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Abstract
To uncover the genetic basis of behavioral traits in the model organism C. elegans, a com-

mon strategy is to study locomotion defects in mutants. Despite efforts to introduce (semi-)

automated phenotyping strategies, current methods overwhelmingly depend on worm-spe-

cific features that must be hand-crafted and as such are not generalizable for phenotyping

motility in other animal models. Hence, there is an ongoing need for robust algorithms that

can automatically analyze and classify motility phenotypes quantitatively. To this end, we

have developed a fully-automated approach to characterize C. elegans’ phenotypes that
does not require the definition of nematode-specific features. Rather, we make use of the

popular computer vision Scale-Invariant Feature Transform (SIFT) from which we construct

histograms of commonly-observed SIFT features to represent nematode motility. We first

evaluated our method on a synthetic dataset simulating a range of nematode crawling gaits.

Next, we evaluated our algorithm on two distinct datasets of crawling C. elegans with mu-

tants affecting neuromuscular structure and function. Not only is our algorithm able to detect

differences between strains, results capture similarities in locomotory phenotypes that lead

to clustering that is consistent with expectations based on genetic relationships. Our pro-

posed approach generalizes directly and should be applicable to other animal models.

Such applicability holds promise for computational ethology as more groups collect high-

resolution image data of animal behavior.

Introduction
Caenorhabditis elegans (C. elegans) is perhaps the best understood metazoan in terms of anato-
my, genetics, development, and behaviour [1]. This transparent, free-living nematode has been
widely used as a model organism ever since its first introduction over 40 years ago [2]. In
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particular, C. elegans is commonly used to investigate fundamental questions in biology, in-
cluding behavioural genetics [3], neuroscience [4, 5], drug screening and development [6] and
modelling different aspects of human diseases amongst others [7].

To uncover the genetic basis of behavioural traits in C. elegans, a widespread strategy has
been to study experimentally locomotion defects in mutants. In reverse genetics, strains with
known mutations are phenotyped to determine whether or not the gene of interest has an effect
on motility [8]. Since traditional approaches to classifying patterns of C. elegansmovement
have often been based on manual annotation [9], motility phenotyping is often imprecise or
qualitative, as well as time consuming. As a result, there is a necessity for algorithms that can
automatically analyse and classify C. elegansmotility phenotypes quantitatively.

In general, (semi-)automated classification methodologies developed to date have been cen-
tred around the combination of (i) computer vision techniques to extract motility data from
images [10–24] and (ii) statistical learning techniques to build classifiers of observed motility
data [10–14, 16, 22, 23, 25, 26]. The first step typically includes the extraction of motility data
by segmenting nematodes from their backgrounds (i.e. environment) in video sequences; this
step has frequently been accompanied by the extraction of the nematode centreline (i.e. “skele-
ton”) in order to provide a one-dimensional line representation of nematode kinematics. Spe-
cific features describing physical properties such as body length, speed, angular position, body
texture (i.e. gray-scale intensity) or posture (i.e. curvature) to name but a few, are then ex-
tracted either directly from the segmented binary worm image or the extracted skeleton [10,
11, 14, 18].

Studies on C. elegans locomotion in various environments (e.g. fluid) have coupled body ki-
nematics extracted from digital image processing with biomechanical and hydrodynamic mod-
els from which parameters such as nematode tissue stiffness (e.g. Young’s modulus),
propulsive forces, power (i.e. thrust) and tissue viscosity have been estimated [17–21, 24]. The
use of such biomechanical motility parameters, coined biomechanical profiling (BMP), was re-
cently introduced to analyse the phenotypic properties of several well-described mutants with
defects in neuromuscular structure and function [22], in an effort to deliver more sensitive
metrics for these defects. Quantitative BMP parameters were then clustered using standard hi-
erarchical clustering techniques [27]. Parallel to these efforts, an alternative phenotyping ap-
proach suggested using an unsupervised search for behavioural motifs to define locomotive
phenotypes [23]. In their work, the authors projected nematode skeletons onto wild-type-de-
rived “eigenworms” corresponding to four basic body postures previously described for wild-
type nematodes [28] and subsequently searched for closely repeated subsequences. The motifs
were combined into a dictionary and used to quantitatively relate mutants to each other [23].

