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We consider the weak formulation of a linear elliptic model problem with discontinuous Dirichlet bound-
ary conditions. Since such problems are typically not well defined in the stamtfardi? setting we
introduce a suitable saddle point formulation in terms of weighted Sobolev spaces. Furthermore, we dis-
cuss the numerical solution of such problems. Specifically, we empldypediscontinuous Galerkin
method and derive (enhanceld%-norm upper and local lowex posteriorierror bounds. Numerical ex-
periments demonstrate the effectiveness of the proposed error indicator in bbthatitetheh p-version

setting. Indeed, in the latter case, exponential convergence of the error is attained as the mesh is adaptively
refined.
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1. Introduction

On a bounded polygonal domaid c R? with straight edges and connected boundBry= 62, we
consider the linear diffusion—reaction problem

—Au+cu=f ingQ, (1.1)
u=g onlrl, (1.2)

wherec € L®(Q) is a non-negative functiorf, € L2(£2) andg € L2(I") is a possibly discontinuous
function onI” whose precise regularity will be specified later. Throughout the paper we shall use the
following notation. For a domaild c R" (n = 1 orn = 2) we denote byL2(D) the space of all
square-integrable functions d», with norm|| - ||o,p. Furthermore, for an integére No, we IetHk(D)
be the usual Sobolev space of orétem D, with norm|| - ||x,p and seminornp- |, p. The spaceHl(Q)
is defined as the subspacetdt(Q) consisting of functions with zero trace dh

Several variational formulations for elliptic problems with discontinuous Dirichlet boundary condi-
tions exist. We mention theery weak formulatiomvhich is to find a solutiom € L?(Q) such that

—/ uAvdx+/ cwdx:/ fudx—/ng-nds
Q Q Q r
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foranyo € H2(Q) N I—oll(Q), wheren denotes the unit outward normal vector to the boundarit is

based on twofold integration by parts df {) and incorporates the Dirichlet boundary data in a natural
way. On the other hand, however, the numerical solution by means of a conforming finite element
discretization would require continuously differentiable test functions. In order to avoid this problem
the following saddle point formulation can be used (Seéas 1962: provided thay € H72=%(I"), for

somes € [0, 1/2), findu € H%(Q) with u| > = g such that

/Vu-VvdX-I—/CUvdX:/ fodx (1.3)
Q Q Q

forallo € H*¢(Q)n H 1(©). We note that the bilinear form on the left-hand side is formally symmetric
and corresponds to the standard form for the Poisson equation. For results dealing with related finite
element approximations we referBabuska(1971).

In the present paper a new variational formulation thi¥-(1.2) is presented and analysed. Here
the emphasis shall be on Dirichlet boundary conditions that may exhibit (isokitst)ntinuitiesand
are essentially continuous otherwise. The formulation in this article is closely related to the saddle point
formulation (.3, however, it features Sobolev spaces that describe the local singularities in the ana-
lytical solution resulting from the discontinuities in the boundary data in a more specific way. More
precisely,weightedSobolev spaces that have been used in the context of regularity statements for
second-order elliptic boundary value problems, see, Bgbska & Guo(1988 1989 and Guo &
Schwab(2006), will be used. The idea of applying weights for problems with discontinuous boundary
data has been employed previoushBiarnardi & Karageorghi§1999. For the formulation in the cur-
rent paper we will establish well-posedness of the weak formulation in terms of an approfr=ip
condition

In order to discretize the underlying partial differential equation (PDE) problem we employ a frame-
work that allows possible singularities in the solution to be resolved efficiently (seeBatyskaet al,
1979 Guo & Babiska 1986ab; Schwalb 1998 Nicaise 2000for results on the approximation of sin-
gularities in weighted Sobolev spaces). Specifically, in this paper, we shall explbipthersion of the
symmetric interior penalty discontinuous Galerkin (DG) finite element methoAreéld et al. (2001),
and the references cited therein. DG methods are ideally suited for redligindaptivity for second-
order boundary value problems, an advantage that has been noted early on in the recent development
of these methods; see, for exam@@aumann & Oder(1999, Riviereet al. (1999, Cockburnet al.
(2000, Perugia & Schtzau(2002, Wihler et al. (2003, Houstonet al. (2002 2007, 2008, Stamm &
Wihler (2010 and the references therein. Indeed, working with discontinuous finite element spaces eas-
ily facilitates the use of variable polynomial degrees and local mesh refinement techniques on possibly
irregularly refined meshes—the two key ingredientstpradaptive algorithms. A further advantage
of interior penalty DG formulations is that they incorporate Dirichlet boundary conditions in a natu-
ral way irrespective of their smoothness (in fact-regularity is sufficient for well-posedness). With
this in mind, we shall derive computable upper and local loaposterioribounds for the error mea-
sured in terms of an enhanced-norm onQ. On the basis of the resulting computable error indicators,
adaptiveh- and hp-mesh adaptation strategies will be investigated for a model second-order elliptic
PDE with discontinuous boundary conditions. In particular, we shall show numerically that exploiting
hp-refinement leads to exponential convergence of the (enhahdedprm of the error as the finite
element space is enriched.

The article is organized as follows. In Sectidthe new variational formulation ofL(1)—(1.2) will
be presented. In addition, its well-posedness will be proved. Then, in S&taa will briefly review
hp-version DG discretizations for the Laplace operator and dérfveorma posteriorierror estimates.
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Additionally, the performance of the corresponding local error indicators is shown with a number of nu-
merical experiments within am andhp-version adaptive framework. Finally, a few concluding remarks
are made in Sectioh

2. Variational formulation
2.1 Weighted Sobolev spaces

Let A = {Ai}i"":1 c I', Al # Aj fori # |, be afinite set of points on the boundary of the polygonal
domain® which are numbered in a counter clockwise direction albinthe points ind will signify the
locations of the discontinuities in the Dirichlet boundary conditipim (1.2). Furthermore, we denote
byl cI',i=1,2,..., M, the (open) subset df, which connects the two points and A ;1; here
we setAv1 = A1. Moreover, letw; € (0, 2z] signify the interior angle of the polygo® at A;. To

eachA € A,i =1,2,..., M, we associate a weiglt € R. These numbers are stored in a weight
vector
a=(a1,a2,...,aM)eRM. (2.1)
Moreover, for any numbek € R, we use the notatioka = (kai, kaz,...,kan) anda + k =
(a1 + K, a2 + K, ...,am + k). Furthermore, for a fixed number
n >0, (2.2)

we introduce the following weight function af:
M
Be(x) = [[ri0)™,  ri(x) = min {n‘llx - Al 1}.
i=1

Here we assume thatis small enough, so that the open sectors
S=XeQ:x=Al|<7n, i=12...,M, (2.3)
do notintersect,e., S N'S; = #if i # j. There holds, fox € Q, that

nix— Al ifxes,
ifxeQ\§S,

ri(x) =

andrj € C9(Q),i =1,2,..., M. Furthermore, setting

we have

r ifxe S forsomei =1,2,... M,
By = (2.4)

1 ifXEQo.
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Note thatd,, is continuous or2. Furthermore, for1, a» € RM, we have
Payta, = Pay Pas» ‘p;l =P q.

