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SUMMARY

Prosenescence therapy has recently emerged as a
novel therapeutic approach for treating cancer.
However, this concept is challenged by conflicting
evidence showing that the senescence-associated
secretory phenotype (SASP) of senescent tumor
cells can have pro- aswell as antitumorigenic effects.
Herein, we report that, inPten-null senescent tumors,
activation of the Jak2/Stat3 pathway establishes an
immunosuppressive tumor microenvironment that
contributes to tumor growth and chemoresistance.
Activation of the Jak2/Stat3 pathway in Pten-null
tumors is sustained by the downregulation of
the protein tyrosine phosphatase PTPN11/SHP2,
providing evidence for the existence of a novel
PTEN/SHP2 axis. Importantly, treatment with doce-
taxel in combination with a JAK2 inhibitor repro-
grams the SASP and improves the efficacy of
docetaxel-induced senescence by triggering a
strong antitumor immune response in Pten-null
tumors. Altogether, these data demonstrate that
immune surveillance of senescent tumor cells can
be suppressed in specific genetic backgrounds but
also evoked by pharmacological treatments.
INTRODUCTION

Cellular senescence, an irreversible cell growth arrest involving

the p53 and the p16INKA tumor suppressors, can be triggered
by different insults including activation of oncogenes (onco-

gene-induced senescence [OIS]) or loss of tumor-suppressor

genes (Braig et al., 2005; Chen et al., 2005; Collado, 2010).

Over the past years, several in vivo evidences have demon-

strated that senescence opposes tumor initiation and progres-

sion in different mouse models (Collado, 2010; Nardella et al.,

2011). However, recent findings demonstrate that senescent

tumor cells secrete a variety of immune modulators and inflam-

matory cytokines, referred to as the senescence-associated

secretory phenotype (SASP), that mediate opposing and contra-

dictory effects. The SASP can stimulate the innate and adaptive

antitumor immune response (a process designated as ‘‘senes-

cence surveillance’’), leading to tumor clearance, but also pro-

motes tumorigenesis by supporting the proliferation of neigh-

boring tumor cells (Kang et al., 2011; Xue et al., 2007; Coppé

et al., 2010; Rodier and Campisi, 2011; Davalos et al., 2010).

Of note, the SASP can also hinder chemotherapy efficacy (Jack-

son et al., 2012). Therefore, the contradictory effects of the SASP

cast doubts over the possibility to use treatments that enhance

senescence for cancer therapy (Collado, 2010; Nardella et al.,

2011). Moreover, whereas cytokines released by senescent tu-

mors have been shown to positively regulate the antitumor im-

mune response in some experimental models, it is unknown

whether cytokines released by senescent tumors may also favor

an immunosuppressive tumor microenvironment. An intriguing

possibility is that the genetic background of senescent tumor

cells may dictate the strength and composition of the cytokines

released by the tumor, therefore impacting differently on the

tumor microenvironment, specifically the immune system. We

have previously demonstrated that Pten-loss-induced cellular

senescence (PICS) is a novel type of cellular senescence

response that occurs in vivo and that can be enhanced by phar-

macological treatments (Alimonti et al., 2010). Pten-null prostate
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conditional mice (Ptenpc�/�) develop a prostatic intraepithelial

neoplasia (PIN) characterized by a strong senescence response

that progresses to invasive adenocarcinoma. This suggests that

the SASP of Ptenpc�/� tumors may drive protumorigenic rather

than antitumorigenic effects. Thus, the concomitant presence

of a senescent component and a proliferative compartment

within the same tumor, along with a previously uncharacterized

SASP and tumor immune response, makes Ptenpc�/� mice a

suitable mouse model to study the composition of the SASP

and develop treatments that reprogram the protumorigenic ef-

fects of the senescence secretome.

RESULTS

Pten-Null Senescent Tumors Are Characterized by an
Immunosuppressive Tumor Microenvironment
Starting from 7weeks of age, Ptenpc�/�mice develop PIN, a pre-

malignant prostatic lesion characterized by a strong senescence

response, as indicated by the senescence-associated b-galac-

tosidase (SA-b-gal) positivity; fluorescein di-b-D-galactopyrano-

side staining; and increased expression of p16, p21, and

plasminogen activator inhibitor-1 (Figures 1A, left, and S1A;

Collado and Serrano, 2006). To characterize the cytokine profile

of Ptenpc�/� senescent tumors, we usedmagnetic-activated cell

sorting (MACS) to isolate and separate prostate epithelial cells

from both stromal and immune cells (Figure 1A, right). The

efficiency of purification was controlled by fluorescence-acti-

vated cell sorting (FACS) analysis (Figure S1B). Purified

Ptenpc�/� epithelial cells were lysed and protein extracts loaded

in a cytokine protein array to allow high-throughput multianalyte

profiling of 40 different cytokines. Interestingly, the SASP of PICS

was characterized by increased levels of several cytokines re-

ported to play a negative role in cancer by favoring an im-

mune-suppressive tumor microenvironment (Vanneman and

Dranoff, 2012; Acharyya et al., 2012; Ostrand-Rosenberg and

Sinha, 2009; Figures 1B, left, and S1C). However, potent

chemoattractant cytokines that have been previously shown

to play a role in the process of inflammation associated to

senescence surveillance in OIS (Xue et al., 2007) were also upre-

gulated in Ptenpc�/� senescent tumors (Figures 1B, right, and

S1C). In line with the cytokine array profile, FACS analysis

showed that Ptenpc�/� tumors were strongly infiltrated by

CD11b+Gr-1+ myeloid cells, in absence of CD4+, CD8+, and nat-

ural killer (NK) infiltrates (Figures 1C and S1D). CD11b+Gr-1+

myeloid cells were granulocytic myeloid-derived suppressor

cells (MDSCs) (Figure S1E), an immune-suppressive subset

that blocks both proliferation and activity of CD4+, CD8+, and
Figure 1. Immunosuppressive Microenvironment in PICS

(A) p16 IHC and b-galactosidase staining in Ptenpc+/+ and Ptenpc�/� mice (left). E

(B) Cytokine protein profile of purified prostatic epithelial cells isolated from pros

***p < 0.001).

(C) FACS analysis of tumor-infiltrating CD11b+Gr1+ immune cells in Ptenpc�/� tu

(D) Scheme (left) and quantification (right) of the CD8+ suppression assay (see also

positive control. (n = 3 to 4; *p < 0.05; **p < 0.01).

(E) Quantification of p16 and pHP1g-positive cells in Ptenpc�/� and Ptenpc�/�; Rag
IHC and pHP1g IF staining (CK18 = cytokeratin 18 in gray).

(F) Gross anatomy (top), hematoxylin and eosin (H&E), b-galactosidase staining (b

and Ptenpc�/�; Rag1�/� mice at 15 weeks of age (n = 4). Data are represented a
NK cells (Gabrilovich andNagaraj, 2009). To assess the suppres-

sive activity of CD11b+Gr1+ cells in vivo, we sorted these cells

directly from the Ptenpc�/� tumors and cocultured them with

CD8+ T cells. Notably, tumor-infiltrating CD11b+Gr1+ cells sup-

pressed the proliferation of CD8+ T cells (Figure 1D). Presence

of MDSCs explained why CD8+ T and NK cells recovered from

Ptenpc�/� tumors were not cytotoxic (Figure S1F and S1G).