All the aforementioned phenotyping methods are based on initially segmenting worms
from their background (environment) and subsequently deriving worm-specific morphological
and kinematic features. These frameworks have the advantage of having physically interpret-
able features; these however are time consuming to define and do not generalise to animals
with different morphologies or interacting animals. Moreover, the misclassification error rate
may rise significantly when attempting to classify mutants with closely-related phenotypes
[14]. While up to several hundred features may be “hand-crafted” at first, dimensionality re-
duction (e.g. PCA) has revealed that not all of these features are informative and that the cate-
gory variance can be captured by a much smaller subset of features [10, 11, 25].

Motivated by these ongoing limitations, we have developed a novel approach to characterize
C. elegans phenotypes that does not require the definition of animal-specific features. Instead,
we make use of the widely-known Scale-Invariant Feature Transform (SIFT) [29] as an elemen-
tary image feature from which we construct histograms of commonly-observed SIFT features
to represent nematode motility; hence, our approach is entirely independent of any physical
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parameters characterizing the nematode. We first evaluated our proof-of-concept method on a
synthetic dataset simulating a range of idealized, yet distinct C. elegans locomotory behaviours
[30]. Next, we evaluated our SIFT-based approach on two distinct datasets of crawling C. ele-
gans with mutants affecting neuromuscular structure and function; namely, (i) a subset of 15
mutant strains from a database of single-worm tracking videos [25] and (ii) a set of 8 strains
analysed using the recent BMP method [22]. Overall, our proposed approach generalises di-
rectly and should be applicable to other animals, even those with very different morphologies,
with little foreseen modification to the general algorithmic framework. Applicability across
other animal models is important for realizing the full promise of computational ethology as
more groups collect high-resolution image data of animal behaviour [31].

Results
The following results were obtained using our SIFT-BoW algorithm (see Methods section).
Briefly, our method characterizes videos of visible motility features by constructing a visual vo-
cabulary of nematode motion. Our vocabulary relies on visual “words” (or image features with
large description power), and allows us to construct histograms of occurring words to describe
any video sequence. These histograms can then be compared to each other providing a quanti-
tative similarity metric for locomotion. See Methods for more details and Supplementary Infor-
mation (S1 Matlab) for available open source Matlab code.

Simulated datasets
In order to assess the feasibility of our phenotyping algorithm, we first evaluated it on a syn-
thetically generated dataset simulating a range of ideal, yet distinctive, C. elegans locomotory
behaviours. The motivation for investigating synthetic nematode locomotion is that we can
quantify how physical parameters affecting locomotory phenotypes (e.g. body amplitude, beat-
ing frequency, body wavelength) are mapped by our approach; this first step seems appropriate
given the wide variability of C. elegansmotile behaviour under crawling assays [32].

Briefly, the spatio-temporal kinematics of a nematode are modelled as a sinusoidal travelling
wave (see S2 Script for open source Matlab script), i.e. A sin (kx − ωt)e−x/l, where A is the nema-
tode body amplitude, k is the wavenumber (k = 2π/λ, where λ is the nematode wavelength), ω
is the nematode’s angular beating frequency (ω = 2πf, where f is the frequency in Hz), x repre-
sents a vector of spatial coordinates (* 200 pixels long) and l is the exponential decay length
of the nematode body amplitude from head to tail. The nematode forward speed is fixed by U
= ω/k such that the worm does not appear to slide but delivers a smooth crawling gait. Note
that the modelled kinematics are restricted to the main locomotory behaviour of C. elegans
crawling forward [18, 21, 30]; such motion represents only a subset of the wide range of known
behaviours exhibited by the nematode [25, 33, 34], including amongst other moving back-
wards, pauses, deep bends, or reversals and reorientations known as “omega turns”.