Then, for any integers1 > | > 0, we define the weighted Sobolev spaH%E" (9) as the completion
of the space&>°(Q) with respect to the weighted Sobolev norms

m
2 — lull? 2 | >1
Ul gy = M-, + 2 g 121

m
2 2
u = u .
1l imo ) = 21Ul ko )
k=0
Here

2
|u|2H.'§"(Q) - Z HQS“J’k_leu”)og
|4]=k :

is the H;‘"-seminorm inQ, where
o lu
D*u = —a T2’
X1 0%y
with 4 = (11, 12) € N3and|A| = A1 + 2.

_1,_1
In addition, form > | > 1, let us define the spadeam 2 2(I') as the trace space &f' (©),
equipped with the norm

lull 2,22 = inf o follgmi o
He 20 2()  ven™ (o) Ha™ ()
vl =u

Moreover, we denote b}:I,T"(Q) the subspace oIf-I,T"(Q) consisting of functions with zero trace
on/l.

2.2 Inequalities in I{’l(.Q)

In order to describe the well-posednessifif—(1.2) the weighted Sobolev spad:ef,l’l(Q) will play an
important role. In the sequel we shall collect a few inequalities that will be used for the analysis in this
paper.

LEMMA 2.1 Letl = (a,b) Cc R, a < b, be an open interval. Then there holds the PoigeBriedrichs
inequality
(b —a)?

72

b b
/ P ()2 dx < / (@ () dx

for all ¢ € H1(a, b) with ¢(a) = ¢(b) = 0.

Proof. The bound follows fronHardyet al. (1952 Theorem 257) and a scaling argument. O
Applying the previous lemma we shall prove the following result.
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LEMMA 2.2 Consider a sect@ = {(r,0):0 <r < R,y < 6 < 61} c R2, where(r, §) denote polar
coordinates ifR%, andR > 0, 0 < 6g < 61 < 2 are constants. Furthermore, lete L2(S) with
Ir*Vullo,s < oo for somea € [0, 1), andu|ss. = 0, wheredS. = {(r,6): 0 <r < R, 8 € {6o, 61}}.
Then there holds

61 — 6p)?
/rz"“zu(x)zdxg (61— 00" 20) /r2“|Vu|2dx.
s ™ s

Proof. Using integration in polar coordinates we get

R 0
/rz"‘_zu(x)zdx=/ rz"_l/ u?do dr. (2.5)
S 0 o

Then since for any € (0, R) there holdsu(r, 8p) = u(r, #1) = 0 we can apply Lemma.1. This implies
01 61 — 0 2 rb01
/ u2d6’<(1—20)/ lapu?dg, O<r <R.
[74) T )
Furthermore, noting thabyu| < r|Vyu|, we obtain
01 1 — 6 2 61
/ u2dg < (1—20)r2/ IVxul2dd, 0<r <R
o T 0o

Inserting this estimate int@®(5) leads to

N2 R o
/ r22=2u(x)% dx < 1 = %) 290) / r2“+1/ |Vxu|?do dr.
s ™ 0 %

Changing back to Cartesian coordinatesompletes the proof. O

LEMMA 2.3 Given a weight vectaz € [0, 1)M. Then there holds
[@—qullo,e < Cllullye

for anyu € H1(Q), where the constait > 0 only depends om andQ.

Proof. LetS,i =1, 2, ..., M, be the (sufficiently small) sectors frora.8). Then we recall the property
(2.4) to write

M

i 2
1P—aUlg o = UG o, + 1P-alll§ & = lIUIG 0o + D Iri “ullg g (2.6)
i=1

If, for some 1< i < M, we have thatj > 0, then

—ai |12 2 1-ai g, | 2 .
Irulpg < C(nuno,s + VuHo,s) <Clul?g;

this follows from expressing the norms in terms of polar coordinates and from appiigrdy et al.
(1952 Theorem 330). Inserting this int@.6) gives the desired inequality. O
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LEMMA 2.4 Consider a function € HE1(Q), wherea; € [0,1),i = 1,2, ..., M. Then there holds

1
IV (@a)lullo.e < — max ajei |uljag

sIs

)

Proof. Let §,i = 1,2,..., M, be the (sufficiently small) sectors frord.8). Then, due toZ.4), we
have
V| = air]‘lr-“‘_l if xe § forsomei =1,2,..., M,
|V (@g)| = Vil ! , 2.7)
if X € Qq.
Hence,
M
/ |V (®g)|Pu?dx = q‘ZZaiz/ r24 =202 dx. (2.8)
Q i=1 7S
Then, applying Lemma.2, we have
20i—2, 2 zw'2 20; 2
/ri Tucdx < —'Z/ri "|Vul|? dx.
S T=Js
Thus,
M 2 2 2 2
£t . max < £
Q = 72 s 7?2 Q
as required. 0

Furthermore, there holds the following PoingaFriedrichs inequality.

LEMMA 2.5 Consider a weight vectar € [0, )M andy C I with fy ds > 0. Then there exists a
constanC > 0 depending only on, Q anda such that

lullo,e < Clul11 4,
for all functionsu € Hgq''(2) with ul, = 0 (in the trace sense). In particular, we have thg‘tl,l(g) is
anorm onlfl,}’l(Q).

