Validation of components of local ties

Susanne Glaser^{1,2}, M. Fritsche^{1,3}, K. Sośnica⁴, C. J. Rodríguez-Solano⁵, K. Wang⁶, R. Dach⁴, U. Hugentobler⁵, M. Rothacher⁶, R. Dietrich¹

¹Technische Universität Dresden, ²now at: Technische Universität Berlin, ³now at: GFZ German Research Centre for Geosciences, ⁴Universität Bern, ⁵Technische Universität München, ⁶ETH Zürich

Kirchberg, October 13, 2014

Introduction

- Introduction
- Single-technique solutions
 - Input data
 - Preliminary analysis
 - Results

- Introduction
- Single-technique solutions
 - Input data
 - Preliminary analysis
 - Results
- Combined solution
 - Strategy
 - Results

Glaser et al. Validation of LT 10/13/2014 2 / 23

- Introduction
- Single-technique solutions
 - Input data
 - Preliminary analysis
 - Results
- Combined solution
 - Strategy
 - Results
- 4 Conclusion

Glaser et al. Validation of LT 10/13/2014 2/23

- Introduction
- Single-technique solutions
- 3 Combined solution
- 4 Conclusion

Glaser et al. Validation of LT 10/13/2014 3 / 23

.00

Reference frame as the realization of a reference system

Figure: Reference frame as the connections of the three pillars of geodesy, according to IAG (2014)

Validation of LT Glaser et al. 4 / 23 000

Combination of different geodetic space techniques

Validation of LT Glaser et al. 10/13/2014 5 / 23 Introduction Motivation

000

Combination strategy

```
Combination of the different techniques
```

Validation of LT Glaser et al. 6 / 23 Motivation

000

Combination strategy

Combination of the different techniques

Local ties at co-located sites

Motivation

Combination strategy

Combination of the different techniques

- Local ties at co-located sites
 - Inhomogeneous data base
 - IERS Working Group on Site Survey and Co-location

Glaser et al. Validation of LT 10/13/2014 6 / 23

Motivation

Combination strategy

Combination of the different techniques

- Local ties at co-located sites
 - Inhomogeneous data base
 - IERS Working Group on Site Survey and Co-location
- Pole coordinates as global ties (Seitz et al., 2012)

Glaser et al. Validation of LT 10/13/2014 6

Combination strategy

Combination of the different techniques

- Local ties at co-located sites
 - Inhomogeneous data base
 - IERS Working Group on Site Survey and Co-location
- Pole coordinates as global ties (Seitz et al., 2012)
- Our approach: combination of the pole coordinates and the degree-1 surface load coefficients (Blewitt, 2003), common origin of GNSS and SLR

Validation of LT 10/13/2014

- Introduction
- Single-technique solutions
- 3 Combined solution
- 4 Conclusion

Glaser et al. Validation of LT 10/13/2014 7 / 23

Input data

Data

Glaser et al. Validation of LT 10/13/2014 8 / 23

Data

GNSS

- daily normal equation systems 1994 - 2010
- GPS and GLONASS
- 334 stations

Glaser et al. Validation of LT 10/13/2014 8 / 23

Input data

Data

GNSS

- daily normal equation systems 1994 - 2010
- GPS and GLONASS
- 334 stations

SLR

- weekly normal equation systems 1994 - 2010
- LAGEOS-1/-2
- 73 stations

 Introduction
 GNSS/SLR
 GNSS+SLR
 Conclusion
 References

 ○○○
 ○○○○
 ○○○○
 ○○

Input data

Data

GNSS

- daily normal equation systems 1994 - 2010
- GPS and GLONASS
- 334 stations

SLR

- weekly normal equation systems 1994 - 2010
- LAGEOS-1/-2
- 73 stations

GPS, GLONASS and SLR

from a homogeneous reprocessing (Fritsche et al., 2014)