Recent evidence in a different mouse model indicates that

senescent tumor cells are cleared by the immune system, a

process termed senescence surveillance. Impairment of this

response results in the development of aggressive tumors

because the remaining senescent cells support tumorigenesis

by secreting a variety of cytokines that favor the growth of non-

senescent tumor cells (Xue et al., 2007; Kang et al., 2011). We

then speculated that the immunosuppressive tumor microenvi-

ronment of Ptenpc�/� tumors could impair senescence surveil-

lance sustaining tumor progression. We therefore monitored

the number of senescent cells in Ptenpc�/� tumors at different

times (from 7 to 15 weeks of age; Trotman et al., 2003). Interest-

ingly, the percentage of senescent cells in Ptenpc�/� tumors re-

mained constant over time (Figure 1E), in contrast with previous

findings in OIS (Kang et al., 2011). These data suggest that, in

Ptenpc�/� tumors, the adaptive immunity could be impaired, ex-

plaining why senescent tumor cells were not removed. To vali-

date this hypothesis, we generated the Ptenpc�/�; Rag1�/�

mouse model to induce PICS in a genetic background that lacks

adaptive immunity (Figure S1H;Mombaerts et al., 1992). Consis-

tent with our hypothesis, Ptenpc�/�; Rag1�/� mice developed

prostate tumors with size and histology comparable to

Ptenpc�/� mice (Figure 1F; Kang et al., 2011). More importantly,

the percentage of p16 and pHP1g-positive cells and SA-b-gal

staining between Ptenpc�/� and Ptenpc�/�; Rag1�/� tumors re-

mained comparable over time (Figures 1E and 1F). Altogether,

these data indicate that senescent cells are not removed by

the adaptive immunity in Ptenpc�/� tumors, in contrast with pre-

vious findings in OIS (Kang et al., 2011). Therefore, the lasting se-

nescent cells in these tumorsmay become a source of mitogenic

cytokines that promote tumor progression.

The Jak2/Stat3 Pathway Is Activated in Ptenpc�/�

Senescent Tumors
The SASP of PICS pointed to Stat3 as a putative orchestrator of

this immunosuppressive cytokine network (Yu et al., 2009).

Indeed, several cytokines secreted by Ptenpc�/� tumors such

as (C-X-C motif) ligand 1 (CXCL1), CXCL2, interleukin-6 (IL-6),

and IL-10 are transcriptionally regulated by Stat3. Therefore,

we checked the status of Stat3 phosphorylation in Ptenpc�/�
xperimental setup (right).

tates of 8-week-old Ptenpc+/+ and Ptenpc�/� mice (n = 3; *p < 0.05; **p < 0.01;

mors (n = 7; ***p < 0.001).

Experimental Procedures). Immune-suppressive spleenic Treg was used as a

1�/� tumors at different time points. Insets are representative images from p16

ottom), and relative tumor volume (right) of anterior prostates (APs) in Ptenpc�/�

s mean ± SEM.
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Figure 2. Stat3 Is Activated in Nonprolifer-

ating Cells in Ptenpc�/� Tumors

(A) Western blot analysis and quantification (n = 4)

showing activation of the Jak2/Stat3 pathway in

Ptenpc�/� tumors.

(B) H&E and pStat3(Y705) staining in AP lobes of

Ptenpc+/+ and Ptenpc�/� at 12 weeks of age.

(C) Confocal immunofluorescence (IF) images on

Ptenpc+/+ and Ptenpc�/� paraffin-embedded APs

tumor sections (n = 3) in blue nuclear marker

(DAPI) and in green pStat3(Y705)-positive cells.

(D) Quantification of (B) and (C); bars represent the

percentage of pStat3(Y705)-positive cells.

(E) Confocal IF images on Ptenpc+/+ and Ptenpc�/�

paraffin-embedded APs tumor sections. Nuclear

marker DAPI (blue), proliferation marker Ki67 (red),

pStat3(Y705) (green), and prostate marker CK18

(gray; n = 3).

(F) Quantification of (E), bars represent the per-

centage of pStat3(Y705) single-positive, Ki-67

single-positive, and pStat3(Y705) /Ki-67 double-

positive cells (n = total number of cells counted on

three different tumors). Data are represented as

mean ± SEM (**p < 0.01; ***p < 0.001).
tumors. Western blot analysis, immunohistochemistry (IHC)

staining, and immunofluorescence (IF) confocal imaging re-

vealed that Stat3 was strongly phosphorylated on tyrosine 705

(Y705) in Ptenpc�/� tumors when compared with normal pros-

tates (Figures 2A–2D, S2A, and S2B). Note that Ptenpc+/�

mice, which develop nonsenescent PIN lesions at 5 months of

age (Alimonti et al., 2010; Trotman et al., 2003), stained

completely negative for pStat3 (Figures S2A and S2B). Phos-

phorylation of Stat3 in Ptenpc�/� tumors was also associated

with the increased phosphorylation (five times more than in

normal prostate) of the nonreceptor Janus kinase 2 (Jak2) (Fig-

ure 2A), an upstream activator of Stat3 (Parganas et al., 1998).

Interestingly, IF analysis on consecutive sections from Ptenpc�/�

tumors revealed that, at the onset of senescence (8–10 weeks),

the majority of the pStat3-positive epithelial cells stained nega-
78 Cell Reports 9, 75–89, October 9, 2014 ª2014 The Authors
tive for the proliferation marker Ki-67

and positive for the senescence marker

pHP1g (Figures 2E, 2F, S2C, and S2D).

Altogether, our data suggest that, at least

in Ptenpc�/� tumors, Stat3 is mainly acti-

vated in nonproliferating senescent cells,

in agreement with recent evidence in a

different mouse model (Jackson et al.,

2012).

In Ptenpc�/�; Stat3pc�/� Senescent
Tumors, the Antitumor Immune
Response Is Reactivated
To study the role of Stat3 in PICS and

specifically its contribution to the SASP,

we crossed PtenloxP/loxP; Pb-Cre4 mice

with the Stat3loxP/loxP mice (Akira, 2000)

to generate the PtenloxP/loxP; Stat3loxP/loxP

Pb-Cre4mouse model (hereafter referred
to as Ptenpc�/�; Stat3pc�/�). We first confirmed prostate-specific

deletion of both Pten and Stat3 in the mouse prostate epithelium

(Figure S3A). Next, we looked for the presence of senescence in

the Ptenpc�/�; Stat3pc�/� tumors and found upregulation of both

p53 protein levels and SA-b-gal-staining positivity, indicating

that Stat3 was not needed for the execution and maintenance

of PICS (Figures 3A and 3B). Next, we checked the status of

NF-kB, whose function controls both cell-autonomous and

non-cell-autonomous aspects of senescence (Chien et al.,

2011), and found that NF-kB was activated to a similar extent

in both Ptenpc�/� and Ptenpc�/�; Stat3pc�/� tumors (Figure 3A).

