
1 3

DOI 10.1007/s00382-014-2388-x
Clim Dyn

Establishing the skill of climate field reconstruction techniques 
for precipitation with pseudoproxy experiments

Juan José Gómez‑Navarro · Johannes Werner · 
Sebastian Wagner · Jürg Luterbacher · Eduardo Zorita 

Received: 10 June 2014 / Accepted: 20 October 2014 
© Springer-Verlag Berlin Heidelberg 2014

systematically underestimates the variance. The AM can be 
adjusted to overcome this shortcoming, presenting an inter-
mediate behaviour between the two aforementioned tech-
niques. However, a trade-off between reconstruction-target 
correlations and reconstructed variance is the drawback of 
all CFR techniques. CCA (BHM) presents the largest (low-
est) skill in preserving the temporal evolution, whereas 
the AM can be tuned to reproduce better correlation at the 
expense of losing variance. While BHM has been shown 
to perform well for temperatures, it relies heavily on pre-
scribed spatial correlation lengths. While this assumption is 
valid for temperature, it is hardly warranted for precipita-
tion. In general, none of the methods outperforms the other. 
All experiments agree that a dense and regularly distributed 
proxy network is required to reconstruct precipitation accu-
rately, reflecting its high spatial and temporal variability. 
This is especially true in summer, when a specifically short 
de-correlation distance from the proxy location is caused 
by localised summertime convective precipitation events.

Keywords Precipitation · Palaeoclimate · Climate 
reconstruction · Regional climate modelling · Proxy · PPE

1 Introduction

Over the last decade, efforts have been devoted to develop 
paleoclimate reconstructions targeted at placing current 
climate change in a longer historical context (Masson-
Delmotte et al. 2013 and references therein). Most efforts 
have been aimed at reconstructing variables such as the 
North Atlantic Oscillation (Luterbacher et al. 1999, 2001; 
Cook et al. 2002; Trouet et al. 2009) [see Pinto and Rai-
ble (2012) for a review] and temperature (Luterbacher et al. 
2004; Xoplaki et al. 2005; Luterbacher et al. 2007; Riedwyl 

Abstract This study aims at assessing the skill of several 
climate field reconstruction techniques (CFR) to recon-
struct past precipitation over continental Europe and the 
Mediterranean at seasonal time scales over the last two 
millennia from proxy records. A number of pseudoproxy 
experiments are performed within the virtual reality of 
a regional paleoclimate simulation at 45 km resolution to 
analyse different aspects of reconstruction skill. Canoni-
cal Correlation Analysis (CCA), two versions of an Analog 
Method (AM) and Bayesian hierarchical modeling (BHM) 
are applied to reconstruct precipitation from a synthetic 
network of pseudoproxies that are contaminated with vari-
ous types of noise. The skill of the derived reconstructions 
is assessed through comparison with precipitation simu-
lated by the regional climate model. Unlike BHM, CCA 
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et al. 2008; Mann et al. 2008; PAGES 2k Consortium 2013; 
Neukom et al. 2014 among others). Recent work has also 
been devoted to reconstruct different parts of the hydro-
logical cycle. Gridded atlases of the Palmer Drought Sever-
ity Index (PDSI) have been developed for North America 
(Cook et al. 1999, 2004) and Asia (Cook et al. 2010). In 
South America (Neukom et al. 2010) undertook a spatially 
resolved reconstruction for precipitation extending back 
to 1500 AD by using the Principal Component Regression 
(PCR) method. Over Europe, precipitation has been recon-
structed back to 1500 AD using a variety of methodologies 
(Pauling et al. 2006; Casty et al. 2007), and currently the so 
called Old World Drought Atlas is being developed to esti-
mate PDSI evolution back to 1200 AD based on tree ring 
records (Cook 2013).

Climate reconstructions demand the careful collec-
tion and selection of proxy indicators whose evolution 
can be linked to specific climatic variables through a sta-
tistical model. For this reason, a number of statistical 
techniques have been applied to describe the connections 
between proxies and the climatic variables (Tingley et al. 
2012). Once a statistical link has been identified within 
the instrumental period and verified with independent 
data and assuming stationarity, past climate can be recon-
structed from the much longer proxy time series. This is 
the so-called inversion problem [see also discussion in Phi-
pps et al. (2013)]. The approaches may be very different 
depending on the nature of the proxy indicator, such as tree 
rings, boreholes, lake sediments, speleothems or documen-
tary evidence. Likewise, there exist a family of method-
ologies that allow merging and extrapolating various inde-
pendent local reconstructions in order to create a gridded 
data set over a large area. The latter approach is generally 
referred as Climate Field Reconstruction (CFR).

The reliability of climate reconstructions depends to a 
great extent on the assessment of the skill of the statisti-
cal methods. One way of gauging the skill of a reconstruc-
tion method is through the concept of pseudo-reality [see 
Smerdon (2012) for a review]. The idea is to use climate 
models as a testbed to test the reconstruction method. For 
this, a number of pseudoproxies are created by contaminat-
ing the variables simulated by a climate model with sta-
tistical noise to mimic the uncertain relationship between 
proxy records and local climate. The reconstruction meth-
ods are then applied to these data to produce a reconstruc-
tion. Finally, this reconstruction is compared with the origi-
nal simulation, which is perfectly known, and the skill of 
the method can be so estimated. This approach is known 
as pseudo proxy experiments (PPE). Albeit with an over-
all emphasis on temperature, successful applications of 
PPEs have been reported in the literature. In the follow-
ing we briefly introduce some experiments specifically 
conducted for Europe, also using the methods we evaluate 

in this analysis. Küttel et al. (2007) evaluated the skill of 
European winter temperature reconstruction over the last 
500 years using pseudoproxies from the ECHO-G and 
HadCM3 climate models. The emphasis was on the effect 
of the reduction of the number of proxies back in time. 
They found that the key factor in determining the recon-
struction skill is the number of predictors and, particularly, 
their spatial distribution. Riedwyl et al. (2008, 2009) pre-
sented European scale seasonal temperature reconstruc-
tions over the past centuries applying and comparing 
different reconstruction methods. They used PCR and regu-
larized expectation maximization (RegEM) in a PPE using 
the output from the NCAR Climate System Model (CSM) 
1.4 and ECHO-G. The pseudo proxies were created using 
different white and red noise scenarios to contaminate the 
climate model output. They concluded that more skilful 
results are achieved with RegEM, as low frequency vari-
ability is better preserved. Smerdon et al. (2010) used the 
same NCAR global model to assess the skill of two CFR 
methodologies for global annual temperatures, RegEM and 
Canonical Correlation Analysis (CCA), whereas Werner 
et al. (2013) conducted a similar analysis comparing CCA 
with a Bayesian Hierarchical Model (BHM) over Europe. 
Generally, the former analysis indicated that RegEM and 
PCR techniques underestimate the temperature variations 
to an increasing extent as more noise is added to the prox-
ies, albeit the effect in RegEM is weaker than in PCR. This 
effect for regression based reconstructions has also been 
reported in other studies (Smerdon et al. 2010; Tingley and 
Huybers 2010a; Werner et al. 2013) and is typical for linear 
regression. The Analog Method (AM) as a CFR method of 
European temperatures based on long climate simulations 
has also been evaluated by Franke et al. (2010). They found 
that a reduction in the number of proxy locations leads 
to relatively minor changes in the resulting fields, which 
would imply a still reasonable reconstruction skill for tem-
perature even when the number of proxies is limited.

