared the analytical oscillation probability obtained with the constant value

to the one computed by integration of the oscillation amplitude in 50 steps through the

Earth described by the Preliminary reference earth model (PREM) [35]. As can be seen

in figure 9, the assumed value of 3.20 g/cm3 describes best the probability computed with

the PREM. In the figure, the band corresponds to the oscillation probabilities obtained by

varying the density in the interval 3.2 > ρ > 2.8 g/cm3. The upper values of the band are

found for ρ = 3.20 g/cm3.

The assumptions on systematic errors on signal and background normalization are

shown in table 6. The systematic error on the tau normalization is set to 50% for the mass

hierarchy determination and to 20% for the δCP sensitivity studies. This reduction is due

to the fact that the experiment will be able to constrain ντ cross section with the data

accumulated during first few years of running performing specific tau neutrino appearance

channel measurements to constrain the production rate.

These errors are assumed to be fully correlated among the energy bins.
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Figure 9: Oscillation νµ → νe probability along the CERN-Pyhäsalmi baseline for (1) fixed

average matter density varying on the interval 3.2 > ρ > 2.8 g/cm3, (2) PREM 50 steps (3) PREM

average. In the band, the upper values correspond to a density of 3.2 g/cm3.
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Figure 10: Mean value of the mass hierarchy test statistic as a function of true δCP for a

total exposure of 4×1020 pots (or about 4 years of running at the SPS) and LBNO 20 kton

detector. Left: normal Hierarchy assumed. Right: inverted Hierarchy assumed.

8 Mass Hierarchy determination

Mass hierarchy sensitivity studies have been developed using a 50% ν 50% ν̄ sharing, which

is optimised for this measurement, and 4 × 1020 POT, corresponding to about 4 years of

nominal data taking with the SPS at 750 kW. The mean value T0 of the test statistic T

defined in eq. (7.8) for mass hierarchy determination is shown in figure 10 as a function

of δCP, for the assumed Normal and Inverted true mass hierarchy. The parameter with

the largest impact on the matter oscillation probabilities, and thus on the mass hierarchy

determination, is the θ23 mixing angle. Figure 10 shows also the effect of varying θ23 by

a large amount in the two octants. This study proves that the present uncertainty on θ23
does not compromise the sensitivity of our experiment. The other sources of uncertainty

considered above can only have a smaller impact.
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(right) for 3σ and 5σ CL. The nominal central values for oscillation parameters have been

assumed and the shaded bands correspond to the variation of δCP.

Following the statistical method discussed in section 7.4, the power of LBNO for NH

and the IH determination at a confidence level of 3σ or 5σ is shown in figure 11 as a

function of exposure. The shaded area corresponds to the variation of δCP and the extreme

values are reached for δCP = π/2 or 3π/2, as has been explained above. One can see that

LBNO has a probability of essentially 100% to discover the MH in either case for any value

of δCP. An exposure of slightly more that 2 × 1020pot will guarantee that a 3σ CL is

obtained, while a 5σ CL will be reached with less than 4×1020pot, corresponding to about

4 years of SPS running.

9 Study of the sensitivity to CP violation

9.1 Beam focusing mode optimisation

For the CP phase measurement, the beam normalisation is set to 1.5 1021 protons on target

(POT) (or approximately 12 years of nominal running at the SPS), and the optimisation

of the beam sharing between ν and ν̄ has been studied in detail. Figure 12 shows the sensi-

tivities for a non vanishing δCP for the two mass hierarchies assuming different percentage

of sharing assuming all the parameters in table 5 and 6. Our simulations show a maximum

of coverage in the case of 75 % ν - 25% ν̄. This sharing will be assumed for all the studies

presented in the next paragraphs.

9.2 Significance of a first and second maxima analysis method

The analysis method takes into account the information contained in the whole shape of

the e-like event distributions in both the ranges of the 1st and the 2nd oscillation maximum.