Importantly, Stat3 inactivation in both normal and Pten-null pros-

tate epithelium did not affect cell proliferation and apoptosis (Fig-

ures S3B and S3C). However, the SASP of Ptenpc�/�; Stat3pc�/�

tumors had reduced levels of the immune-suppressive



chemokines (CXCL2, granulocyte colony-stimulating factor,

granulocyte macrophage colony-stimulating factor [GM-CSF],

macrophage colony-stimulating factor [M-CSF], C5a, IL10, and

IL13), whereas retained high levels of potent chemoattractants

for B and T cells such as B lymphocyte chemoattractant, mono-

cyte chemoattractant protein-1 (MCP-1), and CXCL10 when

compared to the SASP of Ptenpc�/� tumors (Figure 3C; Ansel

et al., 2002; Deshmane et al., 2009; Dufour et al., 2002). Taken

together, these data demonstrate that inactivation of Stat3 in

Pten-null tumors reprograms the SASP of PICS (hereafter

referred to as R-SASP) without affecting proliferation, apoptosis,

and NF-kB signaling. In line with our findings, Ptenpc�/�;
Stat3pc�/� mice developed senescent tumors strongly infiltrated

by immune cells. FACS analysis on the immune cell fraction of

Ptenpc�/�; Stat3pc�/� tumors showed a strong reduction in the

percentage of MDSCs (Figure 3D) and increased infiltration of

CD8+, NK, and B cells (Figures 3E and 3F). Interestingly, the infil-

tration of immune cells in the Ptenpc�/�; Stat3pc�/� mouse pros-

tatic epithelium occurred progressively after Pb-Cre activation,

reaching a maximum at 15 weeks of age (see Figure S3D). More-

over, in Ptenpc�/�; Stat3pc�/� tumors, both CD8+ and NK cells

were cytotoxic, as indicated by the expression of the degranula-

tion marker CD107a (Alter et al., 2004; Figures 3G and S3E), and

B cells were present both as plasma cells (CD19+B220�) and an-

tigen-presenting cells (CD19+B220+; Figure S3F). Restoration of

the immune response in Ptenpc�/�; Stat3pc�/� tumors was also

associated with a marked and progressive decrease in p16

mRNA levels (Figure S3G) and a concomitant increase inGranzy-

meB mRNA levels at 15 weeks of age (Figure 3H). These data

suggest that senescent cells were progressively cleared in these

tumors, in agreement with previous data in a different model

(Kang et al., 2011). Notably, whereas at early stage of tumorigen-

esis, Ptenpc�/�; Stat3pc�/� and Ptenpc�/� tumors had compara-

ble tumor size, at late stages, Ptenpc�/�; Stat3pc�/� tumors were

smaller in size (roughly 70%; Figures 3I, 3J, and Figure S4A) and

presented a reduced stromal compartment (Figure S4B). Impor-

tantly, whereas the totality (100%) of Ptenpc�/� mice developed

invasive prostate cancer at late stage of tumorigenesis

(>15 weeks), only 25% of aged match Ptenpc�/�; Stat3pc�/� tu-

mors developed invasive prostate tumors (Figures 3J and 3K).

All together, our data show that Stat3 inactivation in Pten-defi-

cient tumors promotes an immune response switch (from immu-

nosuppressive to active immunosurveillance) by decreasing the

levels of specific cytokines in the tumor microenvironment, thus

unmasking the immunostimulatory features of the SASP.

Docetaxel Treatment Enhances Senescence but Does
Not Cause Significant Tumor Regression in Pten-Null
Prostate Tumors
We next investigated whether the SASP of PICS could limit the

efficacy of treatments that enhance senescence in Pten-null

tumors. Docetaxel is the gold standard therapy for recurrent

prostate cancer patients that no longer respond to hormonal

approaches and is the only US-Food-and-Drug-Administra-

tion-approved first-line chemotherapy in these patients (Anto-

narakis and Armstrong, 2011). Previous evidence showed that

docetaxel opposes tumor formation by promoting senescence

(Schwarze et al., 2005). We next checked whether docetaxel
treatment could be effective in Ptenpc�/� mice by enhancing

senescence. Despite the fact that docetaxel treatment enhanced

senescence in Pten-null tumors as measured by upregulation of

both p16, p21 mRNA levels and immunohistochemistry staining

for p16 (Figures S5A and S5B), it did not trigger a significant

reduction in tumor volume (Figure S5C, bottom). Moreover, we

did not detect significant effect of docetaxel treatment on tumor

histology (Figure S5C, top). Of note, the increase in p16 staining

correlated with strong activation of pStat3 in tumors (Figure S5B,

bottom) and absence of an antitumor immune response as

shownby the low levels ofGranzymeBmRNA levels (Figure S5D).

Moreover, in Ptenpc�/� tumors treated with docetaxel, both

CD8+ and the NK cells were not cytotoxic, as indicated by lack

of the degranulation marker CD107a in those cells (data not

shown). In summary, docetaxel treatment increased senescence

but had modest activity in Ptenpc�/� tumors. These data are

highly relevant considering the frequent loss of PTEN in prostate

cancer (Trotman et al., 2003). These findings are also in line with

a recent study demonstrating lack of response to docetaxel in

patients with prostate cancers with decreased levels of PTEN

(Antonarakis et al., 2012).

Pharmacological Inhibition of the Jak2/Stat3 Pathway
Leads to an Effective Antitumor Immune Response in
Prostate Tumors Treated with Docetaxel
We next hypothesized that the modest efficacy of docetaxel

in Pten-null tumors was related to the absence of an effective

antitumor immune response. Driven by the genetic evidences

obtained from Ptenpc�/�; Stat3pc�/� mice, we reasoned that

pharmacological inhibition of the Jak2/Stat3 pathway could be

an effective strategy to reprogram the SASP and restore an anti-

tumor immune response in docetaxel-treated, Pten-deficient

tumors. We tested this hypothesis in a preclinical trial by

combining the JAK2 inhibitor NVP-BSK805 (Baffert et al., 2010;

Marotta et al., 2011) with docetaxel in a cohort of Ptenpc�/�

mice (Figure 4A). In this respect, whereas docetaxel and

NVP-BSK805 alone displayed a modest single-agent antitumor

response, the combination of docetaxel and NVP-NSK805 led

to a profound reduction in tumor size with near complete patho-

logical responses and no evidence of tumor invasion (Figures 4B

and 4C). As observed in Ptenpc�/�; Stat3pc�/� tumors, inhibition

of the Jak2/Stat3 pathway reprogrammed the SASP in doce-

taxel-treated mice (Figure 4D), favoring an active immune

response, as indicated by the strong infiltration of CD3+ T cells

and increased mRNA levels of the cytotoxic marker GranzymeB

(Figures 4E and 4F). Of note, the increased intratumor levels of

GranzymeB in mice treated with docetaxel+NVP-BSK805 were

associated with an increased percentage of apoptotic cells, in

agreement with the proapoptotic function of GranzymeB (Tra-

pani and Sutton, 2003; Figure 4G). At 12 weeks of age, both do-

cetaxel- and docetaxel+NVP-BSK805-treated tumors exhibited

a strong senescence response, as indicated by SA-b-gal positiv-

ity (Figure 4H). However, only in mice treated with docetaxel+

NVP-BSK805, senescent cells were surrounded by T cells (Fig-

ure 4H). As a consequence, the percentage of senescent cells

was strongly reduced in mice treated with NVP-BSK805 alone

or in combination with docetaxel (Figure 4I). These data demon-

strate that treatments targeting the Jak/Stat3 pathway may be
Cell Reports 9, 75–89, October 9, 2014 ª2014 The Authors 79
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Figure 3. SASP Reprogramming Promotes an Antitumor Immune Response in Ptenpc�/�; Stat3�/� Mice

(A) Western blot showing the status of p53 and pIKBa in Ptenpc+/+, Ptenpc�/�, and Ptenpc�/�; Stat3�/� prostate tumors. DKO, double knockout.