Proof. We first note that the embeddiMy®1(Q) — L2(Q) is continuous for Lipschitz polygons in
RR? (cf., e.g.,Adams & Fourniey2003 Theorem 4.12). Hence, there exists a constant 0 depending
on Q such that

lullo,e < Cllullwii(g)-
Moreover, applying the PoindarFriedrichs inequality itv11(Q), it follows that
lullo,e < Cllullwigy < C'I1Vull 1o

for a constan€’ > 0 depending oy andQ. Therefore, using Blder’s inequality, we obtain

1 1
2 2
||u||o,g<0’/ |Vu|dx<c/(/ @;de) (/ ¢3|Vu|2dx) |
Q Q Q
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Then employing2.4) yields

M
/qﬁgdeZZ/ri_z’“dx+/ 1ox,
Q i=17/S o

and using integration in polar coordinates it follows that the above integrals are all boundgd<fdr,

i =1,2,..., M. This completes the proof.
To close this section we shall prove the following Green type formulae.

LEMMA 2.6 Leta e [0, 1)M be a weight vector and consider two functians H,}’l(.Q) and¢ €

H2(Q). In addition, suppose that the traceudf € L2(I"). Then

/QA¢udx=/F(V¢~n)uds—/Q V¢ - Vudx

holds true, whera denotes the outward unit vector fa

Proof. Due to the density o€>(Q) in H,}’l(Q) we can choose a sequeneg}n>o C C>®(Q) such
that limn_ U — un||H1,1(Q) = 0. Then, using Green’s formula for smooth functions, we have

/ Apun dx:/(V¢~n)unds—/ V¢ - Vup dx
Q r Q
for any functionp € C*®(Q). Furthermore, there holds

n—oo
< pllz,ellu—Unllo,e — O,

‘/ A¢ (up — u) dx
Q

and, using Lemma.3,

'/ V- V(up —u) dx| < |P—aVllo,0l|Pa V(U —Un)lio,e
Q

n—oo
< Cligllz.ollu = Unllyz1 g, = 0.

Furthermore, applying the trace theorenWit-1(Q) yields

‘/ (Vg -n)(up —u) ds
r

< suplVolllu — UnllLzry
Q
< Csup|Vel(llu — Unll 1oy + I V(U= Un)llL1(0))
Q
< Csup|Vgl(llu — Unllo. + 1P—allo.0lPa V(U — Un)lo.0)
Q

n—oo

— 0.

< CsuplVelllu = nll11)
Q

This implies the identityZ.9) for u H,}’l(Q) andg € C®(Q).
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For¢ e H2(Q) the density of£>°(Q) in H?(Q) guarantees the existence of a sequetiggn>o C
C(Q) with limp_ 00 [[¢n — ¢ll2,0 = 0. Then

/ Appudx = / (Vén - n)uds—/ Vn - Vudx
Q r Q
for all u € H1(Q). Similarly, as before, we have

n—oo
< lign = ¢ll2, 0 ullge — 0O,

1/ A — $ud
Q

and, with Lemma.3,

‘/Q Vign —¢) - Vudx| < [[@-a V(gn — P)llo,ellPa Vullo,o

n—oo
g ||¢n _¢”2,Q”u”H‘}sl(g) — 0

Moreover, using the trace theorem again, we obtain

‘/F(V@n — @) -muds| < [IV(¢n — P)llL2rlUllLz

< Clign — liz0 lUll 2y =37 0.
This completes the proof. O

LEMMA 2.7 Leta € [0, )M, andQy C @ a connected subset with Lipschitz boundary. Furthermore,
consideru € HZ1(Qo) with 4u e L2(Qg), ando € WL (Qg) with v| = 0. Then there holds

/vAudX+/ Vu-Vodx =0.
Qo Qo

Here the spacéi,}’l(.Qo) is defined as the restriction daf,}’l(.Q) to Qo.

Proof. This follows again by density and from the fact that-> (Q¢) — Hf;,l(Qo) continuously for
a € [0, )M: in particular, all integrals are well defined. O

2.3 Weak formulation

The aim of this section is to introduce a weak formulation for the boundary value probl&x({.2)
and to discuss its well-posedness.
Letg € H,}/Z’l/Z(F) in (1.2), wherea is the weight vector from2.1) with a; € [0,1), i =

1,2,..., M. Thenwe calu e H,}’l(!)) with u| = g a weak solution of1.1)—(1.2) if
/ Vu- Vo dx+/ cu dx:/ fodx Vo e HYY(Q). (2.10)
Q Q Q

Writing the solution in the formu = ug + G, whereug € I—°|,}’1(_Q) andG e H,}’l(Q) is a lifting of the
boundary datag, i.e.,G| = g, there holds

/Vuo~V0dX+/CuovdX=/ fvdx—/ VG'VvdX—/CGvdX Vvel-oﬁ@‘l(Q).
Q Q Q Q Q
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We note that this is a saddle point formulation ﬁd’l(!)) X I-Olfy,l(!)). Its well-posedness will be
discussed in the following.
We first show that the bilinear form

a(u,u):/ Vu-Vvdx+/ Cu dx
Q Q

and the linear functional

{’(v):/ fvdx—/ VG-VDdX—/ CGvdX:/ fodx —a(G, v)
Q Q Q Q

are continuous. Here we suppose that the liftg chosen such that
IG 110y < ClIGN 1212 1y (2.11)

for some fixed constar@®@ > 1 independent of.

PROPOSITION2.8 Leta € [0, 1)M be a weight vector. There is a constént- 0 (depending o and
a) such that

|a(ua U)l < ClulH#l(Q)lD'H}al(Q)

forallu e I—°|,}’1(Q), v € I—Olfyﬁl([)). Furthermore, forf € L2(2) andg € H,}/Z’l/Z(F), we have

@) < C (Ifllo.e + 19l jzrz ) 10l s,
foranyo € ﬁf’;(.Q).
Proof. There holds

la(u, v)| < |Pa Vullo.ol|P—a Vollo.e + lIClLx(@)llulo.elvllo.e
< C (Iulyzaglolyrag) + Iulloglivlio)
Furthermore, using the PoinéaifFriedrichs inequality and Lemn2a5, we get
ullo,ellvlio,e < CIUIHg,l(Q)Ivll,Q < CIUIH;LJ(Q)IDIHEQ(Q)-
Hence,
la(u, v)I < Clulyza g o121 g)-
Moreover, employing the previous estimate and proceeding as before to estimatetien, we obtain

1L@)I < [ fllo.ellvlloe +1a(G, 0)I < I fllo.elvly11 o) + ClCI11 g I0121(0)-

Then applying 2.11) yields the stability bound fof. O
Furthermore, the following inf-sup stability holds.
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PROPOSITION2.9 Leta € [0, 1)M be a weight vector. Suppose that the weightsi = 1,2,... M,
are sufficiently small so that

= — MmaX ajw < —=.
a T 1Ki<M 2

Then there holds

inf sup a, v) ) (2.12)

orucHa (@ ozveritio) Uit @) P Inike)

where
1-2u

o= —— 5
V2(4uZ + 1)

Furthermore, we have that

sup a(u,0) >0 VoeHY(Q), v£0. (2.13)
ueHt(Q)

Proof. Foru e I—°|,}’1(Q) we definey = ®3u. Then there holds

2
~2 2 ~12 -2 2 2 4 2
|v|H1’1(Q):/Q¢_a|Vv| dng/Q @ (’V(fpa)‘ u2 + @4 |vu| ) dx

—a

2,,2 2
<2(4/Q|v¢a| u dx+|u|Ha1,1(Q)).