To test our algorithm, we generated 3 distinct datasets where each set consists of 20 simulat-
ed strains, with 20 individual videos in every strain. For each dataset, one of the main parame-
ters (i.e. body amplitude, beating frequency or body wavelength) was gradually changed across
the simulated strains, while the other two parameters were held constant (see Table 1). Values
of the parameters were chosen to match realistic physiological properties of crawling C.elegans
[30]. In particular, to model the variability of nematode motility behaviour [30], a finite
amount of noise was included in the synthetic datasets, where videos within a given strain in-
clude a 10% variance for each parameter. Each simulated video represents 10 seconds of mo-
tion, constructed of 250 individual frames acquired at 25 frames per second (fps); note that the
background of the videos is white without texture or noise. Moreover, similar to recent single-
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worm tracking experiments for crawling assays [23, 25], worms are re-entered in the frame
based on the skeleton centroid position. Examples of nematode body postures are presented in
Fig. 1 for sample combinations of the controlled locomotory parameters (see Supplementary
Information for corresponding movies S1-S6 of simulated worms).

In Fig. 2 (left column), we present the average distance matrices for the three simulated
datasets of Table 1. Matrices are symmetric along their diagonal line and color-coded accord-
ing to the mean Euclidean pairwise distances (in arbitrary units) between simulated strains;
each coloured tile in the map represents the average distance for 20 × 20 pairs. Across the three
matrices a rather striking pattern arises; this is most distinguishable for the parameter sweep
associated with amplitude A (Fig. 2, top row). The average distance between simulated strains
grows gradually, and often monotonically, from approximately 0.04 (min) to 0.17 (max) as we
look at strains located further away from each other. Physically, distinctions in motility are
more obvious between strains with extremely low and high body amplitudes.

For the other two simulated datasets (Fig. 2, middle and bottom rows), the gradual pattern
also exists but becomes more subtle and complex, where maximal values in the average dis-
tances observed are smaller (approximately 0.11 and 0.13 for frequency and wavenumber, re-
spectively). This follows partly from the tighter range of values simulated (Fig. 2, bottom row).
Physically, nematodes display a wider range in amplitude changes compared to wavelength
[30]; this may be a consequence of the finite range of gait modulation available to the organism
through neuromuscular control [36, 37]. For example, looking back at Table 1, while the range
of amplitudes in our simulations more than doubles from 16 to 35 pixels (Set I), the wavelength

Table 1. Parameter values and corresponding units for simulated datasets of synthetic nematodes. For each parameter value a 10% variance is in-
cluded to account for variability in nematode motility behaviour according to published data [30].

Simulated Set Amplitude A [pixel] Frequency f [Hz] Wavenumber k = 2π/λ [1/pixel]

I 16: 1: 35 0.36 0.05

II 18 0.06: 0.02: 0.44 0.05

III 18 0.36 0.044: 5 × 10−4: 0.0535

doi:10.1371/journal.pone.0122326.t001

Fig 1. Instantaneous snapshots of synthetically-generated nematode postures. Sample postures
shown for the range of (A) minimum and (B) maximum body amplitudes A as well as (C) minimum and (D)
maximum body wavenumber k, according to Table 1. Corresponding supplementary videos are available in
the SM.

doi:10.1371/journal.pone.0122326.g001
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Fig 2. Phenotyping analysis for synthetic nematode data (range shown in Table 1). Left column: distance matrix of average Euclidean distances
between classes for parameter sweep in amplitude A (A), body frequency f (D) and body wavenumber k (G). Middle column (B, E, H): corresponding matrix
for p-values obtained when comparing pairwise a given class with another, following a non-parametric two-sample test for multivariate samples using the
minimum statistical energy test [35]. Note that matrices only show values in the upper-triangular region (due to symmetry) where the diagonal is not
computed. Significance (black tiles) is set for a confidence level of 95% (p< 0.05). Right column (C, F, I): corresponding branching diagrams (i.e.
dendrograms) that represent a hierarchy based on the relationships of similarity among different classes.