For the construction of meaningful PPEs it is critical 
that the model used as a testbed correctly reproduces the 
relationship between large-scale circulation patterns and 
small scale features such as orography or land use. Note 
that there is no need to correctly simulate time series that 
follow the spatio-temporal evolution of the real climate. 
Indeed this would likely be impossible due to internal vari-
ability, even if a model were able to perfectly represent 
nature (Gómez-Navarro et al. 2012). Instead, for the PPE to 
have meaningful results the resemblance to the real world 
needs rather to be of statistical nature: the canonical rela-
tionship between the local variance at the pseudo proxy 
sites and the large-scale circulation needs to be realisti-
cally reproduced/simulated by the climate model. However, 
GCMs can hardly reproduce these relationships satisfac-
torily for precipitation, which is the specific focus of this 
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study. This is due to the fact that precipitation, compared 
to temperature, is a more complex variable, generally with 
a skewed distribution and anistropic spatial covariance. 
Therefore, downscaling techniques have to be applied prior 
to the implementation of PPEs. Here we use a Regional 
Climate Model (RCM) as a downscaling tool for palaeo-
climate simulations, as described by Gómez-Navarro et al. 
(2013). Specifically, we use a high-resolution climate simu-
lation spanning the last two millennia as a testbed to con-
duct a number of precipitation-based PPEs to reconstruct 
precipitation fields. The construction of a meaningful PPE 
also requires taking into account the uncertainties in the 
proxy-climate connection. To account for this uncertainty, 
different levels and characteristics of statistical noise are 
added to the simulated series to perturb the original series, 
making the PPE more realistic.

In this study, a number of PPEs are performed to eval-
uate the skill of three different CFR techniques to recon-
struct precipitation over Europe: CCA, BHM and AM. 
The paper is structured as follows. Sections 2.1 and 2.2 
describe the simulations used as testbeds and PPEs. Section 
2.3 describes how the PPE have been designed in terms of 
network and level of noise. Sections 2.4–2.6 outline the 
three CFR techniques tested in this study, whereas Sect. 
2.7 describes all the statistics employed to assess the skill 
of the reconstruction techniques. In Sect. 3.1 several skill 
scores are employed to evaluate the skill of CCA and the 
AM in a perfect scenario where the pseudoproxies contain 
no noise at all. Section 3.2 discusses the effect of including 
different kinds of noise in the proxies. Section 3.3 exam-
ines to what extent the AM is sensible to the choice of 
analog pool, an aspect that is critical to apply this method 
in real-world reconstructions. Finally, Sect. 3.4 analyses the 
performance of the BHM method, comparing its capabili-
ties and drawbacks with respect to the other two methods. 
Section 4 summarises and discusses the main results.

2  Database and methodologies

2.1  Setup of the simulation used as a testbed for the PPEs

The testbed for the PPE performed in this study represents 
a high-resolution regional climate palaeosimulation. The 
target variable of the PPEs is seasonally accumulated total 
precipitation. The simulated domain covers Europe with a 
horizontal resolution of 45 km. The simulation spans the 
period 1–1998, being the longest regional transient simula-
tion for Europe to date: a previous simulation covered the 
last five centuries (Gómez-Navarro et al. 2013, 2014). The 
Regional Climate Model consists of a modified version of 
the meteorological model MM5 driven at the boundaries by 
the ECHO-G model. Both models are driven by estimates 

of three external forcings: greenhouse gas concentrations 
in the atmosphere, long-term variations in Total Solar Irra-
diance (TSI) and variations of Earth’s orbital parameters. 
The effect of volcanic forcing is not included in these two 
simulations, globally and regionally, due to the lack of reli-
able estimations of volcanic forcing in the first millennium. 
The spatial and physical configuration of the ECHO-G and 
MM5 models is very similar to that employed by Gómez-
Navarro et al. (2013). This set-up is able to realistically 
reproduce the seasonal cycle of precipitation, although 
some deviations from observations are apparent. The most 
important relate to the overestimation of the zonal circu-
lation, which leads to a overestimation of precipitation in 
winter, as well as some biases in areas of complex topogra-
phy such as the Alps or the coast of Norway, where the 45 
km resolution implemented in the RCM is not fine enough 
(Gómez-Navarro et al. 2013). This simulation is referred 
hereinafter as the MM5 run.

2.2  Setup of the simulation used for the AM validation

An additional simulation is used in this study to test the 
ability of the AM to reconstruct precipitation using a pool 
of analogs from a different simulation. For this, the regional 
climate model COSCMO-CCLM was used, driven at the 
boundaries by the Earth Model of the MPI in Hamburg 
(MPI-ESM). The MPI-ESM model and the respective set-
up are described in detail in the study of Jungclaus et al. 
(2010). As the RCM run outlined in the former section, this 
simulation includes changes in orbital and greenhouse forc-
ings, as well as variations in the TSI (Flückiger et al. 2002). 
Addtionally, it also includes the effect of land use changes 
(Pongratz et al. 2008). The simulated domain consists of a 
rotated grid with a horizontal resolution of 0.44° × 0.44°, 
which roughly covers the same domain as the MM5 run and 
with very similar resolution (see Fig. 6). This simulation is, 
however, shorter and spans the period 1645–2000. Although 
it improves the skill of the driving GCM, the RCM keeps 
systematic deviations from the observations. The Mediter-
ranean region shows little precipitation during summer, 
which is ultimately responsible for the lack of variability 
discussed below. However over Europe precipitation shows 
a positive bias year-round. The precipitation bias is mostly 
pronounced during winter with too much precipitation over 
central Europe including the Alpine region. This simulation 
is referred hereinafter as the CCLM run.

2.3  Design of the PPE

The PPEs require a synthetic proxy network to be hypoth-
esised. The construction of this network depends on the 
focus of the study and can range from being purely random 
to a more realistic distribution of proxies. For temperature, 
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the network by Mann et al. (1998), updated by Mann et al. 
(2008), has been used in the contexts of PPEs (von Storch 
et al. 2008; Smerdon et al. 2010; Werner et al. 2013 among 
others). However, there is currently no standard network 
available for precipitation. In this study we use a simple 
network consisting of eleven locations distributed over 
Europe, which are indicated with stars in the Figs. 2, 3, 
4, 6 and 7. This is a fundamentally synthetic network, but 
is based on the approximate location of proxies collected 
under the umbrella of the ongoing PAGES2kEuroMed ini-
tiative (cf. PAGES News April 2014). The number of pseu-
doproxies, though relatively small, tries to compromise 
between using locations suitable for producing meaningful 
CFRs, and using a limited number of pseudoproxies that 
could mimic the current scarcity of quality-proven hydro-
logic proxies.

There is a number of ways in which this network can 
be improved to make it more realistic. First, the location 
and number of pseudoproxies is just an approximation of 
the eventual network of real proxies available. Further, it 
does not consider proxy records that do not cover the full 
period, but instead the number of series is kept at a con-
stant level of eleven for the whole PPE. These limitations 
do not invalidate the results of the PPE analysed here, but 
clearly limit the scope of the resulting conclusions. For 
example, all results that are specific of certain areas can 
not be extrapolated to real applications, whereas the dis-
tance at which the reconstruction skill becomes negligible, 
or its seasonal deviations, contains valuable information. 
The analysis of the sensitivity of the results to the selection 
of a more realistic grid, as well as the implementation of a 
number of proxies varying with time, is delayed for future 
assessments.

Another aspect of the PPE design pertains to the intro-
duction of noise. Real proxy records contain substan-
tial amounts of variations that are not climate-related. 
This introduces uncertainty in the local reconstruction, 
which eventually propagates into the CFR. In order to 
take this additional uncertainty into account and to ana-
lyse its impact on the reconstructions of precipitation, we 
can emulate more realistic proxies by including additive 
statistical noise to the original series, creating so-called 
noisy pseudoproxies (Tingley et al. 2012; Smerdon 2012). 
There are different kinds of noise we can use to contami-
nate the series. First, we use Gaussian white noise, which 
is the most simple choice and basically consists of a series 
of independent and identically distirbuted (IID) serially 
uncorrelated Gaussian noise added to the original series. 
The amount of noise introduced depends on the variance 
of the random process relative to the variance of the origi-
nal series. Although equivalent, there are different ways 
to quantify how much noise the series contain: the vari-
ance of the noise, signal-to-noise ratio, percent noise by 

variance or correlation (Smerdon 2012). We use the latter, 
adding an amount of noise such that the correlation in each 
location between the original series and the contaminated 
one is 0.5. This level of noise is the same as employed by 
(von Storch et al. 2008) in the context of temperature PPE, 
and correspond to approximately with the level of noise 
reported in real proxies (Pauling et al. 2006; Dorado-Liñán 
et al. 2012). Further, it fits within the range of the level of 
noise employed in other studies for temperature (Xoplaki 
et al. 2005; Küttel et al. 2007; Smerdon 2012; Werner et al. 
2013).