(B) Representative images of SA-b-gal (bottom) and H&E (top) staining ofPtenpc�/� andPtenpc�/�;Stat3�/� tumors at 15weeks. Images aremagnified3 20. Inset

shows infiltrated immune cells.

(C) Quantification of the cytokine protein profile of purified prostatic epithelial cell isolated from Ptenpc+/+, Ptenpc�/�, and Ptenpc�/�; Stat3�/� prostates (n = 3).

(legend continued on next page)
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successfully used alone, or in combination with prosenescence

compounds, to reprogram the SASP and promote an antitumor

immune response in Pten-deficient tumors.

The Difference between the SASP of PICS and OIS
Depends on the Genetic Background of the Senescent
Tumor Cells
Previous findings demonstrate that the SASP of NrasG12V-

driven senescent tumors trigger senescence surveillance and

tumor clearance (Kang et al., 2011). However, the SASP of

PICS lacks this capability. We reasoned that the difference in

the genetic background of senescent tumor cells could explain

this phenomenon. To validate this hypothesis, we used the

KrasLSL-G12D/+; PbCre prostate conditional mouse model (here-

after referred as to PbKras (G12D)) to compare the effects of

the SASP of PICS and OIS in vivo (Tuveson et al., 2004). In

agreement with previous findings, PbKras(G12D) mice devel-

oped hyperplasia/low-grade PIN in absence of invasive pros-

tate cancer, even at late stage of disease (Figure 5A; Pearson

et al., 2009). Notably, PbKras (G12D) prostate lesions from 14-

week-old mice were senescent, as demonstrated by increased

b-galactosidase staining and p16 mRNA levels (Figures 5A and

5B). Next, we compared the SASP of PICS and OIS by

analyzing prostate epithelial cells at the onset of senescence.

Surprisingly, the immunosuppressive cytokines upregulated

in PICS were only slightly increased in the secretome of

OIS. Indeed, PbKras(G12D) tumors were characterized by lower

levels of CXCL-2 and IL10 (Figure 5C). Moreover, in stark

contrast to PICS, immunohistochemical analysis in

PbKras(G12D) senescent tumors showed low level of Stat3

phosphorylation (Figure 5D). Immunophenotyping of

PbKras(G12D) tumors revealed that CD11b+Gr1+ cells were

almost undetectable when compared with the Ptenpc�/� tu-

mors (Figure 5E). Moreover, we found an increased percentage

of interferon-g releasing CD8+-positive cells in PbKras(G12D)

tumors (Figure 5F). Immune-mediated cytotoxic activity,

measured by GranyzmeB mRNA levels, was also increased in

these prostate lesions (Figure 5G). Importantly, in PbKras(G12D)

tumor, senescent cells were progressively removed from the

tumor, as indicated by the decay of SA-b-gal staining over

time (Figure 5H), in agreement with previous findings in a

different model of OIS (Kang et al., 2011). In summary, these

findings suggest that activation of the Jak2/Stat3 pathway is

the key determinant for the different SASPs and senescence-

associated immune responses between PICS and OIS. Our

data also suggest that compounds that target the JAK2/

STAT3 pathway could be more effectively used in PTEN-null
(D) FACS analysis of tumor-infiltrating CD11b+Gr-1+ immune cells in Ptenpc�/� a

(E) Immunophenotyping of Ptenpc�/�; Stat3�/� tumors (n = 3; *p < 0.05; **p < 0.0

(F) IF showing tumor-infiltrating CD3+ cells in Ptenpc�/� and Ptenpc�/�; Stat3�/�

(G) Quantification by FACS analysis of CD8+ and NK1.1+ degranulation (n = 3; **

(H) GranzymeB mRNA levels in Ptenpc�/�; Stat3�/� tumors (n = 3; *p < 0.05).

(I) Relative tumor volume of Ptenpc�/� and Ptenpc�/�; Stat3�/� APs at different w

(J) Gross anatomy and H&E staining of representative Ptenpc�/� and Ptenpc�/�; S
shows APs from Ptenpc�/� and Ptenpc�/�; Stat3�/� at 9 weeks.

(K) Percentage ofmice presenting an invasive phenotype in APs fromPtenpc�/� an

Data are represented as mean ± SEM.
tumors rather than in tumors driven by activation of the

mitogen-activated protein kinase pathway.

Loss of PTEN Drives Downregulation of PTPN11/SHP2
that Sustains theActivation of the JAK2/STAT3 Pathway
We next sought the mechanism that leads to increased activa-

tion of the Jak2/Stat3 pathway in Pten-null senescent tumors

by focusing on intrinsic regulatory negative systems of this

pathway. Protein tyrosine phosphatase (PTP) SHP2 (also known

as PTPN11) is one of the major negative regulators of the JAK2/

STAT3 pathway. Indeed, hepatocyte-specific deletion of Shp2 in

mouse promotes inflammation and tumorigenesis through the

activation of Stat3 (Bard-Chapeau et al., 2011). Interestingly,

Shp2 mRNA levels were strongly reduced in Ptenpc�/� tumors

when compared to PbKras(G12D) tumors and normal prostates

(Figure 6A). Western blot analysis confirmed that the levels of

Shp2 were reduced in Ptenpc�/� tumors at the onset of senes-

cence (Figure 6B). To functionally validate these results in human

cancer cell lines, we generated a doxycycline-inducible sh-PTEN

DU-145 prostate stable cell line (DU-145sh-PTEN) (Figure S6A).

DU-145 cells retain 50% of the endogenous level of PTEN. Strik-

ingly, further downregulation of PTEN was accompanied by the

concomitant reduction in both SHP2 protein and mRNA levels

and increased phosphorylation of STAT3 at steady state (Figures

6C and S6A). Similar results were also obtained in DU-145 cells

when PTEN was downregulated by mean of two different small

interfering RNAs (siRNAs) (Figure S6B). Moreover, in a time

course experiment, we found that, when DU-145sh-PTEN cells

were starved and stimulated with recombinant IL-6, phosphory-

lation of STAT3 lasted longer in cells induced with doxycycline

(Figure 6D). Finally, rescue experiments showed that, when

wild-type (WT) SHP2was overexpressed in DU-145 cells in pres-

ence of siPTEN, the levels of pSTAT3were reduced (Figure S6C).

Consistently, PTPN11/SHP2 downregulation by mean of siRNA

in both DU-145 cancer cells and RWPE-1 untransformed cells

led to an increase of pSTAT3 protein levels (Figure S6D). These

data demonstrate that downregulation of PTEN and SHP2

directly sustained JAK2/STAT3 activation. Note that Shp2

mRNA level remained downregulated in Ptenpc�/�; Stat3pc�/�

tumors as well, suggesting that Shp2 is not under the transcrip-

tional control of Stat3 (Figure S6E). Broad bioinformatics analysis

conducted on ten different data sets of human prostate cancer

(n = 1,086) confirmed the correlation between PTEN and SHP2

(Figures 6E and S6F). Moreover, patients with low levels of

both PTEN and SHP2 had a worse prognosis when compared

with the other groups (Figure 6F). Lastly, the correlation between

PTEN and SHP2 was also validated in a human prostate cancer
nd Ptenpc�/�; Stat3�/� (n = 4; *p < 0.05) tumors.