To consider both the oscillation maxima as well as the spectral shape is a very powerful

method to extract δCP and to confirm the oscillatory behaviour predicted in the three

neutrino oscillation schema together with matter effects. This approach is the only one

proposed to put in evidence the theoretical framework of oscillations as a whole. In fact,

the spectrum shape as well as the number of events strongly depend on the value of δCP in

particular in the energy region corresponding to the 2nd maximum. We have compared the
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Figure 12: CPV sensitivity for different sharing between ν : ν̄ running modes, for 1.5 1021

protons on target and LBNO 20 kton detector. The upper plot is for NH and the lower

plot for IH.

significance of our standard method to a first maximum only and a rate only analysis. The

study of the significance of the events around the 2nd oscillation maximum was done by

evaluating the CPV sensitivity with a cut on the reconstructed energy of the e-like events
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Figure 13: Comparison of the CPV sensitivities of a rate only analysis, an analysis with a

cut on a reconstructed energy at 2.5 GeV (excluding the 2nd maximum), and the nominal

case where the full event spectrum is used.

placed at 2.5 GeV. This effectively removed all information about the 2nd maximum from

the e-like sample. In addition we have tested the importance of performing an analysis

based on the e-like event distributions by a rate only analysis evaluation. The rate only

measurement leads to a drastic loss of sensitivity of the experiment to the CPV. These

studies are shown in figure 13. The important quantity in this plot is the width of the

interval below the curve for a given confidence level, which tells us the fraction of unknown

parameter space for which we would be able to discover CP violation. As can be seen in

this plot, the rate only measurement leads to a drastic loss of sensitivity of the experiment

to the CPV. The power of measuring events over an energy range that covers the 1st and

the 2nd oscillation maxima is also evident.

9.3 Impact of prior uncertainties on the δCP discovery potential

The effects of the prior uncertainties on the oscillation parameters have been studied in

detail. The CP phase space coverage has been evaluated setting one prior at time for each

oscillation parameter according to table 5. This is shown in figure 14 where it is evident

that the priors with the largest impact is that on θ13.

In figure 15 we show the effects on the expected electron neutrinos energy spectrum

when values of θ13 and θ23 are varied by ±1σ for both the appearance and the disappear-

ance channel. This effect is represented by a white band whose binned histograms limits

correspond to the reconstructed energy spectrum assuming the minimum and the maxi-

mum value of the two mixing angles inside their 1σ range of variability. The statistical
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Figure 14: Impact of systematic errors: CPV sensitivity of LBNO phase I as a function

of δCP, with only statistical and no systematic errors (black), and effect of each prior on

the oscillation parameters (blue, red, yellow, green).
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Figure 15: Measured e-like spectrum. Left: maximum and minimum band if sin2 θ23 is

varied by ±1σ. Right: maximum and minimum band if sin2 2θ13 is varied by ±1σ in the

appearance channel.

error for each bin is also shown. We would like to stress the 1σ effect represented by the

white band is a fully correlated effect whereas the statistical error is bin-to-bin uncorre-

lated. Each one of these effects (uncertainty on θ13 and θ23) is thus more important than

the statistical error in each bin which fluctuates in both directions around the average bin

value represented in the histogram.
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Figure 16: Impact of systematic errors: CPV sensitivity of LBNO phase I as a function

of δCP, with only statistical and no systematic errors (black), and effect of the error on the

sin2 2θ13 parameter prior of ±10% (green), ±5% (blue), ±2.5% (red).

9.3.1 Influence of θ13 on the δCP discovery potential

The effect of the knowledge of θ13 has been studied in detail. As stated in the previous

paragraphs the knowledge of θ13 has a very important role on the δCP discovery potential.

It is of great value to reach a more precise measurement of this angle in order to increase

the δCP sensitivity. In figure 16 we show the effect of varying the prior on θ13 between

0% and 10% when all the other systematic errors on the oscillation parameters are set to

0%. In figure 17 we show the effect on the δCP sensitivity with all the systematic errors

included. We find that the prior knowledge of θ13 is important to constrain δCP, even in

presence of all other systematic errors.

9.3.2 Influence of θ23 on the δCP discovery potential

Now that the value of θ13 mixing angle has been measured, the knowledge of the mixing

angles which describe the PMNS matrix has changed significantly. Whilst previously θ13
was not known, the uncertainty on it had a dominant influence on the possible discovery

reach of long-baseline facilities, now it makes sense to investigate also the influence of θ23
(excluding δCP) whose uncertainty has as well a large impact. Its true value influences the

sensitivity of CPV as shown in figure 18. We see that variations in θ23 induce only slight

changes in the sensitivity to δCP at the 90% CL. At higher significances, the true value of

θ23 plays a more important role. At the 3σ confidence level, the change in θ23 by 1σ can

make the difference between having no ability to measure CP violation and being able to

exclude CP violation for around 30% of the parameter space.