Glaser et al. Validation of LT 10/13/2014 8 / 23

Station network

Figure: Globally distributed GNSS (red) and SLR (blue) stations

Glaser et al. Validation of LT 10/13/2014 9 / 23

Preliminary analysis

Preliminary analysis at station positions time series of all stations

Glaser et al. Validation of LT 10/13/2014 10 / 23

Preliminary analysis

Preliminary analysis at station positions time series of all stations

- Elimination of position outliers
- Station events (jumps)
- Core stations for the definition of the geodetic datum

Glaser et al. Validation of LT 10/13/2014 10 / 23

Preliminary analysis at station positions time series of all stations

- Elimination of position outliers
- Station events (jumps)
- Core stations for the definition of the geodetic datum
 - Selection according to the length and accuracy of the station position time series and the global distribution
 - Similar to IGS and ILRS solutions

Pole coordinates

Pole coordinates

Results

Figure: Differences Δx_P , Δy_P of estimated and "IERS 08 C04" pole coordinates

Offset, Trend	GNSS-only		SLR-only	
Δx_P	-0.04 mas	0.00 mas/a	0.14 mas	0.00 mas/a
Δy_P	-0.06 mas	$0.00\mathrm{mas/a}$	$0.11\mathrm{mas}$	$0.00\mathrm{mas/a}$

Glaser et al. Validation of LT 10/13/2014 11/23

- Introduction
- Single-technique solutions
- Combined solution
- 4 Conclusion

Glaser et al. Validation of LT 10/13/2014 12/23

Combination strategy and weighting

Strategy

Combination strategy and weighting

$$\textbf{N} \cdot \hat{\textbf{x}} = \textbf{n}$$

Combination strategy and weighting

$$\mathbf{N} \cdot \hat{\mathbf{x}} = \mathbf{n}$$

with

$$\mathbf{N} = w_{GNSS} \mathbf{N}_{GNSS} + w_{SLR} \mathbf{N}_{SLR}$$

 $= w_{GNSS} \mathbf{n}_{GNSS} + w_{SLR} \mathbf{n}_{SLR}$

Glaser et al. Validation of LT 10/13/2014 13 / 23

$$\mathbf{N} \cdot \hat{\mathbf{x}} = \mathbf{n}$$

with

$$\mathbf{N} = w_{GNSS} \mathbf{N}_{GNSS} + w_{SLR} \mathbf{N}_{SLR}$$
$$\mathbf{n} = w_{GNSS} \mathbf{n}_{GNSS} + w_{SLR} \mathbf{n}_{SLR}$$

and

$$w_{GNSS} = 1$$

$$w_{SLR} = \frac{s_{GNSS}^2}{s_{SLR}^2}$$

Glaser et al. Validation of LT 10/13/2014 13 / 23

Combination strategy and weighting

$$\mathbf{N} \cdot \hat{\mathbf{x}} = \mathbf{n}$$

with

$$\mathbf{N} = w_{GNSS} \mathbf{N}_{GNSS} + w_{SLR} \mathbf{N}_{SLR}$$
$$\mathbf{n} = w_{GNSS} \mathbf{n}_{GNSS} + w_{SLR} \mathbf{n}_{SLR}$$

and

$$w_{GNSS} = 1$$

$$w_{SLR} = \frac{s_{GNSS}^2}{s_{SLR}^2} \cdot \frac{N_{GNSS}^{mean}}{N_{SLR}^{mean}} = 0.81$$

based on Thaller (2008)

Glaser et al. Validation of LT 10/13/2014 13 / 23

Combination strategy

- Combination of the pole coordinates of GNSS and SLR
- Combination of the degree-1 surface load coefficients
- Station velocities at co-located sites were set to be equal

Glaser et al. Validation of LT 10/13/2014 14 / 23

Combination strategy

- Combination of the pole coordinates of GNSS and SLR
- Combination of the degree-1 surface load coefficients
- Station velocities at co-located sites were set to be equal