Hence, applying Lemma.4, results in

012,14 (2.14)

—a

< 2(4#2 + 1)|U||2_|‘}1(

@ = Q)

In particular, it follows thab e Hf’al(Q).
Moreover, we observe that

a(u,B):/ Vu-V'v“dx+/ cub’dx:/ Vu~V(cD2u)dx+/ cd2u? dx.
o o o o

Thus, since > 0, we get

a(u,5)>/ (Vu.V(ng)u+¢§|Vu|2) dx
Q
=2/ cDaVu~V(cDa)udX+/ ®@2|Vul? dx
Q Q

2—5/ IV(@a)Izuzdx+(1—ﬂ)/ ®Z|Vul? dx.
HJa Q
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Recalling Lemma&.4|eads to

a(u,0) > —plulfa o) + @ = 0l ) > A= 201 (2.15)

Now, combining 2.14) and .15), it follows that

a(u, o lul2e a(u,d
sup (u,v) > hite) g v)
vetitiio) Uty PIutio) — Pyl U1,

foranyu e I—°|,}’1(.Q), u # 0. Taking the infimum over all € Iflj’l(Q) results in 2.12.
In addition, leto e Hf;,l(Q), v # 0. Then

sup a(u,v) > a(,v) > / [Vo|? dx.
ueH (@) Q

Due too| = 0 andv # 0, there holdg| Vo|lo,e > 0, and hence 13 holds. O
The above results, PropositioB8and2.9, imply the well-posedness of the variational formulation
(2.10; cf., e.g.,Schwab(1998 Theorem 1.15).

THEOREM2.10 Leta € [0, 1)M be a weight vector, witlj, i = 1,2, ..., M, sufficiently small such
that
T
max ojw < —
1<i<M 2

is satisfied. Furthermore, suppose tat H,}/Z’l/z(l“) andf € L2(2)in (1.1)—(1.2). Then there exists

exactly one solution of the weak formulatich 10 in H,}’l(Q).

3. Numerical approximation

We shall now discuss the numerical approximation of the problet){(1.2). To this end, we will con-
siderhp-version interior penalty DG finite element methods. Particularly, we will derive an (enhanced)
L2-norma posteriorierror estimate that can be applied for adaptive purposes.

3.1 Meshes, spaces and element edge operators

We consider shape-regular mesh@sthat partition2 c R? into open disjoint triangles and/or paral-
lelograms{K}k ¢ 7, ie.,Q = UKE% K. Each elemenK e %, can then be affinely mapped onto the
reference triangld = {(X,9): —1 <X < 1,—1 < ¥ < —X} or the reference squa@= (-1, 1),
respectively. We allow the meshes to be 1-irregular, i.e., elements may contain hanging nddgsvBy
denote the diameter of an elemdfite .7;,. We assume that these quantities are of bounded variation,
i.e., there is a constapt > 1 such that

prt < Piy/ng, < p. 3.1)

wheneverK; and K, share a common edge. We store the elemental diameters in a liegiten by
h = {hk: K € Z4}. Similarly, to each elemer e .9} we assign a polynomial degreg > 1 and
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define the degree vectpr= {px: K € ;}. We suppose thatis also of bounded variation, i.e., there
is a constanp, > 1 such that
pyt < Pry/px, < pa, (3.2)

wheneverK andK; share a common edge.

Moreover, we shall define some suitable element edge operators that are required for the DG method.
To this end, we denote b~ the set of all interior edges of the partitioh, of Q and by&y the set of
all boundary edges of4,. In addition, let§” = &, U &%. The boundaryK of an elemenK and the
setsoK \ 7" andoK N I" will be identified in a natural way with the corresponding subsets.of

Let K; and K, be two adjacent elements ¢fy, 0K; N 0K, = e for somee € &7 andx an
arbitrary point ore. Furthermore, leb andq be scalar- and vector-valued functions, respectively, that
are sufficiently smooth inside each eleméqy,. By (v4, @;,) We denote the traces @b, q) one
taken from within the interior oK} 4, respectively. Then the averagesaindg atx e e are given by

1 1
(v) = E(Dﬁ +o), (qQ) = E(Qn +a,),
respectively. Similarly, the jumps ofandq atx € e are given by
[o] = vsnk, +oonk,, [dl =g -nk, +0, - Nk,,

respectively, where we denote by, , the unit outward normal vector o?K ,, respectively. On a
boundary edge € &%, we set{v) = v, (q) = q, [v] = vnand [q] = q - n, with n denoting the unit
outward normal vector on the boundafy

Given a finite element mesh;, and an associated polynomial degree veptet (pk )k <., With
pk > 1forall K € 4, consider thép-discretization space

Vo(Fh, P) = {v € LA(@): vl € Sp (K), K < h) (3.3)

for the DG method. Here, foK e 5, Sp, (K) is either the spacBp, (K) of all polynomials of total
degree at mogbk onK or the spac@p, (K) of all polynomials of degree at mopk in each coordinate
direction onK.