Note that while the use of white noise is widespread, 
the non-climatic related noise present in real proxies likely 
contains a certain amount of memory. For instance, in the 
case of tree-rings, the age-detrending methods may intro-
duce serially correlated errors. Also, biological or chemical 
processes within the proxy, like infections, mutual competi-
tion, fire, etc., may also have life-times that extend beyond 
the usual time step of one year of tree-ring chronologies 
Frank et al. (2007). For this reason this study also analyses 
the effect of contaminating the perfect pseudoproxies with 
red noise, created with an AR(1) process with a decorrela-
tion time of five years (von Storch and Zwiers 2002). The 
amount of noise relative to the original series is the same, 
so that the correlation with the original series is still 0.5.

A last point potentially complicating the reconstruc-
tion of hydrological fields is the sensitivity of the proxy to 
changes of climatic variables. Here we only use an ideal 
case for precipitation, but a recent study (Bunde et al. 
2013) puts into question the connection between proxies 
and precipitation and argues for other implications such as 
soil moisture, integrating the effect of precipitation, specific 
soil characteristics and evaporation. For this study however, 
we set out to reconstruct precipitation fields based on our 
synthetic network represented by eleven pseudoproxies.

2.4  Canonical correlation analysis reconstruction

This study analyses the skill of three CFR techniques using 
PPEs based on the MM5 run. The first one is CCA, taken 
as one example of the general class of linear CFR methods, 
which rely on a multivariate linear relationship between 
the predictor (the proxy time series) and the predictand 
(the spatially resolved climate fields to be reconstructed) 
(Luterbacher et al. 2000, 2004; Xoplaki et al. 2005; Pauling 
et al. 2006; Riedwyl et al. 2008, 2009; Küttel et al. 2010; 
Smerdon et al. 2010; Werner et al. 2013 among others). 
The advantages of this method are its low computational 
cost and intuitive appeal, although some important cave-
ats are discussed below. We briefly describe here the CCA 
approach.

Following the notation by Smerdon et al. (2010), the n 
observed time steps of a given climate field  T of spatial 
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dimension m can be represented by a m × n matrix, and 
expressed in terms of the normalised series as

where MT is a matrix of identical columns which are the 
average of  T by rows, and ST represents a diagonal matrix 
where each element is the standard deviation in one of the 
m locations. Analogously, the simultaneous network of 
proxies in r locations can be described by a r × n matrix

With this notation, the multivariate linear hypothesis takes 
the simple form

where B is the matrix of regression coefficients to be deter-
mined by the data, and ǫ represents the variability not 
explained by a linear relation between the predictand and 
predictor.

Hence, by combining (1), (2) and (3), we obtain

which indicates that once B is estimated from the data dur-
ing the calibration period, it can be used to estimate T as a 
linear combination of elements of  P. More importantly, if 
we assume that this relation holds true beyond the calibra-
tion period, it can be used to predict  T for other periods 
where  P is also known.

It can be demonstrated (von Storch and Zwiers 2002) 
that the error ǫ in (3) can be minimised if  B is chosen as

where the superscript † denotes the transpose. However, 
when the sample size number is too small or the dimen-
sionality is too large, the solution of Eq. (5) needs some 
form of regularization to ensure that the cross-covariance 
matrix T′

P
′† and the covariance matrix P′

P
′† are properly 

estimated from the data. This is the inversion problem fur-
ther discussed by, among others, Smerdon et al. (2010), 
Tingley et al. (2012), Phipps et al. (2013). This regulariza-
tion can be achieved by a previous EOF analysis to obtain 
a reduced-rank representation of T

′ and P by retaining 
only the leading modes of variability of each variable (von 
Storch and Zwiers 2002). Then, the EOF patterns are lin-
early combined to identify pairs of patterns which produce 
a temporal decomposition of T′ and P′ that simultaneously 
maximise their correlation but are uncorrelated with the 
rest of pairs. Once these pairs are established during the 
calibration, new instances of P′ can be decomposed in the 
canonical patterns. The corresponding canonical series, 
scaled by the canonical correlation, can be used to recon-
struct a standardised version of the predicted variable. After 
suitable renormalization, see (4),  T is estimated.

(1)T = MT + STT
′,

(2)P = MP + SPP
′.

(3)T
′ = BP

′ + ǫ,

(4)T = MT + STBSP
−1(P − MP),

(5)B = (T′
P

′†)(P′
P

′†)−1,

The reduction of rank can be achieved by three trun-
cation selections: the rank reduction of the pseudoproxy 
matrix; the rank reduction of the target climate matrix; and 
the choice of the number of canonical coefficients to retain 
in the search of the canonical pairs. The first two corre-
spond to the number of retained EOFs, whereas the latter 
must be less than or equal to the smallest of the first two 
rank reductions (Smerdon et al. 2010). Another decision is 
whether to calculate the EOFs directly based on the origi-
nal series, or to normalise them prior to the calculation. 
The latter approach avoids that locations with higher vari-
ability dominate in the calculation of EOFs, which can be 
problematic in fields with heterogeneous variability such as 
precipitation. Several tests have been performed to analyse 
the sensitivity of the reconstruction skill on these modifica-
tions. The results, not discussed here for the sake of brevity, 
indicate that the reconstruction is not very sensitive to these 
choices in terms of the measures of skill described below. 
Thus, the set-up employed hereinafter to compare with 
the other methods consists of retaining 5 EOFs in the cli-
mate matrix and 11 EOFs in the pseudoproxy matrix (that 
is, we do not reduce the rank in the pseudoproxy matrix) 
and hence use 5 canonical coefficients. Finally the original 
series, without previous normalization, are employed in the 
calculation of the EOFs.

2.5  The Bayesian hierarchical method reconstruction

A Bayesian inference on a hierarchy of models (or Bayes-
ian Hierarchical Models, BHM) has also been employed. 
So far this method has been tested in PPEs for temperature 
(Werner et al. 2013; Tingley and Huybers 2010a) and pre-
cipitation (Gómez-Navarro et al. 2014) and successfully 
applied to reconstruct Arctic (Tingley and Huybers 2013) 
and European (PAGES 2k Consortium 2013) temperature 
anomalies. An advantage of BHM over the CCA is that it 
performs well even when data availability changes in time 
and data are in general sparse. More importantly, the under-
lying theory to assess error estimates is more transparent 
and more flexible compared to classical statistical methods. 
However, Bayesian methods are computationally expen-
sive and reconstruction performance critically depends on 
the suitability of the adopted statistical models. Misspeci-
fied models can even cause the failure of the Bayesian esti-
mation using the usual numerical methods (Markov Chain 
Monte-Carlo sampling), but even then analysing the rea-
sons for this failure provides indications as to which part of 
the model would need to be improved.

The reconstruction using the BHM is based on the meth-
odology dubbed BARCAST and developed by Tingley and 
Huybers (2010a, b), also used by Werner et al. (2013) and 
Tingley and Huybers (2013). In this method, a hierarchy 
of stochastic models is prescribed to model the climate, 
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instrumental and proxy data: a stochastic model for the 
time evolution of the climate variable is used. The climate 
variables are then used as input in stochastic models for the 
proxy and instrumental data. In this simple implementa-
tion, the models for proxy WP,t and instrumental WI ,t data 
are just linear response functions of the climate variable Vt

, here the local precipitation, at the site of the instrumental 
measurements or of the proxy data, respectively. The cli-
mate field variable Vt ∈ R

N at all of the N locations (i) at 
time steps t ∈ (1, 1998) and the input data are described by

Here, we have introduced a change to the original version 
of Tingley and Huybers (2010a, b). The non-climatic noise 
in the proxy data may depend on its past state, introduc-
ing an autocorrelated error into the system. Assuming an 
autoregressive process of order 1, the corresponding param-
eter β2 is held at zero for the white noise PPEs. For the 
red noise PPEs, β2 is estimated in Sect. 3.2. The matrices 
HI/P,t ∈ R

N×N are diagonal. The entries are one at position 
(i, i) when an observation in year t at location (i) was made 
and zero otherwise. The stochastic terms denoted by ǫP,t 
and ǫI ,t are multivariate normal with a diagonal covariance 
matrix 1τ 2

P and 1τ 2
I . They are used to model the local noise 

in the proxy response function and the errors in the instru-
mental observations. The interannual climate variability is 
described by the multivariate normal term ǫV ,t ∼ N(0, �), 
where the spatial covariance matrix � ∈ R

N×N is given by

It is clear that this homogeneous covariance structure is an 
oversimplification of the covariance estimated from obser-
vations, and the results of this simplification show up in 
the reconstruction experiments (Sect. 3.4). Likely, this is 
one aspect of the model that would require attention in a 
more realistic statistical model. One possible change to the 
covariance structure would be the inclusion of spatial inho-
mogeneities and anisotropy, possibly based on a decom-
position of the observed covariance structure of the instru-
mental period (see Tingley et al. 2012; Werner et al. 2013). 
While it is still possible to write down the posterior PDF 
of the covariance matrix without any prescribed structure, 
it has been suggested (Gelman et al. 2003) that it can be 
difficult, or even impossible, to achieve convergence in the 
estimation.