Realization of the geodetic datum

Combination strategy

- Combination of the pole coordinates of GNSS and SLR
- Combination of the degree-1 surface load coefficients
- Station velocities at co-located sites were set to be equal

Realization of the geodetic datum

Origin: GNSS and SLR observations

Combination strategy

- Combination of the pole coordinates of GNSS and SLR
- Combination of the degree-1 surface load coefficients
- Station velocities at co-located sites were set to be equal

Realization of the geodetic datum

- Origin: GNSS and SLR observations
- Network scale: GNSS and SLR observations

Combination strategy

- Combination of the pole coordinates of GNSS and SLR
- Combination of the degree-1 surface load coefficients
- Station velocities at co-located sites were set to be equal

Realization of the geodetic datum

- Origin: GNSS and SLR observations
- Network scale: GNSS and SLR observations
- Orientation:
 - NNR around the X, Y, Z axis for GNSS
 - NNR around the Z axis for SLR

temporal change: NNR around the X, Y, Z axis for GNSS

Glaser et al. Validation of LT 10/13/2014 14 / 23

Combination strategy

- Combination of the pole coordinates of GNSS and SLR
- Combination of the degree-1 surface load coefficients
- Station velocities at co-located sites were set to be equal

Realization of the geodetic datum

- Origin: GNSS and SLR observations
- Network scale: GNSS and SLR observations
- Orientation:
 - NNR around the X, Y, Z axis for GNSS
 - NNR around the Z axis for SLR

temporal change: NNR around the X, Y, Z axis for GNSS

→ minimum constraint solution

Glaser et al. Validation of LT 10/13/2014 14 / 23

Estimation of components of the local ties

Strategy

- a priori positions and velocities

 - same velocities for the LT stations

Glaser et al. Validation of LT 10/13/2014 15 / 23

Estimation of components of the local ties

Strategy

- a priori positions and velocities
 - $\Delta \mathbf{X}^{LT} = \mathbf{X}_{SLR}^{LT} \mathbf{X}_{GNSS}^{LT}$
 - same velocities for the LT stations

Result

$$\delta \mathbf{X} = (\mathbf{X}_{SLR}^{est} - \mathbf{X}_{GNSS}^{est}) - \Delta \mathbf{X}^{LT}$$

Local Ties

Results

Figure: Histogram of differences δX_N [cm] in the north component of estimated and measured local ties.

Glaser et al. Validation of LT 10/13/2014 16 / 23

Local Ties

Results

Figure: Histogram of differences δX_H [cm] in the height component of estimated and measured local ties.

Glaser et al. Validation of LT 10/13/2014 17 / 23

Results

Effect of the measured local ties

Using a 14-parameter Helmert transformation

- between the single-technique solutions
 - GNSS: Xest GNSS
 - SLR + LT: $\mathbf{X}_{SLR}^{est} + \Delta \mathbf{X}^{LT}$

Transformation parameters of a 14-parameter Helmert transformation

Results

GNSS		SLR + LT	
T_X [mm]	\dot{T}_X [mm/a]	1,76	-0,38
T_Y [mm]	\dot{T}_Y [mm/a]	-16,51	0,39
T_Z [mm]	\dot{T}_Z [mm/a]	3,20	-0,14
R_X [masec]	\dot{R}_X [masec/a]	0,031	-0,012
R_Y [masec]	\dot{R}_Y [masec/a]	0,382	-0,007
R_Z [masec]	\dot{R}_Z [masec/a]	-0,147	0,005
m [mm/km]	\dot{m} [mm/km/a]	-0,00064	-0,00025

Glaser et al. Validation of LT 10/13/2014 19 / 23

Outline

- Introduction
- Single-technique solutions
- 3 Combined solution
- 4 Conclusion

Glaser et al. Validation of LT 10/13/2014 20 / 23

Summary

Summary

• Combination of GNSS and SLR with minimum constraint conditions.