Finally, let us introduce thenhanced B-norm

Mol o = 012 o + /g hp 10112 ds, (3.4)
foranyo € H,}’l(g) + Vba(%h, p), @ € [0, 1)M. Here the two functions € L°(&) andp € L®(&)

are given by

heo min(hk,, hg,) forx e oKy NoK, € &y,
X) =
hk forx e 0K NoQ e &,

) max(pk,, Pk,) forx e oKy NoK, e &y,
pXx) =
Pk forx e 0K NoQ € &y,

respectively.
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3.2 hp-DG discretization

We will now consider the followindnp-DG formulation for the numerical approximation df )—(1.2):
find upg € Vb (%, p) such that

apg(Upe, v) = pc(v) Yo € Vpc(Ih, p). (3.5)

Here

aDG(w,v)z/ (Vhw - Vho + cwo) dX—/ {(Vhw) - [o] ds
Q &

/l[w]l {(Vho) dS+y/O@0|[w]| -[v]ds (3.6)

is anhp-version symmetric interior penalty DG form, and
{pc(v) =/ fo dX—/ (Vho - n)gds + y / ogo ds. (3.7)
Q En S

In these formsVy, denotes the elementwise gradient operator; O is a stability constant, and the
functione is defined by

o= —. (3.8)
REMARK 3.1 Provided thap > 0 is chosen sufficiently large (independently of the local element sizes

and polynomial degrees), it is well known that the DG faapg is coercive. More precisely, there is a
constanC > 0 independent of, and p such that

apc(v,v) > C (nvhvnag +7 /(@a|[v]|2ds)

foranyo € Vpg(%h, p). In particular, the DG metho®(5) admits a unique solutiompg € Vpa(h, p);
see, e.g.Stamm & Wihler(2010 and the references therein.

3.3 A posteriori error estimation in the 4-norm

We shall now derive upper and local lower residual-bdged posteriorierror estimates in the enhanced
L2-norm from @3.4) for the DG formulation 3.5).

3.3.1 Upper bound. Let us consider the dual problem
—4¢ +cp=eps inQ, (3.9)
¢=0 onr. (3.10)

Here

epc = U — Upg (3.11)
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denotes the error, whetee Hy'(Q), a € [0, 1)V, is the weak solution ofl( 1)—(1.2) defined in £.10),
andupg € Vbc (%, p) is the DG solution defined irB(5). Throughout this section we suppose that this
problem has a solutiog € H2(Q) N Hl(.Q) with continuous dependence on the data, i.e., there exists
a constan€ > 0 such that

I¢llH2(0) < Cllepcllo,e- (3.12)

This is the case, for example, & is a convex polygon since them: H2(2) N H1(Q) — L2(Q) is
an isomorphism; cfGrisvard(1985 Theorem 3.2.1.2Babwska & Guo(1988, Dauge(1988. Further-
more, we assume that the Dirichlet boundary data satisfies

g=ulr e Hf "

().

Thenifa e [0, Y2]M, the embeddingd,/>"*(I") < L2(I') is continuous (this follows fronKufner
1985 Theorem 9.15), and henagge L2(I").
We start the development of the (enhance@norma posteriorierror estimate by writing

leoclo = [ (— 48+ cpenacx= [ (~a+cpuck— [ (-ap+cpuoe .

Applying Lemma2.6 in the first integral and integrating by parts elementwise in the second integral,
noting that [V¢] = 0 on& (sincep € H2(RQ)), results in

ool o = [ (Vu- Vg +cup)ax— | (Vaoa - Vb + cuped)
Q Q
+/@% V¢~[UDG]]dS—/g@(V¢~n)(U—UDG)dS
=/ f¢dX—/ (Vhupg - V¢ + cupge) dx
Q Q
+ [ 1) Tuoclds= [ (V4 -m(g-uoe)ds
Eg o
Moreover, for an arbitrary functiogn € Vpc(%h, p), exploiting @.5) with v = ¢, gives
leoclho = | £ = gmx— | (Vaoa V@ - dn) + cloc@ - ) O
Q Q
+ [ 1) Tuoclds— [ (V4 -m(@ - uoe) s
Eg S
+/g@(vh¢h ‘mgds 7 /&g 7o ds— [ (Vo) - [4nlds

—/<(Vh¢h>)'|[UDG]|dS+V/0|[UDG]| [¢nlds.
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Using Green’s formula in the second integral leads to

], Vruoe - i =y = = [ ntog@ — ) -+ Z/ (Vhupe - k) (@ — én) ds

Keh

——/ AhuDG(¢—¢h>dx+/ (Vhupa) - [4 — ¢n]ds
Q

+/ [ Vhupc] (¢ — ¢n)ds
Eg

where 4y, is the elementwise Laplace operator. Hence, using thhtf 0 on&’, yields

lepall5 o =/ (f + AhUDG—CUDG)(¢—¢h)dX—/ [Vhupcl (¢ — ¢n) ds
Q Eg
. ds — -n)(g — Upc) d ‘n)gd
+ /g (V) Lupclds /(@ (V4G o) ds+ L (Vo -mads
—y//a aggzﬁhds—/(@(thzﬁh))-[UDG]dS+VL0[UDG] [#nlds
5m 5 5
=/ (f + AhUDG—CUDG)(¢—¢h)dX—/ [ Vhupc] (¢ — ¢n)ds
Q Eg
+ [ (0@ = ) Tuoclds = [ (n(6 = én) (@ - Uoe) 65
Eg Em

—V/ U(Q_UDG)(¢h_¢)dS+V/ olupcl - [#nh — ¢l ds.
Eom ‘

Eg

Now, applying the Cauchy—Schwarz inequality and noting that> 1, K € , gives

lenlfo < [ D hkp*Ilf + dnupe — cunclidx + D hi P Vatuoal 13 ok
Ke.% Ke.%

+32+D D hkpklIluocl 1§ sk -
Ke.%

1

2

+( %+ 1D D hkpkllg — uocli§ ks
Keh

x ( 2 e lg = dnl i+ D hipi e — gl o

Ke% Ke%

Nl

> bt ||vh<¢—¢h)||%,aK) :

Ke%
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Then choosingtn € Vpe(%h, p) to be an elementwise optimblp-interpolant (see, e.gBabuska &
Suri, 19873b), i.e., for anyK e %,

hi* Pk lld — dnllg k + i P lId — #nll5 o + hic Pk IIVA(# = dn)l5 ok < ClIBNIF 2k

and recalling the regularity estimate {2 gives

2 ~2
lenclid o < Clencloe | D & | -
Ke.%

with

e =g p*llf + dntpe — cupclif k + g PRI Vaupel 15 ok
+ hi pr [ILuncl 1§ ok \ - + K Pk 119 — UpGl§ sk nr-
Hence, dividing both sides of the above inequalityjleyc|lo,o leads to

2 ~2
lenclido <C D k-
Ke.%

Furthermore, sinca e Hi’l(!)) it holds that U] = O on all interior edges of#, seeWihler (2002
Lemma 1.3.4). Consequently,

Ilepclllo,e = Ilupc — ulllo,e = II[ul — [upclllo.e = lIlubcllio.e (3.13)
foranyee &4, and

Ilepclllo.e = Ilupc — gllloe (3.14)

if ee Ep.
Hence, denoting by7, f the elementwisé 2-projection intoVpg(.Zh, p), we obtain the following
result.