1).

prostate tumors.

p < 0.01).

eeks (each group n = 3–6; ***p < 0.001).

tat3�/� APs from 20- to 25-week-old mice. Images are magnified 3 10. Inset

dPtenpc�/�;Stat3�/� tumors at different weeks (each group n = 3; ***p < 0.001).
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tissue microarray (TMA) (Figure 6G). In agreement with our data

in mouse models, we also found a strong anticorrelation be-

tween decreased PTEN and SHP2 levels (PTENlowSHP2low)

and increased JAK2 phosphorylation in human prostate tumors

(Figure 6G). Of note, this anticorrelation appeared even

stronger in prostate cancers with high Gleason score (R7; Fig-

ure 6H). These findings support the emerging view of SHP2 as

potential tumor suppressor also in prostate cancer in line with

recent evidence in other tumor types (Bard-Chapeau et al.,

2011; Chan and Feng, 2007; Yang et al., 2013). Finally, PTEN

and SHP2 correlation was also found in a PANCANCER analysis

including 5,703 tumor samples of different histology such as

breast, melanoma, lung adenocarcinoma, kidney, and clear

cell carcinoma (Figures 7A, S7A, and S7B). As found for prostate

cancer patients, low levels of both PTEN and SHP2 were also

associated with the worst clinical outcome (Figure 7B).

This finding suggests that the correlation between PTEN and

SHP2 levels is a general phenomenon frequently observed in a

variety of tumors at different stages of disease.

DISCUSSION

The mechanisms that link the SASP to tumorigenesis are poorly

understood and remain a subject of intense investigation and

debate. On this line, different studies have reported that the

SASP can exert pro- as well as antitumorigenic effects (Coppé

et al., 2010; Kang et al., 2011; Xue et al., 2007; Rodier and Cam-

pisi, 2011; Davalos et al., 2010). However, there has been little

investigation into the possibility to reprogram the SASP of a se-

nescent tumor in order to abolish its protumorigenic effects while

retaining its immunostimulatory features. In this study, we pro-

vide evidence that the SASP of senescent tumors can be both

genetically and pharmacologically reprogrammed and that the

efficacy of chemotherapy is enhanced in the context of

R-SASP. Moreover, our findings demonstrate that the SASP of

PICS is orchestrated by both NF-kB and Stat3 activation. Both

genetic and pharmacological inactivation of the Jak2/Stat3

pathway does not abolish the SASP of PICS but drives an overall

reprogramming of the senescence secretome retaining a posi-

tive NF-kB signature (Chien et al., 2011). On this line, the

R-SASP of Pten-null senescent tumors has reduced levels of cy-

tokines, such as CXCL1/CXCL2, GM-CSF, M-CSF, IL10, and

IL13, involved in the recruitment and activation of MDSCs but
Figure 4. SASP Reprogramming Enhances Docetaxel Efficacy in Ptenp

(A) Schedule of treatment used in the preclinical trial with the Jak2 inhibitor NVP-

were treated daily for 4 weeks with a dose of 100 mg/kg of NVP-BSK805 alone

volume in the indicated treatment groups (bottom; n = 6–10; *p < 0.05; **p < 0.0

(B) H&E, pStat3y705, and CD3 staining in Ptenpc�/� tumors treated with NVP-BSK8

to assess inhibition of the Jak2/Stat3 pathway after treatment with NVP-BSK805

(C) Quantification of PIN-affected glands after the treatments.

(D) Cytokine profile of the reprogrammed SASP (R-SASP) in the indicated treatm

(E) Quantification of the tumor-infiltrating CD3+-positive cells shown in (B) (n = 3

(F)GranzymeBmRNA levels inPtenpc�/� tumors treatedwith NVP-BSK805-, doce

***p < 0.001).

(G) Quantification of cleaved-caspase 3-positive cells (n = 3; ***p < 0.001).

(H) IF confocal images showing the localization of CD3+-positive cells (red) in clo

(I) Representative IF confocal images showing the percentage of pHP1g-positiv

mean ± SEM.
retains increased levels of immunostimulatory chemokine such

as MCP-1, previously shown to activate senescence surveil-

lance (Gabrilovich and Nagaraj, 2009; Xue et al., 2007; Zitvogel

et al., 2008). Importantly, we provide evidence that R-SASP im-

proves chemotherapy efficacy in Pten-null tumors. Indeed, do-

cetaxel drives a strong senescence response in Pten-null tumors

but fails to activate an antitumor immune response and tumor

clearance. These findings have immediate implications for the

design of clinical trials evaluating the efficacy of docetaxel or

novel chemotherapies, whose mechanism of action is based

on senescence induction in prostate cancer patients. Our pre-

clinical data predict that single-agent docetaxel will mostly result

in disease stabilization, rather than tumor regression, particularly

in PTEN-null tumors that account for the majority of primary and

metastatic prostate cancers and that often retain an intact

p53 status (Schlomm et al., 2008). A recent clinical trial demon-

strates that PTEN-deficient prostate cancer patients are resis-

tant to docetaxel treatment in line with our findings in the mouse

model (Antonarakis et al., 2012). In this respect, our data suggest

that combined therapy with JAK inhibitors should promote the

reprogramming of the SASP, leading to an antitumor immune

response in docetaxel-treated patients (Figure S7C, model).

In addition, the direct comparison between two different types

of senescence responses in prostate, PICS versus OIS,

provides insights on the mechanisms that lead to the establish-

ment of a protumorigenic SASP in senescent tumors. Indeed,

in PbKras(G12D)-driven senescent tumors (OIS), and in stark

contrast to PICS, we did not observe downregulation of SHP2

and activation of Stat3. Absence of Stat3 activation in OIS was

associated with a distinct SASP compared to PICS, which was

characterized by a lower level of immune-suppressive chemo-

kines and high levels of chemoattractants. This explains the

absence of tumor-infiltrating MDSCs, the strong activation of

T cells, and the progressive decay in the number of senescence

tumor cells in OIS. Because the effects of the SASP have been

recently shown to be spatially restricted, it is possible that the

levels of the immunosuppressive chemokines secreted by OIS

are not sufficient to exert prominent paracrine effects on the

tumor microenvironment (Acosta et al., 2013).

Lack of senescence surveillance in PICS, but not OIS, may

explain at least in part why Pten-null prostate tumors became

invasive at late stage whereas PbKras(G12D) mice develop only

benign tumor lesions. All together, these data suggest that
c�/� Tumors

BSK805 and docetaxel in Ptenpc�/� mice. Starting from 8 weeks of age, mice

or in combination with weekly docetaxel at 10 mg/kg (top). Analysis of tumor

1).

05, docetaxel, and docetaxel+NVP-BSK805. pStat3 staining is used as control

.

ent groups (n = 5; *p < 0.05; **p < 0.01; mice = 12 weeks of age).

; **p < 0.01).

taxel-, and docetaxel+NVP-BSK805-treated tumors (n = 3; *p < 0.05; **p < 0.01;

se proximity of senescent cells (green).

e senescent cells (green) in Ptenpc�/�-treated mice. Data are represented as
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Figure 5. Comparative Analysis of PICS versus OIS in Prostates

(A) H&E (top) and b-galactosidase staining (bottom) of Ptenpc+/+, Pten�/�, and Kras(G12D) prostates at 14 weeks of age.