Glaser et al. Validation of LT 10/13/2014 21 / 23

Summary

- Combination of GNSS and SLR with minimum constraint conditions.
- **Estimation** of components of the **local ties** at co-located sites **using** the pole coordinates as **global ties**.

Glaser et al. Validation of LT 10/13/2014 21 / 23

Introduction 000 Summary

- Combination of GNSS and SLR with minimum constraint conditions.
- Estimation of components of the local ties at co-located sites using the pole coordinates as global ties.
- **Differences** between estimated and measured local ties: 88% in north, 52% in height component below 1 cm.

Glaser et al. Validation of LT 10/13/2014 21/23

Introduction 000 Summary

- Combination of GNSS and SLR with minimum constraint conditions.
- Estimation of components of the local ties at co-located sites using the pole coordinates as global ties.
- **Differences** between estimated and measured local ties: 88% in north, 52% in height component below 1 cm.
- **Translation** in direction of *Y* and **rotation** of the network around *Y* by using all measured local ties.

Glaser et al. Validation of LT 10/13/2014 21/23

Introduction 000 Summary

- Combination of GNSS and SLR with minimum constraint conditions.
- Estimation of components of the local ties at co-located sites using the pole coordinates as global ties.
- **Differences** between estimated and measured local ties: 88% in north, 52% in height component below 1 cm.
- Translation in direction of Y and rotation of the network around Y by using all measured local ties.
- ightarrow Combination of different geodetic space techniques to realize a global terrestrial reference system in the framework of GGOS.

Glaser et al. Validation of LT 10/13/2014 21/23

Thank you very much for your attention.

susanne.glaser@tu-berlin.de

Glaser et al. Validation of LT 10/13/2014 22 / 23

References

- Blewitt, G. (2003). Self-consistency in reference frames, geocenter definition, and surface loading of the solid Earth. *J. Geophys. Res.*, 108(B2):2103.
- Fritsche, M., Sośnica, K., Rodríguez-Solano, C., Steigenberger, P., Wang, K., Dietrich, R., Dach, R., Hugentobler, U., and Rothacher, M. (2014). Homogeneous reprocessing of GPS, GLONASS and SLR observations. *J. Geod.*, pages 1–18.
- IAG (2014). http://www.iag-ggos.org/about_geodesy/the_three_pillars.php.
- Seitz, M., Angermann, D., Bloßfeld, M., Drewes, H., and Gerstl, M. (2012). The 2008 DGFI realization of the ITRS: DTRF2008. *J. Geod.*, 86(12):1097–1123.
- Thaller, D. (2008). Inter-technique combination based on homogeneous normal equation systems including station coordinates, Earth orientation and troposphere parameters. Deutsches GeoForschungsZentrum. Scientific Technical Report STR 08/15.

Glaser et al. Validation of LT 10/13/2014 23 / 23

Definition of core stations

Figure: Definition of core stations (filled symbol) of the GNSS (red) the SLR (blue) network

Glaser et al. Validation of LT 10/13/2014 1 ,

Figure: Surface load coefficients and difference of CF w.r.t. CM

Glaser et al. Validation of LT 10/13/2014 2 / 3

Modeling of surface loads (Blewitt, 2003)

Figure: Degree-1 surface load coefficients $(\sigma_{10}^{C}, \sigma_{11}^{C}, \sigma_{11}^{S})$ (left) and differences $[\Delta \mathbf{r}_{CF}]_{CM}$ (right)

Glaser et al. Validation of LT 10/13/2014 3 / 3

Modeling of surface loads (Blewitt, 2003)

Figure: Degree-1 surface load coefficients $(\sigma_{10}^{C}, \sigma_{11}^{C}, \sigma_{11}^{S})$ (left) and differences $[\Delta \mathbf{r}_{CF}]_{CM}$ (right)

Glaser et al. Validation of LT 10/13/2014 3 / 3