ON THE COHOMOLOGY OF CERTAIN QUOTIENTS OF THE SPECTRUM $B P$

A. JEANNERET
Mathematisches Institut, Sidlerstrasse 5, 3012 Bern, Switzerland
e-mail: alain.jeanneret@math.unibe.ch

and S. WÜTHRICH
SBB, Brückfeldstrasse 16, 3000 Bern, Switzerland
e-mail: samuel.wuethrich@sbb.ch
(Received 22 September 2010; revised 4 January 2011; accepted 11 April 2011; first published online 2 August 2011)

Abstract

The aim of this note is to present a new, elementary proof of a result of Baas and Madsen on the $\bmod p$ cohomology of certain quotients of the spectrum $B P$.

2010 Mathematics Subject Classification. 55P43; 55N10, 55S10.

In 1970s, Baas and Madsen [1] calculated the cohomology of certain quotients of $M U$, the Thom spectrum of the universal bundle over $B U$. Recall that

$$
M U_{*}=\pi_{*}(M U) \cong \mathbb{Z}\left[x_{1}, x_{2}, \ldots\right],
$$

where x_{i} lies in degree $\left|x_{i}\right|=2 i$. The spectra $M U\left\langle n_{1}, \ldots, n_{q}\right\rangle$ considered by Baas and Madsen are defined for any string of integers $0<n_{1}<\cdots<n_{q}$ of the form $n_{i}=$ $2\left(p^{j_{i}}-1\right), j_{i}>0$, where p is some fixed prime. They satisfy

$$
\pi_{*}\left(M U\left\langle n_{1}, \ldots, n_{q}\right\rangle\right) \cong \mathbb{Z}\left[x_{n_{1}}, \ldots, x_{n_{q}}\right] .
$$

Baas and Madsen determined their mod p cohomology, by relying heavily on the Atiyah-Hirzebruch spectral sequence and previous work of Cohen on the Hurewicz homomorphism on $M U$ [4].

The aim of this note is to present an alternative proof of Baas-Madsen's result without reference to any spectral sequence or to the work of Cohen. Our arguments use the techniques developed in $[\mathbf{5}]$ and thus are more transparent than the original ones. They are based on a construction of the spectra $M U\left\langle n_{1}, \ldots, n_{q}\right\rangle$ which is algebraic in nature and which does not require the use of bordism with singularities any more.

The spectrum $M U$ is a commutative S-algebra, see [5]. This leads to a well-behaved homotopy theory of $M U$-modules. In particular, the derived or homotopy category of $M U$-modules is a symmetric monoidal category for the smash product over $M U$. Our constructions take place in this category.

The spectra $M U\left\langle n_{1}, \ldots, n_{q}\right\rangle$ can be obtained in a standard way, as regular quotients of $M U$ [5]:

$$
M U\left\langle n_{1}, \ldots, n_{q}\right\rangle \simeq M U /\left(x_{k}: k \neq n_{1}, \ldots, n_{q}\right) .
$$

Instead of the x_{k}, we may take any other regular sequence generating the kernel J of the projection $M U_{*} \rightarrow M U\left\langle n_{1}, \ldots, n_{q}\right\rangle_{*}$. So it is legitimate to write $M U / J$ for $M U\left\langle n_{1}, \ldots, n_{q}\right\rangle$. As our interest lies in the $\bmod p$ cohomology of these $M U$-modules, we might just as well consider their p-localisations $M U\left\langle n_{1}, n_{2}, \ldots, n_{q}\right\rangle_{(p)}$. These spectra admit a much more economical presentation, as quotients of $B P$. To see this, recall that

$$
B P_{*}=\mathbb{Z}_{(p)}\left[v_{1}, v_{2}, \ldots\right], \quad\left|v_{i}\right|=2\left(p^{i}-1\right)
$$

where the v_{i} are Araki's generators [6]. Recall also that $B P$ can be realised as an $M U$-algebra [2], and that the unit $\pi: M U \rightarrow B P$ induces an isomorphism

$$
\bar{\pi}_{*}: \mathbb{Z}_{(p)} \otimes M U_{*} /\left(x_{k}: k \neq p^{i}-1\right) \cong B P_{*} .
$$