From the model Eq. (6) the conditional probability den-
sity functions (PDFs) can be derived for all variables—pre-
cipitation depending on the instrumental and proxy data as 
well as the system parameters [Greek symbols in (6)], but 
also for all system parameters dependent on the variables. 

(6)

Vt+1 − µ = α(Vt − µ) + ǫV ,t

WI ,t = HI ,t(Vt + ǫI ,t)

WP,t = HP,t(β2WP,t−1 + β1Vt + β0 + ǫP,t)

(7)(�)i,j = σ 2 · exp(−φ|xi − xj|)

For the conditional PDFs the reader is referred to the appen-
dix in Tingley and Huybers (2010a, b). A Gibbs sampler is 
then used to iteratively update estimates for the variables 
and parameters. This procedure is run in parallel in up to 
five chains. The resulting draws of the conditional PDFs are 
checked for convergence after 5,000 iteration steps, using 
convergence measures such as the potential scale reduction 
factor (Gelman et al. 2003). If convergence was unlikely, 
the Gibbs sampler was run for an additional 10,000 steps. 
Following the argumentation in Gelman et al. (2003), sin-
gle chains were removed afterwards if they converged to 
non-physical parameters. This may be required if the basin 
of attraction of the optimal solution is not infinitely big—
as is a typical feature of nonlinear optimisation problems. 
The results from the other chains are then thinned in time 
to remove the auto correlation present between subsequent 
draws. The remaining draws form ensembles of recon-
struction. Each of the remaining draws is equally probable 
and self consistent: The spatio temporal dependences of 
the climate field variable and the dependence of the proxy 
and instrumental data on it are given by the corresponding 
parameters of these draws. Each of the draws can be inter-
preted as a draw from the full (multivariate) joint PDF in 
the space of all climate variables at each time step and all 
locations and all parameters or, more close to the language 
of the climate research community, as equally probable 
ensemble members. This also means that when trying to 
compare the variability of the reconstructions to that of the 
target, the (estimated) distribution of the variability of the 
individual ensemble members can be used to directly state 
confidence intervals. This rather direct method of creating 
impartial uncertainty estimates is one of the main advan-
tages of using Bayesian inference. Another advantage is the 
possibility of, at least theoretically, implementing arbitrarily 
complex models, although the analytical and computational 
effort needed in such cases can be prohibitively high.

In order to apply the model (6) to precipitation data, one 
obstacle has to be overcome: a joint multivariate normal 
process is assumed in (6), which clearly is not applicable 
for precipitation data in many cases—especially in more 
arid regions, the distribution of seasonal and annual pre-
cipitation can be skewed. Thus, the input data needs to be 
previously transformed. This is done by estimating param-
eters for a gamma distribution for the local seasonal precip-
itation at each grid point from the full climate model out-
put. Clearly, this would be unfeasible for short real world 
instrumental data and underlines the best case nature of this 
experiment. Then, the data is transformed to a normal dis-
tribution using the corresponding probability functions, and 
the data at the locations and time steps for the proxy and 
instrumental data in the PPE is selected. Afterwards, the 
reconstruction is attempted and the results are finally trans-
formed back to the original units of measurement.



Establishing the skill of precipitation reconstructions through PPE

1 3

2.6  The analog method reconstruction

Although BHM is a non-parametric approach, the version 
adopted here uses a parametric model. Thus, it shares an 
important drawback with CCA: their parametric approach 
based on the IID assumption is roughly valid for tempera-
ture. However, for hydrological variables, especially those 
within climates such as the Mediterranean, this assumption 
may not be fulfilled. Therefore, non-parametric approaches 
are in principle more suitable to account for the processes 
controlling the hydrological cycle. As an example of a sim-
ple yet non-parametric and non-linear method, the AM has 
been applied and tested as well. Although it was first intro-
duced in the 1970s for weather forecasting (Lorenz 1969), 
it was not widely adopted partly due to the need for suf-
ficiently long observational records to properly sample the 
large dimensional space of climatic variables. However, a 
number of variations of the method have been developed 
to overcome this problem: the number of degrees of free-
dom can for example be reduced by an EOF analysis or 
CCA (Zorita and von Storch 1999; Fernández and Sáenz 
2003; Xoplaki et al. 2004). One application of this method 
in climate research has been as a statistical downscaling 
technique, where the large scale fields of Global Circula-
tion Models are used as predictors and regional variables 
such as precipitation are the predictands. Used in this way, 
the method has been shown to produce results comparable 
to more complex techniques (Zorita and von Storch 1999). 
However this technique can also be used as an upscaling 
tool, linking local information of a climatic variable with 
the corresponding large-scale gridded field. Applied this 
way, the method can be regarded as a CFR technique. The 
skill of this approach to reconstruct temperature fields 
has been recently examined by Franke et al. (2010) and 
Luterbacher et al. (2010) in a number of PPEs conducted 
within the virtual world of GCM simulations. Similarly, 
Schenk and Zorita (2012) used it to generate a high reso-
lution atmospheric reconstruction for Northern Europe 
based on a realistic regional simulation driven by reanalysis 
and few local quality controlled series of temperature and 
sea-level-pressure.

The basic idea of the method is as follows: We assume 
that a set of observations of the multivariate predictand T(t) 
is available over some short time, with concurrent observa-
tions of a multivariate predictor P(t). This predictor is also 
available at time t0 where no observations of the predictand, 
the target field variable, are present. The AM assumes that 
the value of these unknown T(t0) can be approximated by 
a known value of T(t) if the predictors P(t) and P(t0) at the 
target time t0 and a time t in the observation period are suf-
ficiently similar. The set of values P(t) with the simultane-
ous information of the predictand T(t) is generally denoted 
the pool of potential analogs. At a given time t0, the method 

compares P(t0) with all the pool members by calculating a 
distance measure to be defined later

The element (or elements) in the pool with a small distance 
�(ti) are called the analog(s), P(t̃i). The reconstructed pre-
dictand can simply be defined as the value of the predictand 
at the analog point in time which minimises the distance 
T(t0) = T(t̃i).

Although the basic idea is simple, it can be tailored to 
fit to different requirements by choosing a suitable distance 
measure in (8). One of the most simple and intuitive is the 
Euclidian distance,

where j represents the dimensions of the multivariate 
predictand. This distance has been compared with more 
sophisticated metrics by Matulla et al. (2007), and the 
results indicate that there is no metric that optimises the 
AM in every aspect. For this reason, we restrict ourselves 
hereafter to the Euclidian metric defined by (9).

As briefly discussed above, other variants do not 
directly use the variables P in the pool, but rather a rank-
reduced version, searching the analogs in the EOF space 
or in the space spanned by canonical pairs identified in 
the pool (Fernández and Sáenz 2003). These variants are 
important because a small pool may compromise the skill 
of CFR due to the potentially large dimensionality of the 
predictor fields. Nevertheless as we use a very large pool 
(2000 simulated years), these limitations are absent in this 
study.