(B) p16 mRNA levels in Ptenpc+/+, Ptenpc�/� (PICS), and Kras(G12D) (OIS) prostates.

(C) Different SASP intensity between PICS and OIS (n = 3; *p < 0.05; **p < 0.01).

(D) pStat3Y705 staining (left) and its quantification (right) on paraffin sections from Ptenpc+/+, Ptenpc�/� (PICS), and Kras(G12D) (OIS) prostates (n = 3).

(E) FACS analysis (and quantification of CD11b+GR1+ cells in Ptenpc+/+, Ptenpc�/� [PICS], and Kras(G12D) [OIS] prostates). Percentages calculated on CD45+-

gated cells.

(F) Percentage of interferon-g-releasing CD8+ cells (gated on CD45+ cells) in Ptenpc+/+, Ptenpc�/� (PICS), and Kras(G12D) (OIS) prostates (n = 3).

(G) GranzymeB mRNA levels in Ptenpc�/� (PICS), Ptenpc�/�; Stat3pc�/� (PICS), and Kras(G12D) (OIS) senescent prostate tumors (n = 3).

(H) Representative images showing the decay of SA-b-galactosidase staining over time (14, 20, and 24 weeks) in Kras(G12D) tumors.

Data are represented as mean ± SEM.
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Figure 6. Correlation between PTEN and PTPN11/SHP2 Levels in Both Mouse and Human Prostate Cancers

(A) Shp2 mRNA levels in Ptenpc+/+, Ptenpc�/� (PICS), and in Kras(G12D) (OIS) tumors (n = 3; **p < 0.01).

(B) Western blot analysis showing the reduced Shp2 protein levels in Ptenpc+/+ and Ptenpc�/� purified epithelial prostate cells at the onset of senescence (8 weeks

Ptenpc�/� tumors; high-grade PIN and 14 weeks Kras(G12D); low-grade PIN).

(C) Western blot analysis and quantification of PTEN, SHP2, and STAT3 levels in DU-145 human prostate tumor cells infected with an inducible small hairpin RNA

for PTEN.

(legend continued on next page)
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Figure 7. The Correlation between PTEN

and PTPN11/SHP2 Is Frequently Found in

Cancer

(A) Heatmap showing the correlation between

PTEN and PTPN11/SHP2 in a PANCACER anal-

ysis performed on 25 different tumor types (5,703

samples).

(B) Overall survival showing the poor clinical

outcome of patients with low levels of both PTEN

and PTPN11/SHP2 (red line) when compared with

the group of patients with high levels of both PTEN

and PTPN11/SHP2 (blue line); the group of pa-

tients with low levels of both PTEN and PTPN11/

SHP2 are the patients highlighted in the red box of

the heatmap of (A).
activation of Jak2/Stat3 pathway is the key determinant underly-

ing the difference between the SASPs of PICS and OIS and

demonstrate that the protumorigenic features of the SASP

depend on the genetic background of senescent tumor cells.

Our findings establish a direct correlation between the levels of

PTEN and SHP2 in both mouse and human tumors. Recent

studies have demonstrated that loss of SHP2 activity or deletion

of Ptpn11, the gene encoding for SHP2, promote tumorigenesis

in different mouse models by sustaining the activation of the

JAK/STAT3 pathway (Bard-Chapeau et al., 2011; Zhu et al.,

2013; Yang et al., 2013). Our PANCANCER analysis also demon-

strated that the correlation between the levels of PTEN and

SHP2 exist in different types of human tumors in addition to pros-

tate cancer. Finally, patient stratification based on the levels of

PTEN and SHP2 showed that tumors with low levels of both

PTEN and SHP2 had the worst prognosis, reinforcing the poten-

tial clinical implication of our findings also in a broader scenario

beyond the context of senescence tumor lesions.
EXPERIMENTAL PROCEDURES

Mice

PtenloxP/loxP mice were generated and genotyped as previously described (Ali-

monti et al., 2010; Chen et al., 2005; Trotman et al., 2003). Stat3loxP/loxP

mice were generated and provided by Oriental BioService. Rag1�/� mice

were a kind gift from Prof. Fabio Grassi. Female PtenloxP/loxP; Stat3loxP/loxP and

PtenloxP/loxP; Rag1�/� mice were crossed with male PB-Cre4 transgenic mice

and genotyped. For Stat3, Stat3loxP/loxP primer 1 (50-CCTGAAGACCAAGTTCAT

CTGTGTGAC-30) and primer 2 (50-CACACAAGCCATCAAACTCTGGTCTCC-30)
were used. For Rag1�/� primer 1 (50-GAGGTTCCGCTACGACTCTG �30) and
primer 2 (50-CCGGACAAGTTTTTCATCGT-30) primer 3 (Neo; 50-TGGATGTG

GAATGTGTGCGAG-30) were used. All mice were maintained under specific

pathogen-free conditions in the animal facilities of the Institute for Research in

Biomedicine, and experiments were performed according to state guidelines

and approved by the local ethics committee.
(D) Time course experiment showing the sustained phosphorylation of STAT3 upo

presence of 0.5% of FCS and then stimulated with IL-6 (40 ng/ml) and STAT3 ph

(E) Heatmaps and scattered plot showing the correlation between PTEN and SH

(GSE21034).

(F) Kaplan-Meier survival curves of three different human prostate cancer data se

the red curve represents patients with high levels of both PTEN and SHP2.

(G) IHC for PTEN, SHP2/PTPN11, and pJAK2 on a tissue microarray (TMA) of hu

(H) Table showing the correlation between PTEN and SHP2/PTPN11 protein levels

pJAK2; analysis performed on the TMA in (G). Data are represented as mean ± S
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Western Blot, Immunohistochemistry, and Immunofluorescence

Tissue and purified epithelial lysates were prepared with RIPA buffer (13 PBS,

1% Nonidet P40, 0.5% sodium deoxycholate, 0.1% SDS, and protease inhib-

itor cocktail [Roche]). The following antibodies were used for western blotting:

rabbit polyclonal anti-Pten (9552; Cell Signaling Technology), rabbit mono-

clonal anti-phospho Stat3 Tyr705 (D3A7; CST), mouse monoclonal Stat3

(124H6; CST), rabbit monoclonal anti-Jak2 (D2E12; CST), rabbit polyclonal

anti-phospho- Jak2 (3771; CST), rabbit polyclonal anti-Akt and anti-phospho-

serine 473 of Akt (CST), rabbit polyclonal anti-p16 (M156; Santa Cruz Biotech-

nology), mouse monoclonal anti-b-actin (AC-74; Sigma), rabbit monoclonal

anti-SHP-1 (C14H6; CST), and rabbit monoclonal anti-SHP-2 (D50F2; CST).

For IHC, tissues were fixed in 10% formalin and embedded in paraffin in

accordance with standard procedures. Sections were stained for phospho

Stat3 Tyr705(D3A7; CST), Stat3 (124H6; CST), Pten (51-2400; Invitrogen),

Ki67(Clone SP6; Lab Vision), anti-CD3 (Dako), and anti-CD45R/B220 (BD

Pharmigen). For IF on tissue, paraffin-embedded sections were stained for

rabbit monoclonal anti-phospho Stat3 Tyr705 (D3A7; CST) and mouse mono-

clonal anti-a-tubulin (DM1A; CST). Confocal sections were obtained with Leica

TCS SP5 confocal microscope.