The dependence of the discovery reach on θ23 can be understood analytically by follow-

ing the method introduced in ref. [36]. This procedure can be modified to account for more
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Figure 17: Same as figure 16 but with all other systematic errors included.
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Figure 18: Impact of the prior value of θ23: CPV sensitivity of LBNO phase I as a function

of δCP for a range of values of θ23.

complicated scenarios by combining neutrino and antineutrino running, including matter

effects and non-trivial flux profiles; however, for our purposes of extracting the dependence

of ∆δCP on θ23, this will not change the functional behaviour and has been omitted for

clarity. To find the dependence on θ23, we use the approximate form for the probabilities

of the form of eq. (2.2). For the known value of θ13, we can find approximate forms for

– 27 –



J
H
E
P
0
5
(
2
0
1
4
)
0
9
4

the θ23 dependence of the probability and its derivative by retaining their leading order

behaviour

P (νµ → νe) ∝ sin2 θ23, and
∂P

∂δCP
∝ sin(2θ23).

Using these two expressions, we can compute the leading order dependence of ∆δCP on θ23
to be

∆δCP =

√
P (νµ → νe)

∂P
∂δCP

= C
sin θ23

sin(2θ23)
∝ sec θ23, (9.1)

where C is a constant factor. Using eq. (9.1), we can see that the precision to δCP decreases

with increasing θ23 within the currently allowed region. In figure 18, ∆δCP is indicated

by the width of the region of good fit around δCP = 0 and we can see that this inter-

val grows with increasing θ23. Exact numerical computations confirm the validity of the

analytical expression.

9.4 Impact of event normalization systematics on the δCP discovery potential

The impact of systematics due to the knowledge of signal and background normalization

has also been studied. Results are shown in figure 19 and 20. In figure 19 the impact of

each systematic effect on the δCP sensitivity is shown: it is evident that the most important

systematic error is the one on the signal channel normalization, as could be expected. In

figure 20, the variability band due to the effects of systematics is compared to the statistical

error for the appearance and disappearance channels. For the disappearance channel the

effect is negligible. Errors on normalizations have been considered, very conservatively,

to be fully correlated according to table 6. Their effect is smaller than the statistical

uncertainty. This study shows also the importance to have a near detector in order to

reduce the effect of these uncertainties.

9.5 Statistical power as a function of exposure

The statistical power of LBNO for CPV determination as a function of exposure is shown

in figure 21, for the two different CLs of 90% and 3σ. The two most favourable cases,

δCP = π/2 or 3π/2, are considered.

10 Ultimate CPV sensitivity

We have seen that the LBNO Phase I has significant physics goals, in particular it is guar-

anteed to be fully conclusive for MH discovery with an expected 5σ C.L. over the full range

of δCP. On the other hand, the CPV sensitivity reach is more difficult to predict, since

ultimately is dependent on the achievable systematic errors and on the true δCP. We have

chosen to use presently realistic errors on oscillation parameters and on the normalisation

of the signal and backgrounds. With the series of expected new measurements and pos-

sibly the addition of dedicated measurements from experiments on hadro-production and

neutrino cross-sections, it is conceivable to think that the overall balance of errors could be
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Figure 19: Impact of systematic errors: CPV sensitivity of LBNO phase I as a function

of δCP, with only statistical and no systematic errors (black), and effect of the error on the
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appearance channels, when all the normalisation errors listed in table 6 are varied by ±1σ

in a fully correlated way. Statistical error are also shown.

reduced in the future, thereby improving further the expected CPV sensitivity of LBNO

Phase I. The situation will keep to be monitored, as new experimental results are published.

On the other hand, an alternative method is to increase the detector mass and the

neutrino beam power in order to decrease the statistical error around the 2nd oscillation

maximum. Because of the natural cut-off of the muon-neutrino flux spectrum at low energy,

and the linear increase of the total neutrino cross-section with energy, the 2nd maximum

is more difficult to study than the 1st maximum. However, this is still possible at the
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assumed. We use the nominal conservative systematic errors (see text).

LBNO baseline of 2300 km since the 2nd maximum is at an accessible energy of ∼1.5 GeV.