Another modification to the method is to not just select 
one analog, but to average several analogs to generate a 
reconstructed field. For example, the N most similar pool 
members [in the sense of the distance given by (8)] to P(t) 
can be used to produce a reconstructions by a weighted 
average

where T(t̃i) denote the predictand fields of the clos-
est analogs, possibly weighted by ωi. These allow equal 
importance to all analogs or weights them according to 
their distance to the target. For the sake of simplicity, 
we uniformly weight all N closest analogs. Note that an 
expected counterpart of this averaging procedure is the 
loss of variance. The diminished variability is a function 
of the number of elements used to average N, and can be 
explained by the simple application of the Central Limit 
Theorem.

(8)�(ti) = dist(P(t0), P(ti)).

(9)dist(P(t0), P(ti)) =

√

√

√

√

r
∑

j=1

(Pj(t0) − Pj(ti)))2

(10)T̃(t0) =

N
∑

i=1

ωiT(t̃i)



J. J. Gómez-Navarro et al.

1 3

Note that an important prerequisite using the AM 
relates to the availability of having a large pool of realistic 
observational data to perform the search of analogs. In pre-
vious applications of the AM, for instance in weather pre-
diction (Dool 1994) or statistical downscaling (Zorita and 
von Storch 1999) the pool of analogs consisted of gridded 
observations of large-scale fields, such as sea-level-pres-
sure or geopotential height. However, in the framework 
of CFR the pool of analogs consists of fields of simulated 
precipitation during the last 2000 years (Gómez-Navarro 
et al. 2014). In this set-up it is important to note that the 
PPE is constructed on the same data set that is used as a 
pool for the search of analogs, the MM5 run. This leads to 
circularity, since the pool of analogs consists of the target 
that the method tries to reconstruct. This could lead to the 
overestimation of the skill of the AM compared to the for-
mer techniques (indeed, in the case of PPE without noise 
the AM would always trivially select as analog the origi-
nal situation, leading to a perfect reconstruction). To cir-
cumvent this, the algorithm neglects those analogs whose 
time step the method is trying to reconstruct. Additionally, 
a sensitivity experiment was designed to assess the role of 
the target in the evaluation of the skill of the AM. For this, 
the CCLM run was used as a target for the PPE, whereas 
the pool used in the search of analogs still consisted of the 
MM5 run. The results of this experiment are described in 
Sect. 3.3.

2.7  Measures of skill

Several metrics were used to evaluate pseudo-reconstruc-
tions in past studies. We briefly describe the ones used 
herein. In all cases the procedure consisted of evaluating 
the resemblance between the reconstruction based on a 
limited number of pseudo proxies with the known “target”. 
The first two measures of similarity are the Pearson corre-
lation coefficient between reconstructed and target precipi-
tation at each location evaluated over all the reconstructed 
period, and the ratio of the reconstructed variance vs. that 
of the target time series. Both estimators are defined e. g. 
by (von Storch et al. 2008). A word regarding the choice of 
correlation measure is due here. It is rather common in the 
hydrology literature to use the Spearman rank correlation, 
rather than the Pearson correlation. However, the difference 
between both measures of dependency between variables is 
small unless the relation between the variables is strongly 
non-linear or many outliers in the records exist (McDonald 
and Green 1960). As we are comparing seasonal series of 
simulated/reconstructed precipitation, this is not the case, 
and indeed the difference between the Pearson and Spear-
man correlation maps is negligible (not shown). Thus, we 
decided to use the former for the sake of simplicity and for 

being the most widely measure of dependency used in the 
literature.

2.7.1  Reduction of error

The Reduction of Error (RE) (Cook et al. 1994) measures 
to what extent the reconstruction better fits the target than 
a climatological mean derived over a reference period. It is 
defined as

where Ti and T̂i are the target and the reconstructed values 
respectively for each grid point, respectively. T̄i denotes the 
corresponding mean over the reference period. The values 
of RE range from −∞ to 1. Negative values imply that the 
reconstruction is worse than a prediction based on the cli-
matology. A positive RE, approaching 1 for a perfect recon-
struction, indicates a skilful reconstruction.

2.7.2  Contingency tables

An important aspect of a climate reconstruction is its skill 
in reproducing not only the mean value and low frequency 
variability, but also the tails of the distributions. These are 
of major relevance for hydrological variables, since the sea-
sonal precipitation outliers are directly related to important 
events such as droughts and flooding. In order to evaluate 
the skill of the reconstruction in reproducing the timing and 
severity of these events, we use a metric based on contin-
gency tables. For this, we divide the precipitation at each 
location into three categories, from low to high. The “low” 
category consists of the lower 10th percentile, the “high” 
category are values above the 90th percentile of the precipi-
tation series at that grid point. The bulk is considered to be 
normal. A 3 × 3 contingency table C is generated, where 
each element cij represents the percentage of times that 
the reconstruction showed category i when the target was 
in category j. The matrix C tends to be diagonal when the 
reconstruction is able to reproduce the timing of extreme 
seasons, whereas large off-diagonal entries indicate dimin-
ished skill.

This contingency table can be translated into a numer-
ical score by defining a skill matrix  C, and defining the 
score as

This skill matrix can be defined in a variety of ways. Gan-
din and Murphy (1992) develop a general framework 

(11)RE = 1 −

∑

(Ti − T̂i)
2

∑

(Ti − T̄i)2

(12)s =

3
∑

i,j=1

sijcij
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to define equitable skill scores, in the sense that they not 
only penalise the lack of skill, but they also show no pref-
erence for forecasting any of the available categories over 
the others. In our case, we have three categories of events, 
with probabilities 0.1, 0.8 and 0.1 for “low”, the bulk, and 
“height” events, respectively. Following Gandin and Mur-
phy (1992), there is a free parameter that allows the defi-
nition of a whole family of skill matrices which produce 
desirable properties for the numerical score in Eq. 12. This 
parameter is the element s12, which can take any value in 
the interval −1/2 ≤ s12 ≤ 0. We select the middle point, 
s12 = −1/4, resulting in the matrix

This metric rewards the reconstruction when it success-
fully reproduces an extreme event, gives less credit when it 
reproduces a “normal” event, and penalises the mismatches. 
There are two types of mismatches, light and severe, with 
a penalisation that reflects its severity. Finally, the errors 
are considered symmetric, i. e. forecasting i when j was 
observed produces the same score as the opposite situation.

Note that although the Pearson correlation and this skill 
are, in principle, related, they might produce very different 
results if the ability of the reconstruction to reproduce the 
tails of the distribution is different to the skill in the mid-
dle of the distribution. An idealised example that illustrates 
such situations can be easily built by cloning a normal-
distributed series, and then multiplying all its elements 
between the 10th and 90th percentiles by −1. The correla-
tions between the modified and the original series is low, 
whereas the ability to reproduce the tails is indeed perfect. 
Thus, in order to gain further insight into the behaviour 
of this skill metric and how it is related to the correlation 
between reconstruction and target, we performed a simu-
lation study with synthetic series obtained with a random 
number generator. In each Monte-Carlo step, we gener-
ated two series of 2000 standardised normal variables with 
certain known level of correlation. These two series were 
then categorised into three states, following the aforemen-
tioned criteria of thresholds, and the corresponding skill 
score was calculated according to Eqs. (12) and (13). For 
each level of correlation, 1,000 Monte-Carlo experiments 
were repeated, allowing an estimate of the distribution 
of the score. Figure 1 depicts the median skill score as a 
function of the correlation. The shaded area represents the 
90 % confidence level based on these simulations. There is 
a monotonic, although non-linear, relationship between the 
skill score and the correlation calculated prior to the cate-
gorization of the series. The skill score is always lower than 
the correlation. The difference between both statistics is 
small in correlations close to 0 or to 1, and it is maximum 

(13)S =





4.75 − 0.25 − 2.75

−0.25 0.0625 − 0.25

−2.75 − 0.25 4.75





in intermediate correlations. Note, however, that this curve 
is only valid for normal variables. Other distributions, such 
as the precipitation series we analyse in this study, could, 
in principle, behave differently. Thus, Fig. 1 should not be 
considered as a trivial relationship between correlation and 
skill score valid for all probability distributions. Indeed, the 
analysis of the skill score allows for the analysis of the abil-
ity of the reconstruction to reproduce extreme periods by 
clustering all “normal” years into the same category. 