doi:10.1371/journal.pone.0122326.g002
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increases by less than 25% from 0.044 to 0.0535 (Set III). Thus, with a fixed 10% variance in-
cluded for each simulated strain, the overlap between neighbouring strains increases in accor-
dance with increasing parameter value; not surprisingly, the diagonals of the matrices illustrate
small yet non-zero values. Nevertheless, the maximum standard error (S.E.) observed across all
matrices remains less than 2.5% of the average distance.

In order to examine the significance of the differences obtained between any two pair of
classes, we performed a non-parametric two-sample test for multivariate samples using the
minimum statistical energy test described in [35], which is minimized when the two samples
are drawn from the same parent distribution. Fig. 2 (middle column) presents the correspond-
ing matrices of p-values obtained when comparing pairwise a given class with another. Note
that matrices only show values in the upper-triangular region (due to symmetry) where the di-
agonal is not computed; significance (black tiles) is set for a confidence level of 95% (p� 0.05).
Our results indicate that statistical significance is overwhelmingly met for the datasets sweep-
ing through both amplitude (top row) and frequency (middle row) changes, whereas for
changes in wavelength (bottom row) results are significant for* 50% of the cases. This latter
result is not surprising given the tight parameter sweep (noted above) and hence the large rela-
tive overlap given a fixed 10% variance. As such, our algorithm is most sensitive to amplitude
and frequency changes over the physiological range of parameters simulated under crawling
conditions [30].

Corresponding dendrograms (Fig. 2, right column) for the distance matrices are computed
according to the well-established numerical classification scheme described in [38]. Briefly, this
branching diagram represents a hierarchy based on the relationships of similarity among dif-
ferent classes. The algorithm is based on (i) first computing Euclidean distances between clas-
ses (as seen in Fig. 2, left column), (ii) grouping pairs of classes into a binary, hierarchical
cluster tree according to the distances and, (iii) finally pruning branches off the bottom of the
hierarchical tree, and assign all the classes below each cut to a single cluster so as to partition
the data; this last step is done by detecting natural groupings in the hierarchical tree. Ideally,
for our synthetic datasets one would expect a gradual and monotonic ordering across the clas-
ses (sequentially from 1 to 20). Our results generally capture such sequencing, although a num-
ber of permutations in the ordering of classes arises and breaks the monotonic trend. As
anticipated, such permutations are most pronounced for the parameter sweep in k (bottom
row). Nevertheless, the clustering of classes remains generally successful and overall our algo-
rithm is capable of discriminating between classes according to the (average) Euclidean dis-
tance between histograms of visual words.

Nematode motility data I
Following the above results, we then analysed a subset of videos from a previously published
worm behaviour database [25]. Briefly, each raw video spans 15 minutes and contains a single
young adult hermaphrodite that is spontaneously behaving on a patch of bacterial food (E.
coli). Nematodes are kept in the center of the field of view (FOV) using a motorized stage and
custom software that automatically tracks the worm (Fig. 3A); see Yemini et al. [25] for a more
complete description of the methodology.

For each strain investigated, 20 videos per strain were randomly selected for analysis. The
camera magnification was set between 3.5 and 4.5 μm per pixel, corresponding to a FOV of ap-
proximately 2.5 × 2 mm2 at 640 × 480 pixel resolution. The frame rate was set at 20–30 fps.
Next, video frames were down-sampled by a factor of 5 (i.e. sampling every 5th frame) in order
to decrease the video size as well as increase the difference in nematode displacement between
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consecutive frames. Each frame was then segmented using a simple thresholding step to sepa-
rate worms from the background [23].