From this, we deduce that

$$
M U\left\langle n_{1}, \ldots, n_{q}\right\rangle_{(p)} \simeq B P \wedge_{M U} M U /\left(x_{p^{j}-1}: j \neq j_{1}, \ldots, j_{q}\right) .
$$

As an additional advantage, this presentation exhibits the $M U$-modules $M U\left\langle n_{1}, \ldots, n_{q}\right\rangle_{(p)}$ as left $B P$-modules. Setting $I=B P_{*} \cdot J$, we can unambiguously write

$$
M U\left\langle n_{1}, n_{2}, \ldots, n_{q}\right\rangle_{(p)} \simeq B P / I
$$

Following the convention $x_{0}=v_{0}=p$ and extending the string of the n_{i} by $n_{0}=0$, we obtain the other family of spectra considered by Baas and Madsen,

$$
M U_{p}\left\langle n_{1}, \ldots, n_{q}\right\rangle=M U\left\langle n_{1}, \ldots, n_{q}\right\rangle_{(p)} / p=B P /(I+(p)),
$$

as quotients of $B P$ as well.
Recall that the construction of regular quotients is natural in the following sense. If $I_{1} \subseteq I_{2} \subseteq B P_{*}$ are two ideals such that I_{1} is generated by a regular sequence over $B P_{*}$ and such that I_{2} / I_{1} is generated by a regular sequence over $B P_{*} / I_{1}$, then there is a canonical map of $B P$-modules $B P / I_{1} \rightarrow B P / I_{2}$ [5, V.1.]. Note that the EilenbergMacLane spectrum $H \mathbb{F}_{p}$ is the quotient of $B P$ by the ideal generated by all the v_{i} 's and will serve as a terminal object in our construction.

Let \mathcal{A}_{p} denote the $\bmod p$ Steenrod algebra and let $Q_{i}, i \geq 0$, be the primitive element of degree $2 p^{i}-1$ of Milnor's basis. Let us write (y_{1}, y_{2}, \ldots) for the left ideal of \mathcal{A}_{p} generated by elements $y_{1}, y_{2}, \ldots \in \mathcal{A}_{p}$. Recalling that $x_{p^{k}-1} \equiv v_{k}$ modulo decomposables, we have the following result.

Theorem. Let $I \subset B P_{*}$ be the ideal generated by a regular sequence $w_{i_{1}}, w_{i_{2}}, \ldots$ with $w_{i_{k}} \equiv v_{i_{k}}$ modulo decomposables and $0 \leq i_{1}<i_{2}<\cdots$. Then the natural map $B P / I \rightarrow$ $H \mathbb{F}_{p}$ induces an isomorphism of \mathcal{A}_{p}-modules

$$
H^{*}\left(B P / I ; \mathbb{F}_{p}\right) \cong \mathcal{A}_{p} /\left(Q_{i}: i \neq i_{1}, i_{2}, \ldots\right) .
$$

As a special case, we obtain the results of Baas-Madsen.

Corollary. There are canonical isomorphisms of \mathcal{A}_{p}-modules:

$$
\begin{aligned}
H^{*}\left(M U\left\langle n_{1}, \ldots, n_{q}\right\rangle ; \mathbb{F}_{p}\right) & \cong \mathcal{A}_{p} /\left(Q_{0}, Q_{j_{1}}, \ldots, Q_{j_{q}}\right) \\
H^{*}\left(M U_{p}\left\langle n_{1}, \ldots, n_{q}\right\rangle ; \mathbb{F}_{p}\right) & \cong \mathcal{A}_{p} /\left(Q_{j_{1}}, \ldots, Q_{j_{q}}\right)
\end{aligned}
$$

Proof. We first prove the result in the particular case of the left $B P$-modules $P(n)=B P / I_{n}$, where I_{n} is the ideal of $B P_{*}$ generated by the elements v_{0}, \ldots, v_{n-1}. That is, $P(0)=B P$ by definition and $P(n)_{*} \cong \mathbb{F}_{p}\left[v_{n}, v_{n+1}, \ldots\right]$ for $n \geq 1$. Let $\phi_{n}: P(n) \rightarrow H \mathbb{F}_{p}$ be the natural map and set $C(n)=H^{*}\left(P(n) ; \mathbb{F}_{p}\right)$. The cofibre sequence of left $B P$ modules and left $B P$-morphisms

$$
\cdots \rightarrow P(n) \xrightarrow{v_{n}} P(n) \xrightarrow{\eta_{n}} P(n+1) \xrightarrow{\partial_{n}} P(n) \rightarrow \cdots
$$

induces a long exact sequence of \mathcal{A}_{p}-modules in cohomology

$$
\cdots \rightarrow C(n) \xrightarrow{v_{n}^{*}} C(n) \xrightarrow{\partial_{n}^{*}} C(n+1) \xrightarrow{\eta_{n}^{*}} C(n) \rightarrow \cdots
$$