THEOREM3.2 Suppose that the dual probleBag)—(3.10 fulfils (3.12), and that the Dirichlet boundary
datag € H;/z’l/z(l“), for some weight vectas € [0, 1/2]M. Furthermore, letipg € Vb (%, p) denote

the hp-DG solution from 8.5), andu e Hj’l(Q) the analytical weak solution ofl(1)—(1.2). Then the
following a posteriorierror estimate holds

2 2 4 —4 2
lu—uoclishe <C | D mk+ X higp*Ilf — M flig |
Ke.% Ke%

where the local error indicatovg , K € %, are defined by

ng = hig P IHIn f + Anupe — cupcllf k + i P3ITVhuoel 13 sk .15

+ hi pr I[UpGl 11§ ok \ 1 + Nk Pr 119 = UpGIIG ok /-
andC > 0O is a constant independent of the local element dizassd polynomial degreep.

REMARK 3.3 We point out that Theore®2 provides an upper bound on the erto+ upg measured
in terms of the enhancedP-norm|| - [lo.n. o from (3.4). This norm has been exploited since it allows for
the derivation of local lower bounds; this topic will be addressed in the Segta
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3.3.2 Locallower bound. In order to derive local lower bounds we make the simplifying assumptions
that the mesh?;, consists of quadrilaterals only and that the coefficieftom (1.1) is elementwise
constant, i.e.,

Cclk =ck € Qo(K) VK e .

THEOREM 3.4 LetK,K’ e J, be any two neighbouring elements,= 9K N oK’ € &4, and
we = (K U K”)°. Furthermoreg¢ € (0, 1/2]. Then the following locahp-versiona posteriorilower
bounds on the errapg from (3.11) hold:

(8) 2 pic?ll Aupc — CikUoe + ITn fllok < Ce (Pi*“llevallok +h PR 11 f = T fllok ) ;

() hi P Il Vaunclllo.e
< Cc (" llencllo.ce + N P Ievcl loe + 2 P T = 1T Fllo.e) ;
(c) for anye e &% we have that

12

Pk

1 1 1,
h/’lung — glloe = P hy llepcllo.e.

and fore € & that

1/2

1 1 1
Px h|42|||[UDG]| lloe= p}ézhful[eDG]l llo,e-
Here the constart, > 0 is independent dfi andp.
Before proving these estimates we introduce the following auxiliary results.

LEMMA 3.5 LetK = (0, 1)2 be the unit square, ande (0, 5/2]. We define the cut-off function
BLx.9) =% 1-0/y(1-9/,

wheref = % + €. Then §é =0 andV@lKi = 0 onoK, and A§é € LZ(K). Furthermore, for
anyo € @p(ﬁ), p > 1, we have

<t ]
0K <P K “llok

and
~ 25 || &#/2-]
Blo.g < Cep® [ B9 .
with a constan€, > 0 independent op and ofo.

Proof. The vanishing boundary value properties follow immediately from the definitioB af Fur-
thermore, the estimates result from tensorizing corresponding one-dimensional (1D) results; see, e.g.,
Bernardiet al. (2001, Lemmas 4 and 5). O

LEMMA 3.6 We consider the unit squake = (0, 1)2, and 0< @ < 1. Furthermore, lef e Pp(0, 1),
p>1,and

Y@ =vya-9/
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a bubble function, withf = 3 + ¢, € € (0, /2]. Then there exists a cut-off functigh € C*(K) with
7ok =0, Vl,g =0,
and
7l@xoy =050
Furthermore, there hold the estimates
(3.16)

IZllo.g < Cac|b”%D 147llo.g < Caep* (0"

Ho,(o,1)’ 5”0,(0,1)’

and
IBll0,0) < CaeP’[07%0]g 01> IVZl001) < CaeP® 0775 0.4
HereCz > Ois a constant independent®and p.
Proof. OnK we define
7(%.9) =0 @70 ®OF @)

The lemma is again proved by referring to suitable 1D results lBamardiet al. (2001, Lemmas 4
and 5). a

Proof of Theoren3.4. We show each of the bounds (a)—(c) in a separate step.

Proof of(a). For K € % let us define the volume residual
Rk = Aupg — ckUpg + ITh f € Qp, (K).

Then, forp = 32+ ¢, € € (0, 572], using Lemma3.5, together with a scaling argument, there exists a
cut-off function Bﬁ satisfyingBﬁ lok = 0andV Bﬁ lsk =0, and

2 4B |k
”A(Bé RK)HO K < Cehi®py ’ H BK/ZRK ”0 K’ (3:17)

and
IRk llo.k < Cep? H BY/?R¢ HO,K : (3.18)

with a constan€, > 0 independent dfix and px. Moreover, there holds

2
H B’ Rk HOK =/ Bl Rk (4upg — ckUpg + ITn ) dx
: K

=—/ BﬁRK(AeDG—cKeDG+ f — 11, f)dx.
K

Note that sincedepg = Au — Aupg = cxu — f — Aupg € L2(K) we may apply Lemma&.7to see
that

—/ B/ Ry Aepg dx = / V(Bk Rk) - Vepg dx.
K K
Here we observe that

B B B
V(BK RK)|@K = By |, VRK |5 + Relok VBi |, = 0.
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Hence, integrating by parts once again and recallhiyd, yields

= ‘/K a;GA(Bﬁ RK)dx

-2 4 B
< Cehipe ’ leocllox | BERe| -

| B Re deoc o < llevllox | 4(BER )|

Moreover,

< ], ot < 5, st
Ick ||| Bk Rk O,K”eDG”O,K kK Rk O,K”eDG”O,K

CK/ Bﬁ RKeDde
K

Similarly,

‘/ BY R (ITh f — f)dx
K

< Bk R H IIhf —f SC”B/}/ZR H IIhf — f .
H K ™K ,K” h ||0,K K K ,K” h ||O,K
Iherefore,

2
B2
B/2R H <cC
H K "ok ¢

B R (h2pc”levsllok + I17n f = fllok ).