We tested our algorithm on 15 strains, where we included several groups of strains based
primarily on their genetic relationships. The first subset contains strains that have different
mutations affecting the same gene (egl-21(n611) and egl-21(n476), trpa-2(tm3085), trpa-2
(tm3092) and trpa-2(ok3189), unc-98(st85) and unc-98(su130), unc-108(n777) and unc-108
(n501)). The second subset has mutations in genes that code for different parts of known pro-
tein complexes (unc-63(ok1070) and unc-38(e264), unc-79(e1068) and unc-80(e1069)). Finally,
we also included two strains that were found to cluster together in a previous analysis (acd-5
(ok2657) and asic-2(ok289)) [23]. Note that unlike our simulated datasets, videos of real worms
(this also includes “Nematode motility data II”, see below) are not restricted to capturing for-
ward motion only but sample rather a broad range of locomotion traits (e.g. pauses, backward
motion, etc.); moreover, mutant strains may potentially exhibit locomotory behaviours that are
not seen in wild type nematodes, including rolling, coiling, omega bends, to name a few.

Average distances between strains are presented in Fig. 4A and range between approximate-
ly 0.11 (min) and 0.25 (max), with a maximum standard error less than 2.8% of the average dis-
tance. Following the clustering method described above, the corresponding clustering tree is
shown in Fig. 4C. We find that 3 out of 7 expected groups are clustered as nearest neighbours
with 2 other pairs separated by only one branch. In pairwise comparisons, we find statistically
significant differences for 92 out of 105 strain pairs (Fig. 4B). Furthermore, out of the 13 pairs
where the difference was not significant, 5 belonged to genetically related groups; for example,
looking at Fig. 4B, cells {5, 6}, {5, 7} and {6, 7} do not exhibit significant differences between the
strains with different alleles of trpa-2.

In other words, the algorithm is able to detect differences between almost all of the strain
pairs while still capturing similarities in locomotory phenotypes that lead to a clustering that is
consistent with expectations based on genetic relationships between strains. This is the case
even though our approach was conducted without having any worm-specific features defined.
We briefly note that collection of worm data was randomized; as such, day-to-day effects are
not anticipated in the outcome of our phenotyping analysis and strains that cluster together do
not correlate with recordings obtained at similar dates and/or times [25]. As a final note, the
total computational runtime (i.e. 15 strains × 20 videos/strain × 900 frames/video = 270,000
frames of 640 × 480 pixel size) using 12 cores is approximately 196 min (5 independent runs),

Fig 3. Instantaneous frames of nematode crawling assays. (A) Sequence showing a crawling nematode kept in the center of the field of view (FOV) using
a motorized stage and custom software that automatically tracks the worm; data taken from [25]; see Results section for “Nematode motility data I”. (B)
Sequence showing a nematode crawling in a fixed FOV; see Results section for “Nematode motility data II”. In both (A) and (B), time-lapse sequence shown
for every 5th frame and nematodes are approximately 1 mm long.

doi:10.1371/journal.pone.0122326.g003
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and is partitioned between building the visual vocabulary (43 min) and generating the corre-
sponding histograms (153 min).