The accurate reader has noticed that we have suppressed the mention of suspension coordinates. As a consequence, ∂_{n}^{*} is not a morphism of degree 0 but rather of degree $2 p^{n}-1$. Proposition B.5.15(b) in [7] implies that the image of v_{n} under the Hurewicz homomorphism $P(n)_{*} \rightarrow H_{*}\left(P(n) ; \mathbb{F}_{p}\right)$ is trivial. Therefore, $\left(v_{n}\right)_{*}: H_{*}\left(P(n) ; \mathbb{F}_{p}\right) \rightarrow$ $H_{*}\left(P(n) ; \mathbb{F}_{p}\right)$ is trivial, and by duality the same holds for $v_{n}^{*}: C(n) \rightarrow C(n)$. As a consequence, we obtain a short exact sequence of \mathcal{A}_{p}-modules:

$$
\begin{equation*}
0 \rightarrow C(n) \xrightarrow{\partial_{n}^{*}} C(n+1) \xrightarrow{\eta_{n}^{*}} C(n) \rightarrow 0 . \tag{1}
\end{equation*}
$$

It obviously splits in the category of \mathbb{F}_{p}-vector spaces. We now inductively define elements $q_{j_{0}, \ldots, j_{l}}^{n+1} \in C(n+1)$ of degree $\sum_{k=0}^{l}\left(2 p^{j_{k}}-1\right)$, for any $l \in\{0, \ldots, n\}$:

$$
\eta_{n}^{*}\left(q_{j_{0}, \ldots, j_{l}}^{n+1}\right)= \begin{cases}q_{j_{0}, \ldots, j_{l}}^{n} & \text { if } j_{l}<n \tag{2}\\ 0 & \text { if } j_{l}=n\end{cases}
$$

For $C(0)$ we take $q_{\emptyset}^{0}=\phi_{0}: P(0) \rightarrow H \mathbb{F}_{p}$. Assume we have chosen elements $q_{j_{0}, \ldots, j_{l}}^{k} \in$ $C(k)$ as indicated for $k \leq n$. For degree reasons, the $q_{j_{0}, \ldots, j_{l}}^{n}$ admit unique lifts $q_{j_{0}, \ldots, j_{l}}^{n+1}$ to $C(n+1)$. For $j_{l}=n$, we define

$$
\begin{equation*}
q_{j_{0}, \ldots, j_{l}}^{n+1}=\partial_{n}^{*}\left(q_{j_{0}, \ldots, j_{l-1}}^{n}\right) . \tag{3}
\end{equation*}
$$

Observe that the product on $B P$ induces a coalgebra structure on $C(0)$. Moreover, the action of $B P$ on $P(n)$ gives rise to left $C(0)$-comodule structures on the $C(n)$ with respect to which equation (1) is a short exact sequence of $C(0)$-comodules. We show by induction that there are isomorphisms of $C(0)$-comodules

$$
\begin{equation*}
C(n) \cong C(0) \otimes_{\mathbb{F}_{p}}\left(\bigoplus_{0 \leq j_{0}<\cdots<j_{l}<n} \mathbb{F}_{p} q_{j_{0}, \ldots, j_{l}}^{n}\right) \tag{4}
\end{equation*}
$$

so that under this isomorphism, η_{n}^{*} maps $y \otimes q_{j_{0}, \ldots, j_{l}}^{n+1}$ to $y \otimes \eta_{n}^{*}\left(q_{j_{0}, \ldots, j_{l}}^{n}\right)$. This is clear for $n=0$. For the inductive step, note that comodules of this form are relatively injective [6, A1]. Since equation (1) splits over \mathbb{F}_{p} and is a sequence of $C(0)$-comodules, it splits as a sequence of $C(0)$-comodules, which proves the claim.