Since the CP-asymmetry at the 2nd maximum is more sensitive to δCP than at the first

maximum, a significant gain is obtained by populating this region with oscillation events.

This is one of the main goals of the LBNO Phase II. The expected CPV sensitivity as a

function of δCP is shown in figure 22 for various upgrades of beam power with the HP-PS,

and of the far detector mass, from 20 kton to 70 kton. With a new powerful proton driver

such as the conceptual HP-PS and a 70 kton detector mass, the coverage at > 5σ’s C.L.

will be ∼54% after 10 years.

11 Summary and conclusions

The LBNO experiment is the outcome of intense and comprehensive design studies sup-

ported by the European Commission since 2008. In an incremental approach, we propose

LBNO with a 20 kton underground detector as the first stage of a new neutrino observa-

tory able to address long-baseline neutrino physics as well as neutrino astrophysics. The

programme has a clear long-term vision for future stages of the experiment, including the

Neutrino Factory [37], for which the baseline of 2300 km is well adapted.

Unlike the attempts to infer MH with atmospheric neutrinos in multi-megaton low-

threshold detectors [38, 39], such as the one proposed with PINGU ([40]; for updated sen-

sitivities, see [41]) or ORCA (for a discussion on the physics potential see e.g. [42]), or with

medium-baseline reactor experiments [44], such as JUNO (see e.g. [43]), the accelerator-

based approach of LBNO addresses both fundamental problems of CPV and MH in clean
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Figure 22: CPV sensitivity as a function of δCP for various upgrades of beam power with

the HP-PS, and of the far detector mass, with 20 kton and 70 kton.

and straightforward conditions, profiting from the ability to reverse the focusing horns po-

larity and from the well-known and monitored fluxes, which characterise accelerator-based

neutrino beams. The mass hierarchy cannot be fully explored by T2K or NOvA [45] given

the relatively short baselines of those experiments. As shown in [46] NOvA or a combi-

nation of NOvA and T2K can at most reach a 3σ confidence level, assuming the median

experiment sensitivity, and only for half of the allowed δCP values.

In this paper, we have presented our state-of-the-art studies of the expected sensitiv-

ity to CPV and MH. We have addressed the impact of the knowledge of the oscillation

parameters and of the systematics errors of the experiment. We employed a Monte-Carlo

technique simulating a very large number of toy experiments to estimate the confidence

level of the MH and CPV measurements. We find that, with the capability of reversing

the horn focusing polarity, and even under pessimistic assumptions on systematic errors,

LBNO alone provides a direct and guaranteed discovery of MH with ≥ 3σ(≥ 5σ) confidence

level, independently of the value of the CP phase and the octant of θ23, within ∼2.5(5)

years of CERN SPS running. The first stage of LBNO will therefore discover the mass

hierarchy with certainty.

LBNO has also a unique sensitivity to CPV through the exploration of the first and sec-

ond oscillation maxima, making possible to study the L/E modulation which should match

that expected by δCP terms in the oscillation probability. With conservative expectations

on the systematic errors and after 10 years of CERN SPS running, a significance for CPV

above > 3σ’s C.L. will be reached for ∼ 25(40)% of the δCP values, under the assumption

that sin2 2θ13 will be known from reactor experiments with a precision of ±10(2.5)%.

The ultimate CPV reach is sensitive to the knowledge of the oscillation parameters and

to the assumed flux, cross-section and detector-related systematic errors. The CPV reach
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is larger if sources of systematic errors can be controlled below the values conservatively

assumed in our present study. In particular, improvements in the present knowledge of

differential neutrino interaction cross-sections would increase the expected CPV discovery

potential of LBNO. Alternatively, with an increased exposure aimed at increasing the

number of oscillated around the 2nd maximum, a CPV discovery level > 5σ’s C.L. is

reachable over a wide range of δCP values. With a new powerful proton driver such as the

conceptual HP-PS and a 70 kton detector mass, the coverage at > 5σ’s C.L. will be ∼54%

after 10 years.

We conclude that the control of systematic errors will be the critical challenge for all

next generation long-baseline projects such as LBNE, LBNO and Hyper-Kamiokande. This

study has presented a comprehensive overview of how experimental uncertainties, together

with our limited knowledge of the oscillation parameter space, effects the physics reach

of LBNO. Realistic assumptions regarding systematic uncertainties and analysis priors are

mandatory in order to develop any new project of this scale.
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