3  Benchmarking the CFR techniques

In the following sections we assess and compare the skill 
of the AM and CCA as CFR methods for precipitation. We 
postpone the BHM evaluation to Sect. 3.4. The reasons for 
this separation is technical: The latter method is computa-
tionally very demanding, which limits the number of grid 
points the reconstruction can perform for in limited time. 
Due to these limitations the reconstructions performed with 
this method have to be done on a coarser resolution grid. 
The coarser grid is a 225 km spaced sub grid of the origi-
nal one, excluding a strip around the boarder of the domain 
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Fig. 1  Monte-Carlo simulation study of the relationship between 
skill score based in contingency tables and correlation. For each level 
of correlation, two series of 2,000 standardised normal variables are 
generated and the skill score is calculated after the categorization 
of such series. This experiment was repeated 1,000 times to cal-
culate not only the mean skill score but its confidence interval. The 
figure depicts the median (solid line) and the 90 % confidence inter-
val (shaded) of these 1,000 simulations for each level of correlation 
between 0 and 1. The one-to-one line is drawn to facilitate the visu-
alization of the result
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of the RCM to avoid the boundary effects. This makes the 
comparison with the former reconstructions (which operate 
in the original 45 km grid) more difficult. Thus, we decided 
to evaluate the skill of this technique separately in a dedi-
cated section.

3.1  Performance of the AM and CCA in the idealised case

A number of independent reconstructions based on AM 
and CCA have been performed for winter and summer 
based on the same network of pseudoproxies. Both tech-
niques admit a number of variations which allow for the 
fine-tuning of their performance. Regarding CCA, the 

EOFs used to regularise can be obtained by using the 
covariance or the correlation matrix. By using the latter, 
the over-representation in the EOF analysis of locations 
where variability is larger is avoided. This is a desirable 
feature for precipitation, as the variability of this variable 
is directly related to its mean value, which is highly heter-
ogeneous throughout the domain. By using the correlation 
matrix, all grid points contribute equally to the EOF pat-
terns. Also the number of EOFs retained in the process can 
be adjusted using different criteria. Given that the number 
of pseudoproxies is 11, this puts an upper limit to the num-
ber of precipitation EOFs that can be retained for calculat-
ing the Canonical pairs. Using too few patterns produces 
the underestimation of the explained variance, whereas 
using too many could cause overfitting of the model, leav-
ing too few degrees of freedom for the reconstruction. In 
this study we tested the performance of reconstructions 
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Fig. 2  Pearson correlation between the simulation and the recon-
struction performed with pseudoproxies. The green stars indicate 
the location of the pseudoproxies. Reconstructions are performed for 
winter (left) and summer (right) with the AM using 1 analog (top), 10 
analogs (middle) and CCA (bottom). The number in each rectangle 
indicates the spatial average of the corresponding value
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Fig. 3  As Fig. 1, but for the reduction of error (RE) statistics
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when the 11 first EOFs were employed and when this num-
ber was reduced to only 5. We performed these reconstruc-
tions with the correlation and covariance matrices, result-
ing in a total of 4 reconstructions. The results (not shown) 
indicate that the difference between these 4 approaches 
is small, so for the sake of brevity only the CCA recon-
struction retaining 5 EOFs (which explain roughly 50 % 
of the total variance) and using the correlation matrix is 
discussed. Regarding the AM, we tested several values of 
N in Eq. (10). The values of N = 1 and N = 10 are dis-
cussed here in comparison with the CCA method. The skill 
of these three reconstruction was evaluated by calculating 
the correlation (Fig. 2), (RE, Fig. 3) and a skill score (Fig. 
4) based on contingency tables as defined by Eqs. (12) and 
(13). In all cases the pseudoproxies are perfect, i. e. they 
are the uncontaminated raw grid-cell time series produced 
by the climate model.

The correlation maps shown in Fig. 2 indicate that the 
spatially averaged linear relation is not very high (correla-
tions below 0.5 in all cases). High correlations above 0.8 
can be found in areas close to pseudoproxies, whereas very 
low correlations are in remote areas where no proxies are 
found. This tendency to aggregate skill in pseudoproxy 
locations has been previously reported among others by 
Smerdon et al. (2010), Li and Smerdon (2012) and Annan 
and Hargreaves (2013). Comparing the different methods, 
they all share a similar spatial structure, strongly influenced 
by the locations of the proxies. The major differences 
among the methods relate to the magnitude of correla-
tions. CCA generally shows the highest values, whereas the 
1-member analog reconstruction (only the closest analog) 
performs worst. Figure 2 also illustrates how the AM can 
easily be tailored to increase the correlation by increasing 
N. However, by doing this the temporal evolution of the 
reconstruction is smoother, resulting in the severe loss of 
temporal variance outlined above (not shown). Indeed, the 
spatial-averaged ratio of standard deviation between the 
reconstruction and the target is 0.96 and 0.98 for winter and 
summer, respectively, when N = 1, whereas it drops to 0.49 
and 0.39 when N = 10. Thus, a trade-off between correla-
tion and variance is established. CCA produces spatially-
averaged variance ratios for winter and summer of 0.54 and 
0.36, respectively. Hence, the 10-member AM performs in 
this aspect similar to CCA. However the AM is more flex-
ible, and larger N could be used to increase the correlation 
at the expense of reducing the variance.

The RE values for winter and summer are depicted in 
Fig. 3. This parameter evaluates the compromise between 
the ability of the reconstruction to follow the temporal evo-
lution and its variance through time compared with a ref-
erence period (chosen here as the twentieth century). The 
CCA performs similar to the 10-member analog recon-
struction, showing a skillful reconstruction over large parts 
of the domain, especially in areas close to the proxy loca-
tions (indicated with blue stars, see Fig. 3). Likewise, the 
skill in summer considerably reduces over remote areas 
with respect to the proxy location. The 1-member AM 
clearly shows poor skill in most areas, associated to the 
lack of temporal agreement (Fig. 2).

Finally, the skill score based on categorical assess-
ment is shown in Fig. 4. Recall that, contrary to correla-
tion, this skill emphasises the accuracy of the reconstruc-
tion to reproduce the timing of infrequent precipitation 
seasons, not giving much credit for reproducing “normal” 
ones. The skill score shows a spatial structure which is 
very similar to the correlation maps shown in Fig. 2, albeit 
with lower numerical values as expected from the results 
of the analysis with the synthetic series shown in Fig. 1. 
The differences between methods and seasons are also 
apparent in this figure. If plotted against the correlation, a 
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strictly monotonic dependency between the two measures 
is revealed (not shown). Hence Fig. 4 demonstrates that the 
reconstructions are also able to correctly classify some of 
the outliers. 

3.2  The effect of the inclusion of noise in the PPEs

The reconstructions analysed so far were based on perfect 
pseudoproxies. In this section we analyse the effect of con-
taminating the perfect pseudoproxies with statistical noise 
to make them more realistic. The effect of the introduction 
of noise is illustrated through the use of Taylor diagrams, 
which summarise the performance of different methods in 
a simple graph (Taylor 2001). These diagrams normally 
depict the performance of a single series with respect to a 
reference. Here, we use it to represent the spatially averaged 
skill, so the figure actually shows the spatially averaged cor-
relation, ratio of variance, and centred RMSE. Note that, 
although the local variations of skill are crucial throughout 
this study, the spatial structure of the performance (particu-
larly its relation with respect to the distance to the pseudo-
proxy locations) is very similar to that displayed in Figs. 2, 
3 and 4, and omitted here for the sake of brevity.