From equation (4), it follows that the primitives of $C(n)$ (with respect to the $C(0)$ comodule structure) are given by

$$
P(C(n))=\bigoplus_{0 \leq j_{0}<\cdots<j_{l}<n} \mathbb{F}_{p} q_{j_{0}, \ldots, j_{l}}^{n}
$$

We now show by induction that

$$
\begin{equation*}
C(k) \cong \mathcal{A}_{p} /\left(Q_{k}, Q_{k+1}, \ldots\right) \tag{5}
\end{equation*}
$$

and that

$$
\phi_{k}^{*}\left(Q_{j_{0}} \cdots Q_{j_{l}}\right)= \begin{cases}\alpha_{j l} q_{j_{0}, \ldots, j_{l}}^{k} & \text { if } j_{l}<k \tag{6}\\ 0 & \text { otherwise }\end{cases}
$$

for some non-zero $\alpha_{j_{l}} \in \mathbb{F}_{p}$. In fact, one can show that $\alpha_{j_{l}}=1$ for all l, but it will be enough to know equation (6) for our purposes.

It is well known that equation (5) holds for $k=0$, see the original paper [3] or Theorem 4.1.12 in [6] for the $\bmod p$ homology. Also, equation (6) is trivial in this case. Assume inductively that equations (5) and (6) are true for $k \leq n$. For the inductive step, recall that $q_{j_{0}, \ldots, j_{l}}^{n+1}$ is uniquely determined by equation (2) for $j_{l}<n$. Thus, equation (6) certainly holds for $k=n+1$ in this case. Now note that $\phi_{n}: P(n) \rightarrow H \mathbb{F}_{p}$ induces an isomorphism in degrees $<2\left(p^{n}-1\right)$ on homotopy groups, and so $\phi_{n}^{*}: \mathcal{A}_{p} \rightarrow C(n)$ is an isomorphism in degrees $<2 p^{n}-3$. This implies that ϕ_{n+1}^{*} sends Q_{n} to some non-zero primitive element in $C(n+1)$. The only primitives in $C(n+1)$ of degree $\left|Q_{n}\right|=2 p^{n}-1$ are the scalar multiples of q_{n}^{n+1} (because of $\sum_{i=0}^{n-1}\left(2 p^{i}-1\right)<2 p^{n}-1$). Therefore, $\phi_{n+1}^{*}\left(Q_{n}\right)=\alpha_{n} q_{n}^{n+1}$ for some $\alpha_{n} \in \mathbb{F}_{p}$.

Now consider the diagram of \mathcal{A}_{p}-modules

We have just shown that the two compositions agree on $1 \in \mathcal{A}_{p}$. By \mathcal{A}_{p}-linearity, the diagram therefore commutes. The inductive assumption shows that equation (6) holds for $j_{l}=n$ in general. Extending (7) to the right, we obtain a commutative diagram of \mathcal{A}_{p}-modules

where the unlabelled map is the natural projection and $\bar{\phi}_{n}^{*}$ and $\bar{\phi}_{n+1}^{*}$ are induced by ϕ_{n}^{*} and ϕ_{n+1}^{*}, respectively. The reader may check that the upper sequence is exact. By inductive assumption, $\bar{\phi}_{n}^{*}$ is an isomorphism, therefore $\bar{\phi}_{n+1}^{*}$ is an isomorphism, too. This concludes the proof of equation (5).

We now consider the general case and determine the $\bmod p$ cohomology of $B P / I$ for any satisfying the hypotheses of the theorem. We define ideals

$$
J_{0}=(0) \subset J_{1}=\left(w_{i_{1}}\right) \subset J_{2}=\left(w_{i_{1}}, w_{i_{2}}\right) \subset \ldots \subset I
$$

and prove by induction that

$$
\begin{equation*}
H^{*}\left(B P / J_{k} ; \mathbb{F}_{p}\right) \cong \mathcal{A}_{p} /\left(Q_{i}: i \neq i_{1}, \ldots, i_{k}\right) \tag{8}
\end{equation*}
$$

As $B P / I$ is the homotopy colimit of the sequence

$$
B P / J_{0} \rightarrow B P / J_{1} \rightarrow B P / J_{2} \rightarrow \ldots,
$$

this implies the result:

$$
H^{*}\left(B P / I ; \mathbb{F}_{p}\right) \cong \lim H^{*}\left(B P / J_{k} ; \mathbb{F}_{p}\right) \cong \mathcal{A}_{p} /\left(Q_{i}: i \neq i_{1}, i_{2}, \ldots\right)
$$