Nematode motility data II
To further assess the performance of our SIFT-BoW algorithm, we next tested our approach
with several mutant strains affecting neuromuscular structure and function from a previously
published dataset [22]. Briefly, video acquisition was performed on hypochlorite-synchronized
young adult animals grown at 25oC (Fig. 3B). Worms were transferred to 3cm NGM plates
with no food for 2 minutes before recording. Recordings of C. elegans crawling (approximately
10 s long) were obtained by a Leica S8APO microscope equipped with a Leica DFC 295 camera
(1024 × 768 pixels) at 26 fps using standard bright field microscopy at 32× magnification. For
each strain investigated (i.e. all videos are available at http://dx.doi.org/10.7910/DVN/29216),
10 videos per strain were randomly selected for analysis; as described above, video frames were
down-sampled by a factor of 5 (i.e. sampling every 5th frame) and segmented using a simple
thresholding step to separate worms from the background. The following strains were used: N2
(wild-type); dys-1(ls292); dyb-1(ls505); unc-17(cb933); acr-16(rb918); acr-2(rb1559); sgn-1
(rb1882); ace-1(vc505). All C. elegans strains were obtained from the Caenorhabditis elegans
Genetic Stock Center (CGC) and maintained using standard culture methods [2]. Note that
the aforementioned strains include well-described mutants affecting two aspects of neuromus-
cular function: synaptic transmission and sarcomere stability.

In Fig. 5 we present results for (A) the pairwise inter-distance similarity matrix, (B) the cor-
responding significance test, and (C) the resulting clustering tree (dendrogram). We note that
the average pairwise distances between strains range from approximately 0.13 (min) up to 0.47
(max), with a maximum standard error (S.E.) less than 6.7% of the average distance. In pair-
wise comparisons, we find significant differences for 53 out of 56 pairs (Fig. 5B).

As expected, our computational clustering method reveals that genes with related biological
function cluster closest together (Fig. 5C). For example, dys-1mutants robustly cluster with
sgn-1 and dyb-1mutants. Indeed, dys-1 (dystrophin), sgn-1 (sarcoglycan), and dyb-1 (dystro-
brevin) encode protein components of the dystrophin-associated glycoprotein complex

Fig 4. Locomotion similarity between 15mutant strains. (A) Distance matrix of average Euclidean distances between mutant strains (strains are ordered
alphabetically). (B) Corresponding matrix for p-values for pairwise strain comparisons. Black tiles indicate significant differences, p< 0.05 using the
minimum energy test. (C) Hierarchical clustering (dendrogram) of mutant strains based on the distance matrix in A. The coloured bars indicate strains that are
expected to cluster together based on known functional relationships or, in the case of acd-5 and asic-2, previous clustering results from other methods [23].

doi:10.1371/journal.pone.0122326.g004
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(DAGC), which links the cytoskeleton to the extracellular matrix in muscles [39]. Similarly, the
other cluster is primarily composed of genes involved in acetylcholine signaling, such as acr-2
and acr-16 (nicotinic acetylcholine receptor subunits) [40, 41], ace-1 (acetylcholinesterase)
[42], and unc-17 (synaptic vesicle acetylcholine transporter) [43]. Altogether, these results fur-
ther support the utility of our approach.

As a final note, the total computational runtime (i.e. 8 strains × 10 videos/strain × 70
frames/video = 5,600 frames of 1024 × 768 pixel size) using 12 cores is approximately 7.3 min
(5 independent runs), and is partitioned between building the visual vocabulary (1.7 min) and
generating the corresponding histograms (5.6 min).

Discussion and Outlook
In the present work, we have attempted to develop a robust, relatively fast and fully-automated
phenotyping algorithmic approach to evaluate similarity relations between different strains of
C. elegans, with no need for defining nematode-specific morphological or kinematic features.
While widely-accepted “ground truth” data regarding proximity relations between nematode
strains are still not widely available, we have shown in the examples above that our approach
delivers clustering results on real nematode data that is coherent with other nematode-specific
feature-based techniques [22, 23, 25].

Overall, SIFT descriptors are found to be computationally efficient when attempting to de-
scribe nematode posture and locomotion. By applying such descriptors not only to individual
static frames but differences between frames as well, we were able to extract information associ-
ated with nematode posture (i.e. amplitude, wavelength), body frequency and locomotion
speed amongst others. We achieved reasonable performance using SIFT descriptors but it may
be possible to improve the method in the future using other kinds of computer vision-based de-
scriptors, including for example Shape Context descriptors [44], Self-Similarity descriptors
[45] or Global Self-Similarity descriptors [46].