Figure 5 shows the performance for the three methods 
discussed above (by rows) in winter and summer (by col-
umns). Each diagram shows the averaged skill for perfect 
pseudoproxies (blue symbols), white noise pseudoproxies 
(green symbols) and red noise pseudoproxies (red sym-
bols). Furthermore, we also examine the performance at 
different temporal scales. For this purpose we apply three 
time filters to the series prior to the calculation of the skill: 
unfiltered filter (cross), 31-year running mean (square) 
and 101-year running mean (triangle). First, as discussed 
above, the skill in the perfect case (blue crosses) is always 
higher for winter, indicating that in summer precipitation is 
more dependent on regional-scale processes, hampering the 
extrapolation of the proxies information for remote areas. 
Comparing these three methods, the 1-member analog 
reconstructions preserves the variance very well, but at the 
expense of low correlations. Using more analogs, the cor-
relation increases but the variance is underestimated more 
and more. The skill of the AM becomes increasingly simi-
lar in terms of RMSE to CCA.

Regarding the different filtering of the series, it is note-
worthy that regardless the CFR method, the nature of the 
noise (white or red) does not seem to be of relevance for 
the skill of the reconstructions at interannual scale (red 
and green crosses mostly overlap in all cases). However, 
for low-pass filtered precipitation series, the reconstruc-
tions with red noise tend to show better correlation but less 
variability than those contaminated with white noise. If real 
noise in proxies is indeed better approximated by red noise, 
this would indicate that the CFR methods will tend to result 

in higher correlation at low frequencies, but at the expense 
of a reduced variability at these frequency bands.

3.3  Sensitivity to the choice of the pool of analogs

It can be argued that the comparison performed between the 
CCA and the AM is biased, because the latter is based on a 
pool extracted from the same target simulation. The prob-
lem is that the quality of the pool is critical for the accu-
racy of this method. Systematic problems such as biases, 
underestimation of variance in certain locations, or wrong 
structure of the spatial covariance, are transferred from the 
pool to the final reconstruction. Hence, by using the same 
simulation as the target and as the source of the pool, these 
systematic problems could not be detected. The result is 
that the comparison of methods performed above can over-
estimate the capabilities of the AM method to reconstruct 
seasonal precipitation.

A simple way to investigate the role of the pool on the 
performance of the AM is to use a set of analogs that are 
not extracted from the same simulation as the targets. This 
can be achieved by attempting to reconstruct a different 
simulation, performed with a completely different model 
setup, but using the same pool we used above. For this pur-
pose we use a simulation with the regional CCLM model 
described above, which spans the period 1645–2000. Both 
simulations are different: they have been carried out with 
different regional models, each driven by a different global 
model, and even encompass different domains. However 
both share most of the simulation domain (Europe), simi-
lar forcings and a similar spatial resolution. In summary, 
we use the CCLM simulation as an alternative reality to be 
reconstructed (with different systematic errors) based in the 
same pool of analogs as before.

The skill of the CFR for the CCLM simulation using 
the analog pool from the MM5 simulation is illustrated in 
Fig. 6, which shows the correlations and ratios of standard 
deviations between the CCLM simulation and its recon-
struction based in the same network of pseudoproxies used 
so far. Here, the 1-member AM with perfect pseudoproxies 
was implemented, so that this figure can be compared only 
with the first rows in Figs. 2, 3 and 4. Most results discussed 
above regarding the correlation remain valid in this experi-
ment. The reconstruction is only skillful close to the areas 
with proxy information. The ability to reproduce the precipi-
tation field from local proxies is lower in the summer sea-
son. The average correlation in winter is similar but slightly 
higher (0.34 vs. 0.28), although in summer it is lower (0.05 
vs. 0.11). As expected, the 10-member AM (not shown) 
increases the mean correlation in both seasons (0.53 and 0.13 
for winter and summer, respectively). However, a different 
picture emerges when looking at the ratios of the standard 
deviation. The 1-member AM employed as CFR technique 
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here preserves the variance of the pool, which may not be 
the same as the variance of the target. This is clearly shown 
in the second row of Fig. 6. In winter, the method tends to 
underestimate variance in the western part of the domain, 
whereas it overestimates it in the east and over the Medi-
terranean. This situation becomes worse in summer, where 
the method strongly overestimates the variability of the 
CCLM simulation in most areas except in the north of the 

domain (not shown). As before, when the 10-member AM is 
used, the overestimation of variance becomes smaller, and 
the method generally loses variance (not shown). The rea-
son for this overestimation has to be sought in the variance 
simulated by the CCLM model used here as a testbed. The 
variance in the MM5 simulation has been evaluated against 
observations and shown to be realistic (Gómez-Navarro et al. 
2013). However, the CCLM simulation shows an anomalous 

Fig. 5  Skill for the three CFR 
methods for winter and summer. 
Each Taylor diagram shows in 
polar coordinates the spatial-
averaged correlation (the cosine 
of the angle in the polar graph) 
and the ratio of standard devia-
tions between the reconstruc-
tion and the original simulation 
(radial distance). The distance 
to the point of coordinates 
(1, 0) is the spatial-averaged 
centered RMSE. Three different 
types of noise [no noise (blue), 
white noise (green) and red 
noise (red)] and three levels 
of smoothing (the number in 
the legend denotes the window 
used to calculate a running 
mean) are applied to analyse the 
influence of these factors in the 
reconstruction skill. See text for 
details
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and unrealistic smaller variance in the summer precipitation 
in the southern part of the domain (not shown). The AM is 
not able to find analogous situations for such unrealistically 
dry conditions in the pool, which results in this overestima-
tion of the reconstructed variance.

3.4  Performance of the BHM as CFR technique 
for precipitation

This section assesses the BHM as CFR technique, and 
compares it with the AM and CCA techniques formerly 
discussed. As mentioned above, this CFR method has large 
computational requirements which limit its applicability 

within the high-resolution dataset we are using as testbed 
for the PPE. Thus, for this set of experiments we use a 
coarser resolution version of the original simulation at 225 
km resolution. However we still keep the same network of 
pseudoproxies as in the exercises above in order to facili-
tate the comparison of the different methods.

The maps of correlation, RE, and skill score of the BHM 
reconstruction when no noise is included into the original 
series is shown in Fig. 7, and are the equivalents to Figs. 
2, 3 and 4 for this method. Although the coarser resolu-
tion is noticeable, the main conclusions drawn from the 
assessment of the other two techniques still apply here. The 
areas where the reconstruction is closer to the simulation 

Fig. 6  Pearson correlation (top) 
and ratio of variance (bottom) 
between the CCLM simula-
tion and the reconstruction 
of this simulation performed 
with analogs searched within 
the pool of 2000  years of pre-
cipitation simulation employed 
through this study. The green 
starsindicate the location of the 
pseudoproxies. Reconstructions 
are performed for winter (left) 
and summer (right) with the 
AM using 1 analog
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are remarkably close to the locations of the pseudoproxies, 
but the divergence increases with distance from these areas. 
The average correlation in winter is 0.23, very close to the 
1-analog case (0.27), but much lower than 10-analogs or 
CCA PPEs (correlations 0.43 and 0.49, respectively). The 
RE shows overall negative skill in both seasons with clear 
skillful reconstructions in every location of proxy infor-
mation, indicating that the reconstruction is better than a 
climatological mean only in the neighbourhoods of the 
proxy locations. In a similar fashion, the skill score fits 
very well within the former results, and shows average val-
ues of 0.15 and 0.11 for winter and summer, respectively. 
Although these values are lower than the correlation, it is 
in good agreement with the expected result for this statis-
tic (see Fig. 1), and indeed is very similar to the 1-analog 
case in each corresponding season (0.16 and 0.07). Still, 
the method shows some skill reproducing outliers on the 
network of proxies, which supports the argument that if a 

dense network of proxies is available, this method repre-
sents a promising CFR tool.

An aspect where the BHM method outperforms CCA 
and the 10-analogs method is in its ability to preserve the 
original variance. The maps of ratio of variance (not shown) 
indicate that the variance of the reconstruction is roughly 
the same as the original, demonstrating that this method 
does not suffer from loss of variance. This is another aspect 
where the 1-analog and BHM reconstructions perform very 
similar. This fact, together with the inferior abilities of both 
techniques to reproduce the temporal agreement (see Figs. 
2, 3, 4), renders the BHM method roughly equivalent to the 
1-analog reconstruction in its overall skill.