Dividing the above inequality bﬂrBf(/z Rk and employing 3.18 we deduce the inequality in (a).

lo.x
Proof of (b). We define, for ang € &4, the edge residual

Ee = [Vhupal € Pp.(e),

wherepe := max(pk, px’). For simplicity, we make the assumption th#f is a regular mesh (other-
wise, the mesh may be suitably regularized,ldeastonet al, 2008 Remark 3.9). In this case. can be
affinely mapped to the unit squal%: (0, 1)2. By the same mapping the intersect®e: (6K NoK’)°

is transformed to a unit edg@} x (0,1) c K, with 0 < @ < 1, i.e.,K is mapped tq0,3) x (0, 1)
andK’ is mapped td3, 1) x (0, 1). Hence, we may apply Lemn&6 (with ¢ € (0, 1/2]) to obtain a
cut-off function ye € C1(we) and a bubble functiobg one with

Xel&we = 03 VXelawe = 07
and

1
lxello.me < ChY?

B,
¢ Ee .

—3/p 4—
o I 4zelon, < Chi*p”

é/ZEeH . (3.19)
0,e

>

Note that, due to3.1) and @.2), it holds thathx ~ hk/, andpe ~ px ~ pk’. Moreover,

—1.2-8

IEelloe < Cpl, |be”Ee oo IVreloe < Chictpy e’ Ee (3.20)

O,e'

HereC > 0 is a constant independent BE, px and pk-. Also, we have thad ~ hk/hg+h,,, which,
with (3.1), is bounded away from 0 and 1 (independenthhifand henceC does not depend on the
element sizes either. Furthermore, we have that

f
e *Ee

2
=/XeEedS=/ Xe(VhUDG-nK)dS+/ xe(Vhupg - Nk/) ds.
Oe e oK oK’
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Elementwise integration by parts yields

2
=/ Vh){e'VhUDGdX-l-/ XeAhUpg dX.
0,e e

We

8
{Ee|

Using Lemma2.7 and integrating by parts again we obtain that

2
= —/ Vhye- VheDGdX—/ xednepg dX
0,e e

We

= eDGAhXedX—/VhXh'[eDG]IdS_/ Cxe€pa dX
e e

+/ Xe(AhUDG—CUDG+Uhf)dX+/ ye(f — Iy f)dx
we e

< C(llepclio,we |l Anxello.w, + I Vhxnlloelllepcl llo.e + ll€pcliowe Il xello,o,
+ [l 4hUpg — cUpg + 1T flo.mell xello.we + 11 f = 1Tn fllo,ue 1 xello,o, )-
Applying (3.19, (3.20 and using the bound from (a) for the elementwise volume residual results in (b).
Proof of(c). This follows directly from 8.13 and @.14). O

REMARK 3.7 We note that the dependence of the lower bounds in The8réms suboptimal with
respect to the polynomial degrees. This effect has been observed earliea ipaberiorierror analysis
of hp-methods; see, e.gMelenk & Wohimuth(2001) andHoustonet al. (2007, 2008. We remark,
however, that thep-suboptimality is less pronounced émergy normower bounds. We also mention
the alternative approach presentediaes<t al. (2009 in the context of spectral methods.

3.4 Numerical example
On the rectangl® = (-1, 1) x (0, 1) we consider the PDE problem: findsuch that
—Au=0 inQ,
u=g onr.
We choose the Dirichlet boundary dagén such a way that the analytical solution is given by

1
ur, o) = —0,
T

where (r, #) denote polar coordinates i®2. Note thatg is smooth on/” except at the poin(0, 0).
Indeed, in Cartesian coordinates, we have that

1 forx <O
,y=0 = ’ , T.
glx. y ) [0 forx > O, (x.¥) €
In addition, we remark that ¢ H(2). However, there holds € H}1(2) for anya € (0, 1), where
the weight function for this problem is given l&, (x) = |x|*. Furthermorey is analytic away from
(0, 0) and belongs to the BaBka—Guo space (see, e §abuska & Guqg 1988

B2(2) = {v € LAQ): Iolya g,

<Cd’k! vk > 1, and constant€, d > 0} )

With this in mind, we might therefore be able to achieve exponential convergencehgtrefinement
is employed; cfSchtzau & Schwal§2001).
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Firstly, however, we investigate the practical performance ofathposteriori error estimate de-
rived in TheorenB.2 within an automatid-version adaptive refinement procedure which is based on
1-irregular quadrilateral elements. Theadaptive meshes are constructed by marking the elements for
refinement/derefinement according to the size of the local error indiogtothis is done by employing
the fixed fraction strategy, with refinement and derefinement fractions set to 25% and 10%, respectively.
In Fig. 1(a) we show the initial mesh and computed DG solution based on emplgyiac?, i.e.,
biquadratic polynomials. Furthermore, the computational mesh and DG solution are depicted (b Fig.
and c) after 4 and 9 adaptive refinements have been undertaken, respectively. Here we observe that the

(b) . ’

L

(©)

FIG. 1. h-Refinement. (a) Initial mesh and solution with 8 elements; mesh and solution after: (b) 4 adaptive refinements with 86
elements and (c) 9 adaptive refinements with 1286 elements.
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mesh has been significantly refined in the vicinity of the discontinuity presenagwe would expect.
Figure 2(a) shows the history of the actual and estimgjed|o,n, o-norm of the error on each of the
meshes generated based on employiredaptive refinement. Here we observe thatdhgosteriori
bound over estimates the true error by a consistent factor. Indeed, the effectivity index tends to a value
of around 15 as the mesh is adaptively refined, cf. Ei¢h).

We now turn our attention tbp-mesh adaptation. Here we again mark elements for refinement/
derefinement according to the size of the local error indicajgrdased on employing the fixed frac-
tion strategy, with refinement and derefinement fractions set to 25% and 10%, respectively. Once an
elementK e . has been flagged for refinement or derefinement, a decision must be made whether the
local mesh sizéak or the local degre@k of the approximating polynomial should be adjusted accord-
ingly. The choice to perform eithdr-refinement/derefinement grrefinement/derefinement is based
on estimating the local smoothness of the (unknown) analytical solution. To this end, we employ the
hp-adaptive strategy developed ouston & Sili (2005, where the local regularity of the analytical
solution is estimated from truncated local Legendre expansions of the computed numerical solution;
see, alsoHoustonet al. (2003.