We note that for the crawling assays tested, the segmentation scheme (i.e. simple threshold-
ing technique) we used was simple to implement and relatively fast. However, on other types of
nematode data, such as with lower image quality or featuring other motility assays (e.g.

Fig 5. Locomotion similarity between 8 mutant strains. (A) Distance matrix of average Euclidean distances between mutant strains (strains are ordered
alphabetically). (B) Corresponding matrix for p-values for pairwise strain comparisons. Black indicates significant differences, p< 0.05 using the minimum
energy test. (C) Hierarchical clustering (dendrogram) of mutant strains based on the distance matrix in A.

doi:10.1371/journal.pone.0122326.g005
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swimming assays, microfluidic cells, etc.), a simple thresholding scheme is anticipated to per-
form significantly less well [47]. For such applications, more elaborate segmentation strategies
relying for example on the use of combined intensity and texture-based features integrated
within a probabilistic framework [48] have shown great promise and can easily be integrated
into our current approach.

It must be stressed again that one underlying limitation of our approach lies in that the re-
sultant relations between strains cannot be straightforwardly translated back into morphologi-
cal or kinematic characteristics of locomotion. Unlike alternative methods that rely on defining
and extracting physical characteristics, the physical origin for the distance metric obtained be-
tween strains may not be easily deduced. Unlike methods that require the pre-determination of
physical metrics of interest [10, 11, 14], the user is only required here to arrange the videos into
folders and the algorithm then proceeds automatically. The outlined approach is in this sense a
fully-automated motility phenotyping scheme.

As a final note, the scheme presented here is very general in nature and can be applied in
principle to other tasks relating to motility phenotyping, with small local modifications. Such
tasks could include investigating different aspects of C. elegans biology including development
stages or sex (males vs. hermaphrodites) or expanding possibly to other model organisms (e.g.
flies, fish or mice). Such applicability across other animal models will be particularly useful as
more groups collect high-resolution image data of animal behaviour [31].

Methods
Our method relies on the widely-used Bag-of-Words (BoW) model [49, 50] to represent motil-
ity videos as histograms of typically occurring Scale-Invariant Feature Transform (SIFT) de-
scriptors [51]. Our implementation is a variation of the SIFT-bag model introduced in [52].
The algorithm was implemented in Matlab and relies on the freely available VL_FEAT library
[53]. The algorithm is schematically illustrated in Fig. 6.

Data organization and preprocessing
Each video is preprocessed to simplify analysis. We begin by automatically segmenting the
nematode from its background by applying a fixed threshold to the image pixels and do so on
each frame of a given video in the dataset; note that automatic segmentation of nematodes in
more complex environments can also be achieved by using more sophisticated strategies as re-
cently detailed in Greenblum et al. [48].

In addition, we pre-sampled the volumes every 5 frames in order to reduce the quantity of
data and also to increase the variability between consecutive frames. The pre-sampled segment-
ed volumes were used for further analysis.

Building a visual vocabulary
From the complete set of videos, we randomly select a quarter of the videos, spread out uni-
formly across each nematode class. This small subset will be used to generate a visual vocabu-
lary which will allow us to visually characterize motility. From each video of the subset, we
randomly select N = 15 blocks ofM = 60 consecutive frames making sure that none of the se-
lected blocks overlap. Note that for very short videos, this random block sampling was omitted.
From these blocks and using the segmented images from the preprocessing stage, SIFT key-
points were computed on nematode pixels only and associated descriptors were extracted.

We then clustered each of the SIFT descriptors extracted from the blocks using a k-means
clustering algorithm (not to be confused with the wavenumber k, see Table 1). This clustering
yields k canonical, ormean descriptors, such that any descriptor can be categorized as

Motility Phenotyping C. eleganswith SIFT

PLOSONE | DOI:10.1371/journal.pone.0122326 March 27, 2015 10 / 16



Fig 6. Schematic flowchart of the SIFT-BoW algorithm. See Methods section for details.

doi:10.1371/journal.pone.0122326.g006
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belonging to one of the kmean descriptors by computing the minimum Euclidean distance to
each mean descriptor.