Prostatic Epithelial Cell Purification and Cytokine Array

Ptenpc+/+; Stat3pc+/+; Ptenpc+/+, Ptenpc�/�, and Ptenpc�/�; Stat3pc�/� 9-week-

old mice were scarified, and whole prostates (n = 3 per group) were isolated

and processed to single-cell suspension (Lukacs et al., 2010) for MACS. Single

cells were stained with fluorescein isothiocyanate (FITC)-anti-CD34 (stroma),

FITC-anti-Ter119 (erythrocytes), FITC-anti-CD31 (endothelial), and FITC-

anti-CD45 (leukocytes) and incubated 20 min on ice. All antibodies (BD Biosci-

ences) were used at 1:300; cells were then loaded into MS column (Miltenyi

Biotec) for MACS separation, and unstained epithelial cells were collected in

the negative fraction. Purified prostatic epithelial cells were processed as indi-

cated in cytokine array kit (R&D Systems). Developed films were scanned, ob-

tained images were analyzed using ImageJ 1.43u, and background signals

were subtracted from the experimental values.

Autopsy and Histopathology

Animals were autopsied, and all tissues were examined regardless of their

pathological status. Normal and tumor tissue samples were fixed in 10%

neutral-buffered formalin (Sigma) overnight. Tissues were processed by
n PTEN downregulation in DU-145 prostate cells. Cells were starved for 12 hr in

osphorylation assessed by western blot at the indicated time points.

P2 mRNA levels in a human data set of normal prostates and prostate tumors

ts. The blue curve represents patients with low levels of both PTEN and SHP2;

man prostate cancer.

and the anticorrelation between the protein levels of PTEN-SHP2/PTPN11 and

EM. Images are magnified 3 20.



ethanol dehydration and embedded in paraffin according to standard proto-

cols. Sections (5 mm) were prepared for antibody detection and hematoxylin

and eosin (H&E) staining. To evaluate evidence of invasion, sections were

cut at 20 mm intervals and H&E stained. Slides were prepared containing three

to five of these interval sections.

Flow Cytometry Analysis of Cell Phenotype

Samples were acquired on a BD FACSCanto II flow cytometer (BD Biosci-

ences) after fixation with 1% formaldehyde (Sigma-Aldrich). Cells resus-

pended in PBS containing 1% fetal calf serum (FCS) (Sigma-Aldrich) were

stained for 10 min at room temperature with the following anti-mouse

monoclonal antibodies: CD45 eFluor 450 (clone 30-F11); CD3e FITC (clone

145-2C11); CD4 allophycocyanin (APC)-eFluor 780 (clone GK1.5); CD8 phyco-

erythrin (PE) (clone 53-6.7); CD25 PE-Cy7 (clone PC61.5); NK1.1 eFluor 450

(clone PK136); lysosomal-associated membrane protein 1 (CD107a) APC

(clone 1D4B); Ly-6G (Gr-1) PE (clone RB6-8C5); CD11b APC (clone M1/70);

CD19 FITC (clone 6D5); and CD45R/B220 FITC (clone RA3-6B2). All the anti-

bodies were purchased from eBioscience. GR1+CD11b+ were sorted from the

prostate single-cell suspension using a FACSAria cell sorter (BD Biosciences)

after staining with anti-CD45, anti-GR1, and anti-CD11b antibodies for 30 min

at 4�C in PBS containing 1% FCS. CD8+ T cells were sorted based on the

expression of CD45, CD3, and CD8. Data were analyzed using FlowJo soft-

ware (TreeStar).

In Vitro Suppression Assay

In vitro suppression assays were carried out in RPMI/10% FCS in 96-well U-

bottom plates (Corning) with 2.5 3 104 CD8+ splenocytes as responder cells

and titrated amounts of FACS-sorted GR1+CD11b+ or CD3+CD4+CD25+

Treg used as a positive control. CD8+ T cells were labeled with 5 mM CFSE

(Molecular Probes), and stimulation was carried out with plate-bound anti-

CD3 (3C11; 2 mg/ml) and anti-CD28 (2 mg/ml; BD PharMingen). After 4 days

at 37�C, proliferation of CD8+ T cells was analyzed by FACSCanto flow

cytometer.

RNA Expression Analysis

RNA isolation (QIAGEN) and TaqMan reverse transcriptase reaction (Applied

Biosystems) were according to the manufacturer’s instructions. Quantitative

PCR reactions (Bio-Rad) for each sample were done in triplicate. Sequences

used for PAI-1, IL6, MCP-1, CXCL1, CXCL2, GM-CSF, M-CSF, IL10,

ICAM-1, SHP2, PTEN, p21, p16, and GranzymeB were as follows: PAI-1 for-

ward 50-TTGAATCCCATAGCTGCTT-30, reverse 50-GACACGCCATAGGGA

GAGA-30; IL6 forward 50-TAGTCCTTCCTACCCCAATTT-30, reverse 50-TTGG

TCCTTAGCCACTCCTTC-30; MCP-1 forward 50-GTGGGGCGTTAAACTG

CAT-30, reverse 50-CAGGTCCCTGTCATGCTTCT-30; CXCL1 forward 50-CTG
GGATTCACCTCAAGAACATC-30, reverse 50-CAGGGTCAAGGCAAGCCTC-

30; CXCL2 forward 50-CCAACCACCAGGCTACAGG-30, reverse 50-GCGTCA

CACTCAAGCTCTG-30; GM-CSF forward 50-GGCCTTGGAAGCATGTAGA

GG-30, reverse 50-GGAGAACTCGTTAGAGACGACTT-30; M-CSF forward 50-
TGCTAGGGGTGGCTTTAGG-30, reverse 50-CAACAGCTTTGCTAAGTGCT

CTA-30; IL-10 forward 50-GCTCTTACTGACTGGCATGAG-30, reverse 50-
CGCAGCTCTAGGAGCATGTG-30; ICAM-1 forward 50-GTGATGCTCAGGTAT

CCATCCA-30, reverse 50-CACAGTTCTCAAAGCACAGCG-30; SHP2 forward

50-GAACTGTGCAGATCCTACCTCT-30, reverse 50-TCTGGCTCTCTCGTACA

AGAAA-30; PTEN forward 50-TGGATTCGACTTAGACTTGACCT-30, reverse

50-GGTGGGTTATGGTCTTCAAAAGG-30; p21 forward 50-CCCCCAATCGCAA

GGATTCTT-30, reverse 50-CTTGGTTCGGTGGGTCTGTC-30; p16 forward 50-
CGCAGGTTCTTGGTCACTGT-30, reverse 50-TGTTCACGAAAGCCAGAGCG-

30; and GranzymeB forward 50-CCACTCTCGACCCTACATGG-30, reverse 50-
GGCCCCCAAAGTGACATTTATT-30.