As the discussion above outlines, the asymmetry between 
winter and summer again stands out with this method. The 
consistency of this results strongly suggests that it is not 
possible to design a statistical method to extrapolate sum-
mer precipitation out of a limited number of proxy loca-
tions, regardless of their quality. This is due to the high het-
erogeneity of this variable, especially noticeable in summer.

Further experiments with noisy pseudoproxies have been 
performed with this method. The results, not shown for the 
sake of brevity, indicate that the net effect of noise is to 
reduce the temporal agreement between the simulation and 
its reconstruction, albeit it does not affect the skill of the 
BHM reconstructions to reproduce the original variance. In 
winter, the spatial-averaged correlations drops from 0.23 to 
0.16 and 0.15 when white and red noise is introduced in the 
proxies, respectively. Similarly, the skill score is reduced to 
roughly one half. RE however does not change globally so 
dramatically (from −0.66 to −0.75 and −0.78), although it 
gets severely reduced in the former skillful locations, ren-
dering the reconstruction better than a constant climatology 
in very narrow areas around proxy locations. These results 
can be mostly attributed to the short decorrelation length 
of precipitation in general and to the omission of a more 
informed estimate of the structure of the spatial covari-
ance matrix. Clearly, things such as the upslope effect and 
anticorrelation of windward and leeward sides along the 
Scandinavian coast or the Alps should be included. Impos-
ing a spatial structure should however be based on physical 
understanding, as purely statistical patterns might not be 
stable in time (Raible et al. 2006).

Taking the high computational demand into account, 
use of BARCAST in a scenario as tested here is unfeasible 
and will not result in skilful reconstructions for most of the 
area—at least without the above mentioned extension.

4  Discussion

This study analyses the skill of three completely different 
approaches to perform CFRs for precipitation. As a first 
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approximation, reconstructions based on “perfect” proxies 
are evaluated, in the sense that each one reproduces perfectly 
the local climatic variability without any source of non-cli-
matic signal. Different measures of the skill are employed, 
with a focus on the skill of the methods to preserve the origi-
nal variance and temporal evolution, including the reproduc-
ibility of the tails of the distribution. All CFR methods are 
able to reproduce, to some extent, the evolution of precipita-
tion, but important caveats are apparent. The most important 
being that, although the CFRs are skilfully close to the loca-
tions of the pseudoproxies, precipitation in areas not prop-
erly covered by the proxy network can not be reconstructed 
accurately. This lack of skill is especially problematic in 
summer. The lack of spatial coherence and the asymmetry 
between winter and summer is related to the nature of the 
precipitation regime in Europe. In winter, precipitation is 
driven to a large extent by large-scale circulation, whereas in 
summer precipitation is rather modulated by local processes, 
hampering the extrapolation of precipitation for the entire 
European domain from a limited set of proxy locations.

Comparing the spatial structure of the different skill 
measures among the methods, they all share similar pat-
terns, although CCA in general produces higher corre-
lations than the AM and BHM. However, when several 
situations are averaged to form an analog in the so-called 
10-analog variant, the correlation achieved by the AM 
rises, becoming comparable to CCA. Both the BHM and 
the 1-member analog version present the advantage of 
almost perfectly preserving the variance of the original 
field, whereas the linear assumption implicit in the CCA 
method destroys an important part of the original variance. 
The 10-member analog version also underestimates vari-
ance, showing a clear trade-off between variance and cor-
relation. Overall, the CCA method is comparable to the 
10-analog variant, whereas the BHM resembles the skill of 
the 1-analog version. Intermediate skill in correlation/pres-
ervation of variance can be achieved by considering differ-
ent numbers of analogs. The RE is a statistic that combines 
both aspects of the skill, and demonstrates that neither 
the 10-member analog or the CCA method is clearly bet-
ter than the other methods, whereas the 1-member AM or 
BHM seems not to be always the best choice due to the low 
correlation these methods produce. An important result of 
the evaluation of the skill of CFR in reproducing extreme 
events through contingency tables rather than just correla-
tion analysis is that they are at least as reliable in repro-
ducing outliers as they are in “ordinary” situations. This 
is non-trivial result with implications using the gridded 
products to analyse the evolution of extreme events, such 
like impact studies. Overall, none of the three methods (nor 
variants of the AM) outperforms the others in every aspect, 
and the compromise between correlation and variance is 
found across all of our analyses.

The assumption of perfect PPE is unrealistic due to the 
fact that real proxies include an important amount of non-
climatic signal which propagates into the CFR, widening 
the uncertainty ranges and biases. Thus, we analyse the 
impact of including two types of noise (white and red) into 
the pseudoproxies. The level of noise is such that it reduces 
the correlation with the original series in each proxy loca-
tion to 0.5. As expected, including noise severely reduces 
the temporal agreement between reconstruction and target, 
regardless of the CFR method applied or the season. This 
has a strong impact on correlation and the skill score, but 
not so much in the amount of variance explained.

We also compare the reconstruction skill at different fre-
quency bands. At interannual scale, the nature of the noise 
does not seem to play an important role. However, when 
temporal low-pass filters are applied to the series before the 
assessment of their skill, the pseudoproxies contaminated 
with red noise produced CFR with generally larger correla-
tion. This indicates that if the non-climatic signal embed-
ded in real proxies is red, CFR will tend to show higher 
skill at low frequencies. This result can be expected as the 
low-pass filtering for time scales longer than the decorrela-
tion time of the noise results in a residual with a flat spec-
trum, and thus being more similar to white noise at these 
time scales and longer.

The role of the pool used in the AM has also been ana-
lysed. Here we use a different RCM simulation with the 
CCLM model as the target pseudoreality, whereas the same 
2000-year simulation performed with MM5 is used as pool 
of analogs. Most of the conclusions derived from compar-
ing the CCA and AM can be confirmed by this analysis. 
The correlations using the 1-member AM are comparable 
in winter and summer to the ones obtained when the same 
simulation was simultaneously used as pool target. This 
indicates that the nature of the pool does not seem to be 
critical for the reproduction of the temporal evolution of 
the reconstruction. However, the comparison of variance 
demonstrates how the properties of the pool are transferred 
to the reconstruction. Here, the CCLM simulation shows 
a strong underestimation of the summer precipitation in 
Southern Europe, that the pool of the MM5 simulation is 
not able to reproduce. This highlights the importance of 
using a realistic pool, and suggests a possible improvement 
of the method, namely the removal of systematic bias in the 
pool according to some reliable observational dataset prior 
to the search for analogs.

5  Conclusions and outlook

Our results indicate that the application of CFR techniques 
to precipitation reconstructions is affected by a number of 
theoretical limitations hard to overcome with the currently 
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available network of proxies. The problem arises from the 
complex behaviour of this variable, which is highly het-
erogeneous through the annual cycle, but especially in 
summer. None of the three statistical approaches employed 
here are able to extrapolate valuable precipitation infor-
mation to areas away from the proxies sites. Further, it 
should be noted that this study has to be considered within 
the cautions of being a theoretical exercise, based mostly 
on synthetic data generated with climate models and an 
only partly realistic network of pseudoproxies. Real pre-
cipitation can be expected to be even more complex and 
regional-dependent, which adds a layer of complexity 
that real reconstructions have to deal with. However, our 
results also indicate that the CFR of precipitation is a pri-
ori possible if a dense network of local proxies is avail-
able. Thereby the reliability of real-world reconstruction 
efforts such as the Old World Drought Atlas (Cook 2013) 
could be evaluated in further detail, although it would 
require the use of a more realistic network of proxies than 
the one we use in this preliminary assessment. Thus, future 
studies will address the role of such a realistic network of 
proxies, as well as the impact of the inclusion of series of 
proxies which do not span the whole period. Finally the 
interactions between seasons, which can mask the climatic 
signal extracted from the proxies, is not explicitly taken 
into account in this study. The design of experiments to 
gain insight in the role of such processes is feasible within 
the framework of PPE, but is delayed for future studies. 
Ultimately, the methods tested in this study, particularly 
the AM, will be applied to real proxy series with the aim 
of evaluating the possibilities of performing real precipita-
tion reconstructions for Europe, as well as evaluating their 
uncertainties.
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