In Fig. 3(a) we present a comparison of the actual and estinjtdid n, o -norm of the error versus
the third root of the number of degrees of freedom in the finite element 80, p) on a linear-
log scale for the sequence of meshes generated blymadaptive algorithm. We remark that the third
root of the number of degrees of freedom is chosen on the basis afhieri error analysis carried
out in Wihler et al. (2003; cf., also,Schitzau & Wihler(2003. Here we observe that the error bound
over estimates the true error by a (reasonably) consistent factor; indeed, froBid¥jgve see that the
computed effectivity indices are in the range 1.5-2.5 as the mesh is refined. Moreover, fr@takig.
we observe that the convergence lines ugipgefinement are (roughly) straight on a linear-log scale,
which indicates that exponential convergence is attained for this problem.

In Fig. 4 we present a comparison between the actual error employinghbathd hp-refinement.
In particular, we compute both the enhandgdnorm |ju — upcllo,h,o for which the proposed pos-
teriori error indicators have been derived as wel||as- upg|| Hll/,zl(g’%). Here the norm|.||H11/,21(Q,%)

~
o

~
w

0
10
(a) —8—Error Bound
—©—True Error_ ||

2t %
15

Effectivity Index

10° 10° 10* 10 0 2 4 6 8 10 12 14 16

Degrees of Freedom Mesh Number

FiG. 2. h-Refinement. (a) Comparison of the actual and estimijtefl h, o-norm of the error with respect to the number of
degrees of freedom and (b) effectivity indices.
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10° . . : ] 3
(a) —&—Error Bound (b)
-1 5 —©—True Error
10 f 8 i, 4 25
>
1072k )
el
S 2
_3 el
10°F >
= 15
107 =
g
3
1
107k =
83
1070l 0.5
-7
10 5 10 15 , 2 % 5 10 15 20
(Degrees of Freedom)3 Mesh Number

FiG. 3. hp-Refinement. (a) Comparison of the actual and estimiitefh , o -norm of the error with respect to the (third root of
the) number of degrees of freedom and (b) effectivity indices.

(b) 1° : : ;

(a) 1©° . . . ; :
—8&—h-Refinement —8&—h-Refinement
» —6— hp—Refinement| —6—hp-Refinement];
5 =

10

(e — uDGH|0,h,Q

0 1‘0 2‘0 SIO 4‘0 1 5‘0 60 0 1‘0 2‘0 3‘0 4‘0 1 5‘0 60
(Degrees of Freedom)3 (Degrees of Freedom)3

FiG. 4. Comparison betwedn andhp-refinement: (a)ju — upgllo,h,o and (b)llu — upgll,,1.1 .
Hi% (@.h)

represents the broken variant of tHéf/’zl(Q)—norm, ie.,

2 2 2
ol 11 = llvllg, @ + 1Py2Vhollg o-

HY (@, 7h)

In both cases we clearly observe the superiority of employing a grid adaptation strategy based on ex-
ploiting hp-adaptive refinement: on the final meglu, — upgllo.n,e computed usindnp-refinement is
around three orders of magnitude smaller than the corresponding quantity computeu-kefiaement

is employed alone; an improvement of almost two orders of magnitudg i UL g ) is
12 >

observed when usingp-refinement in contrast th-refinement. In addition, this demonstrates, for at
least the problem at hand, that the proposed error indicator is capable of automatically guiding the adap-

tive process to ensure convergence of the error measured Hf/ﬂweg Jh)-norm. In general, however,

a reliable upper bound on the the error computed in terms dﬂﬁfe(Q Jh)-norm would be necessary
to ensure convergence of the adaptive algorithm, cf. below.
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Finally, in Figs.5 and6, we show the mesh generated using the propbgedersiona posteriori
error indicator stated in Theore®2 after 9 and 14hp-adaptive refinement steps, respectively. For
clarity, we also show tha-mesh alone as well as a zoom of the mesh in the vicinity of the origin. Here
we observe that geometiiicrefinement has been performed in the vicinity of the discontinuity present

(a)
LT
I HH 111 ]
(b)
4 3 2 2
4 5
4 4 3 2
4| 3| 3| 3| 2| 2
4 5 3
4| 3| 3| 3| 3| 2
5
4 4—1—1 4] 3| 3| 3| 2
° PEE:: EEEEF RN - ¢
EER
(©) 4 4
3 3 3 3
2 3 3 2 2 2
3
2| 3| 3 2| 2
3 2 2
22
3 2 2
EEEE

FIG. 5. hp-Mesh distribution after 9 adaptive refinements with 134 elements and 2002 degrees of freedormeg&) alone,
(b) hp-mesh and (c) zoom of (b).
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(a)
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7 g 5| 4] 4] ¢
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3 NEFEEEERNEN 2 2
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FIG. 6. hp-Mesh distribution after 14 adaptive refinements with 206 elements, 4904 degrees of freeddwmesh alone,
(b) hp-mesh and (c) zoom of (b).

in g, cf. above. Within this region, the polynomial degree has been kept at 2. Away from this region,
the hp-adaptive algorithm increases the degree of the approximating piecewise polynomials where the
analytical solution is smooth. This corresponds to dhgriori hp-approximation strategies proposed

in, e.g.,Guo & Babiska(1986ab), Schwab(1998; see furtheiSchwab(1998, Schitzau & Schwab
(2007, Wihler (2002, Sctdtzau & Wihler(2003, Wihler et al. (2003, Houstonet al. (2004).
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4. Conclusions

In this work we have introduced a new variational framework for linear second-order elliptic PDEs
with discontinuous Dirichlet boundary conditions based on locally weighted Sobolev spaces. In partic-
ular, we have proved the well-posedness of the new setting by means of an inf-sup condition. In addi-
tion, we have proposed the use of symmetiqieversion interior penalty DG methods for the numerical
approximation of such problems. For this discretization scheme we have derived an (enhanced)
L2-norm a posteriorierror analysis featuring upper and lower estimates. The performance of the re-
sulting error indicators withirh- and hp-adaptive refinement procedures has been displayed with a
model numerical experiment. Future work will involve an error analysis with respect Idj'ﬁmorm,

and some extensions of the present setting to systems such as, e.g., the Stokes equations for cavity flow
problems.
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