Small Hairpin RNA, siRNA, and Plasmids

DU145 prostate cancer cell lines were plated into 6-well dishes and infected

with a doxycycline-inducible pTRIPZ shPTEN (clone id: V2THS_92317; Open

Biosystems; mature sense: 50 GGCGCTATGTGTATTATTA 30). siPTEN_1

(Life Technologies; cat. no. 4392420); siPTEN_2 and siPTPN11 (Thermo Scien-

tific). Plasmid used for the rescue experiments: CMV566 empty vector and

pCMV-SHP2 WT (Addgene).
Gene Expression Profiling

Prostate cancer genome-wide gene expression data sets and clinical infor-

mation were downloaded from Gene Expression Omnibus database or ob-

tained from authors upon request (Glinsky et al., 2004; Setlur et al., 2008;

Taylor et al., 2010). Pancancer data set matrix and clinical information

was downloaded from University of California, Santa Cruz Cancer Genomics

Browser (https://genome-cancer.ucsc.edu). Human cancer cell lines expres-

sion data set and sensitivity values to docetaxel treatment (IC50 values) were

downloaded from http://www.cancerrxgene.org/downloads (Garnett et al.,

2012).

Correlation Analysis

Correlation between gene-expression-derived values in the principle-compo-

nent analysis (PCA) and Pancancer data sets was done using Pearson corre-

lation test, which estimates a correlation value ‘‘r’’ and a significance p value

(r > 0 < 1, direct correlation; r < 0 > �1, inverse correlation). Correlation was

also performed in TMA staining evaluation using the estimated percentage

of positively stained cells as determined by a pathologist (M.S.).

Survival Curves

Differential survival between patient subgroups was plotted and calculated

using Kaplan-Meier curves. Patients were stratified based on PTEN and

PTPN11 score values. In brief, scores were rank ordered and divided in

seven percentiles (from lowest to highest values). We considered samples

having PTEN/PTPN11 low values as those in the first percentile. Such strat-

ification gave significant differences in overall survival within the Pancancer

study (log rank test) and in the high Gleason patients within the PCA data

sets.

Statistical Analysis

Data analysis was performed using a two-tailed unpaired Student’s t test.

Values are expressed as mean ± SEM (*p < 0.05; **p < 0.01; ***p < 0.001).
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sow-Drolet, A., Mirlacher, M., Milde-Langosch, K., Graefen, M., et al. (2008).

Clinical significance of p53 alterations in surgically treated prostate cancers.

Mod. Pathol. 21, 1371–1378.

Schwarze, S.R., Fu, V.X., Desotelle, J.A., Kenowski, M.L., and Jarrard, D.F.

(2005). The identification of senescence-specific genes during the induction

of senescence in prostate cancer cells. Neoplasia 7, 816–823.

Setlur, S.R., Mertz, K.D., Hoshida, Y., Demichelis, F., Lupien, M., Perner, S.,

Sboner, A., Pawitan, Y., Andrén, O., Johnson, L.A., et al. (2008). Estrogen-

dependent signaling in a molecularly distinct subclass of aggressive prostate

cancer. J. Natl. Cancer Inst. 100, 815–825.

Taylor, B.S., Schultz, N., Hieronymus, H., Gopalan, A., Xiao, Y., Carver, B.S.,

Arora, V.K., Kaushik, P., Cerami, E., Reva, B., et al. (2010). Integrative genomic

profiling of human prostate cancer. Cancer Cell 18, 11–22.



Trapani, J.A., and Sutton, V.R. (2003). Granzyme B: pro-apoptotic, antiviral

and antitumor functions. Curr. Opin. Immunol. 15, 533–543.

Trotman, L.C., Niki, M., Dotan, Z.A., Koutcher, J.A., Di Cristofano, A., Xiao, A.,

Khoo, A.S., Roy-Burman, P., Greenberg, N.M., Van Dyke, T., et al. (2003). Pten

dose dictates cancer progression in the prostate. PLoS Biol. 1, E59.

Tuveson, D.A., Shaw, A.T., Willis, N.A., Silver, D.P., Jackson, E.L., Chang, S.,

Mercer, K.L., Grochow, R., Hock, H., Crowley, D., et al. (2004). Endogenous

oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic

and developmental defects. Cancer Cell 5, 375–387.

Vanneman, M., and Dranoff, G. (2012). Combining immunotherapy and tar-

geted therapies in cancer treatment. Nat. Rev. Cancer 12, 237–251.

Xue, W., Zender, L., Miething, C., Dickins, R.A., Hernando, E., Krizhanovsky,

V., Cordon-Cardo, C., and Lowe, S.W. (2007). Senescence and tumour clear-

ance is triggered by p53 restoration in murine liver carcinomas. Nature 445,

656–660.
Yang, W., Wang, J., Moore, D.C., Liang, H., Dooner, M., Wu, Q., Terek, R.,

Chen, Q., Ehrlich, M.G., Quesenberry, P.J., and Neel, B.G. (2013). Ptpn11

deletion in a novel progenitor causesmetachondromatosis by inducing hedge-

hog signalling. Nature 499, 491–495.

Yu, H., Pardoll, D., and Jove, R. (2009). STATs in cancer inflammation and

immunity: a leading role for STAT3. Nat. Rev. Cancer 9, 798–809.

Zhu, X., Kong, D., Zhang, L., Sun, Y., Na, S., Han, C., and Jin, X. (2013). Cor-

relation analysis of angiotensin-converting enzyme, angiotensinogen, and

endothelial nitric oxide synthase gene polymorphisms and the progression

of immunoglobulin A nephropathy/membranous nephropathy. Hum. Pathol.

44, 2806–2813.

Zitvogel, L., Tesniere, A., Apetoh, L., Ghiringhelli, F., and Kroemer, G. (2008).

[Immunological aspects of anticancer chemotherapy]. Bull. Acad Natl. Med.

192, 1469–1487, discussion 1487–1489.
Cell Reports 9, 75–89, October 9, 2014 ª2014 The Authors 89


	1
	Enhancing Chemotherapy Efficacy in Pten-Deficient Prostate Tumors by Activating the Senescence-Associated Antitumor Immunity
	Introduction
	Results
	Pten-Null Senescent Tumors Are Characterized by an Immunosuppressive Tumor Microenvironment
	The Jak2/Stat3 Pathway Is Activated in Ptenpc−/− Senescent Tumors
	In Ptenpc−/−; Stat3pc−/− Senescent Tumors, the Antitumor Immune Response Is Reactivated
	Docetaxel Treatment Enhances Senescence but Does Not Cause Significant Tumor Regression in Pten-Null Prostate Tumors
	Pharmacological Inhibition of the Jak2/Stat3 Pathway Leads to an Effective Antitumor Immune Response in Prostate Tumors Tre ...
	The Difference between the SASP of PICS and OIS Depends on the Genetic Background of the Senescent Tumor Cells
	Loss of PTEN Drives Downregulation of PTPN11/SHP2 that Sustains the Activation of the JAK2/STAT3 Pathway

	Discussion
	Experimental Procedures
	Mice
	Western Blot, Immunohistochemistry, and Immunofluorescence
	Prostatic Epithelial Cell Purification and Cytokine Array
	Autopsy and Histopathology
	Flow Cytometry Analysis of Cell Phenotype
	In Vitro Suppression Assay
	RNA Expression Analysis
	Small Hairpin RNA, siRNA, and Plasmids
	Gene Expression Profiling
	Correlation Analysis
	Survival Curves
	Statistical Analysis

	Supplemental Information
	Acknowledgments
	References