Using another randomly selected 25% of videos (with overlap) we repeat the process de-
scribed in this subsection this time computing the SIFT keypoints and descriptors not on the
original image data but rather on the temporal derivate images. These temporal images are
computed by subtracting consecutive frames of the original data. Hence, this provides motion
information over time. From these new SIFT descriptors, we compute a new set of kmean de-
scriptors using k-means clustering again.

Together, both set of kmean descriptors (one on the raw image data and one on the tempo-
ral gradient image data) characterize our visual vocabulary. The Davies-Bouldin index [54] was
used for the optimization of k. The vocabulary is stored in a k-d tree structure [55] in order to
ease the search for closest match while building the histograms in the following step.

Video characterization by histograms
Using the nematode segmentations, we compute SIFT descriptors in N non-overlapping blocks
ofM frames on both the raw image and the temporal images (computed as described above).

The collected SIFT descriptors from the segmented images are then used to build a k-sized
histogram, i.e. k bins. For each SIFT descriptor extracted, we compute its Euclidean distance to
each of the mean descriptors. We attribute to a particular SIFT descriptor the mean descriptor
which is closest to it in terms of Euclidean distance. Having done so for each SIFT descriptor,
we count the number of occurrences of each mean descriptor in the selected blocks, which re-
sults in a histogram of size k bins. To preserve invariance to the overall number of descriptors
collected, the histogram is normalized to sum to one. The same operations are then repeated
for the temporal difference image SIFT and mean descriptors, yielding a second k size histo-
gram. Both histograms are then concatenated together to form a 2k sized histogram. This pro-
cess can then be performed on each video in the dataset.

Calculating a distance matrix
Having characterized videos by an informative histogram, we now build a distance matrix over
the entire dataset. Each cell in the matrix represents the average distance between two classes.
Examples of such distance matrices are shown in the results of Figs. 2, 4 and 5. Such maps visu-
ally depict the distance matrix and naturally, the matrix is symmetric along its diagonal. In
each element of the matrix, we depict the mean distance between two classes which we com-
pute as being the mean Euclidean distance between each possible pairing of both classes, e.g.
two classes with 20 videos would yield 20 × 20 = 400 possible distances; note that, the resulting
distance between two volumes represents the Euclidean distance between their two respective
histograms and thus has arbitrary units. From such data, we can thus also compute the
average ± standard error (S.E.) of the pairwaise inter-distances between classes.

Supporting Information
S1 Script. Open source Matlab script package for the SIFT-BOW algorithm.
(ZIP)

S2 Script. Matlab script to generate sequences of synthetic worms according to beating
frequency, wavelength and body amplitude.
(M)
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S1 Video. Example of synthetic worm crawling (A = 16 [pixel], f = 0.36 [Hz], k = 0.05
[1/pixel]).
(AVI)

S2 Video. Example of synthetic worm crawling (A = 35 [pixel], f = 0.36 [Hz], k = 0.05
[1/pixel]).
(AVI)

S3 Video. Example of synthetic worm crawling (A = 18 [pixel], f = 0.06 [Hz], k = 0.05
[1/pixel]).
(AVI)

S4 Video. Example of synthetic worm crawling (A = 18 [pixel], f = 0.44 [Hz], k = 0.05
[1/pixel]).
(AVI)

S5 Video. Example of synthetic worm crawling (A = 18 [pixel], f = 0.36 [Hz], k = 0.44
[1/pixel]).
(AVI)

S6 Video. Example of synthetic worm crawling (A = 18 [pixel], f = 0.36 [Hz], k = 0.0535
[1/pixel]).
(AVI)
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