For $k=0$, equation (8) is just equation (5). Assume that equation (8) holds for $k \leq n$. By hypothesis, we have $w_{i_{k}} \equiv v_{i_{k}} \bmod I_{i_{k}-1}$. Hence J_{k} is contained in $I_{i_{k}+1}$, and therefore, there are canonical maps of left $B P$-modules $\widetilde{\psi}_{k}: B P / J_{k} \rightarrow$ $P\left(i_{k}+1\right)$. Composing them with the canonical maps $P\left(i_{k}+1\right) \rightarrow P\left(i_{k+1}\right)$ gives maps $\psi_{k}: B P / J_{k} \rightarrow P\left(i_{k+1}\right)$. Now $v_{i_{k+1}}$ and $w_{i_{k+1}}$ agree as endomorphisms of $P\left(i_{k}\right)$, because $v_{i}: P\left(i_{k}\right) \rightarrow P\left(i_{k}\right)$ is homotopically trivial for $i<i_{k}$. Hence, there is a commutative diagram of cofibre sequences

Square $(*)$ commutes by unicity of ψ_{k+1} as a lift of ψ_{k}. Taking $\bmod p$ cohomology, we obtain a commutative diagram of $C(0)$-comodules with exact rows, of the form

For $j_{0}, \ldots, j_{l} \in\left\{i_{1}, \ldots, i_{k+1}\right\}$ with $j_{0}<\cdots<j_{l}$, we define

$$
\tilde{q}_{j_{0}, \ldots, j_{l}}^{k+1}=\widetilde{\psi}_{k+1}^{*}\left(q_{j_{0}, \ldots, j_{l}}^{i_{k+1}+1}\right) \in H^{*}\left(B P / J_{k+1} ; \mathbb{F}_{p}\right)
$$

Following analogous arguments as before, we show that

$$
H^{*}\left(B P / J_{k+1} ; \mathbb{F}_{p}\right) \cong C(0) \otimes_{\mathbb{F}_{p}}\left(\bigoplus_{\substack{\left.j_{0}, \ldots, j_{l} \in\left\{i_{1}, \ldots, i_{k}\right\} \\ j_{0}<\cdots<j_{l}\right\}}} \mathbb{F}_{p} \tilde{q}_{j_{0}, \ldots, j_{l}}^{k+1}\right) .
$$

From the fact that the natural map $B P / J_{k+1} \rightarrow H \mathbb{F}_{p}$ factors as

$$
B P / J_{k+1} \xrightarrow{\tilde{\psi}_{k+1}} P\left(i_{k+1}+1\right) \xrightarrow{\phi_{i_{k+1}+1}} H \mathbb{F}_{p},
$$

we easily deduce equation (8) for $k=n+1$, which concludes the proof.

REFERENCES

1. N. A. Baas and I. Madsen, On the realization of certain modules over the Steenrod algebra, Math. Scand. 31 (1972), 220-224.
2. A. Baker and A. Jeanneret, Brave new Hopf algebroids and extensions of $M \mathrm{U}$-algebras, Homology Homotopy Appl. 4(1) (2002), 163-173 (electronic).
3. E. H. Brown, Jr. and F. P. Peterson, A spectrum whose Z_{p} cohomology is the algebra of reduced $p^{\text {th }}$ powers, Topology 5 (1966), 149-154
4. J. M. Cohen, The Hurewicz homomorphism on MU, Invent. Math. 10 (1970), 177-186.
5. A. D. Elmendorf, I. Kriz, M. A. Mandell, J. P. May, Rings, modules, and algebras in stable homotopy theory, in Mathematical surveys and monographs, Vol. 47 (American Mathematical Society, Providence, RI, 1997).
6. D. C. Ravenel, Complex cobordism and stable homotopy groups of spheres, in Pure and Applied Mathematics, Vol. 121 (Academic Press Inc., Orlando, FL, 1986).
7. D. C. Ravenel, Nilpotence and periodicity in stable homotopy theory, in Annals of mathematics studies, Vol. 128 (Princeton University Press, Princeton, NJ, 1992). Appendix C by Jeff Smith.
