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Abstract. We give natural descriptions of the homology and cohomology algebras of regu-
lar quotient ring spectra of even E∞-ring spectra. We show that the homology is a Clifford
algebra with respect to a certain bilinear form naturally associated to the quotient ring spec-
trum F . To identify the cohomology algebra, we first determine the derivations of F and then
prove that the cohomology is isomorphic to the exterior algebra on the module of derivations.
We treat the example of the Morava K -theories in detail.

1. Introduction

It has long been a difficult problem to realize quotient constructions in stable
homotopy theory. The situation changed completely with the introduction of point-
set categories of spectra endowed with monoidal structures, for instance in [7]. Since
then, the definition of a large class of quotient constructions has become a pure for-
mality. Namely, suppose that R is an E∞-ring spectrum and that I ⊆ π∗(R) = R∗
is an ideal of the homotopy ring of R generated by a regular sequence. Then there
is a spectrum F equipped with a map R → F which induces an isomorphism
F∗ ∼= R∗/I . Moreover, F is unique up to equivalence, see Remark 2.3.

Such regular quotients of R arise naturally as objects in the derived category
of R-module spectra DR . Working in this category makes it much easier to study
multiplicative structures. Partly, this is due to the fact that DR is equipped with
a monoidal structure, induced by the smash product ∧R . In particular, Strickland
[14] showed that a regular quotient can always be realized as an R-ring spectrum,
i.e. as a monoid in DR , if R∗ forms a domain and R is even, meaning that R∗ is
trivial in odd degrees.

A fundamental problem is to compute the homology and cohomology algebras
of regular quotients F R∗ (F) = π∗(F ∧R F) and F∗R(F) = D∗R(F, F), respectively.
Whereas the underlying graded F∗-modules are trivial to determine if R is even, the
multiplicative structures have only been identified in special cases up to now, see
[1–3,10] and [14]. The main goal of this article is to determine the homology and
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cohomology algebras in general. Our descriptions are valid for arbitary products
on F and functorial in nature. In particular, they are independent on any choices,
such as the fixing of generators of I . This is important in [8], where the results
proved here are used to solve the classification problem of R-ring structures on
regular quotients.

We do not restrict to regular quotient rings, but consider arbitrary quotient
rings of an even E∞-ring R, i.e. R-rings F with F∗ ∼= R∗/I for some ideal I ⊆
R∗. We write F = R/I for such an F . We study the homology and cohomology
of F with respect to any quotient R-ring spectrum k which comes with a unital
map π : F → k. We call (F, k, π) with these properties an admissible pair. An
important example of an admissible pair is given by (F, k, π), where F is a quotient
ring, k = F as an R-module, but endowed with a possibly different product, and
where π is the identity map 1F .

Our arguments are based on a canonical homomorphism of k∗-modules, the
characteristic homomorphism

ϕ : k∗ ⊗F∗ I/I 2[1] −→ k R∗ (F).

Here, I/I 2[1] denotes the graded F∗-module I/I 2 with degrees raised by one. We
show that ϕ is independent of the products on F and k and functorial in both F and
k. We then use ϕ to define the characteristic bilinear form

b :
(

k∗ ⊗F∗ I/I 2[1]
)
⊗k∗

(
k∗ ⊗F∗ I/I 2[1]

)
−→ k∗,

Letting q : k∗ ⊗F∗ I/I 2[1] → k∗ be the associated quadratic form and writing
C�(k∗ ⊗F∗ I/I 2[1], q) for the Clifford algebra with respect to q, we prove:

Theorem. For an admissible pair (F = R/I, k, π), the characteristic homomor-
phism lifts to a natural homomorphism of k∗-algebras

� : C�(k∗ ⊗F∗ I/I 2[1], q) −→ k R∗ (F).

If F is a regular quotient, then � is an isomorphism.

We show that the characteristic bilinear form of (F, Fop, 1F ) is trivial, where
Fop denote the opposite ring of F . This leads to a new proof of the fact that
F R∗ (Fop) ∼= �(I/I 2[1])) is an exterior algebra [10]. If F is a diagonal regular
quotient, i.e. the smash product of quotient rings of the form R/xi with xi ∈ R∗,
the characteristic bilinear form of F is diagonal. We prove that the diagonal elements
are determined by the commutativity obstructions of R/xi introduced in [14].

In the second part of the article, we consider the cohomology modules k∗R(F),
endowed with the profinite topology. We first show:

Proposition. For an admissible pair (F = R/I, k, π), there exists a natural con-
tinuous homomorphism of k∗-modules

� : k∗R(F) −→ Hom∗F∗(�(I/I 2[1]), k∗).

If F is a regular quotient ring, � is a homeomorphism.
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For the determination of the cohomology algebra of a regular quotient ring
F , we consider the group of derivations Der∗R(F, F). More generally, we study
Der∗R(F, k) for any multiplicative admissible pair (F, k, π), i.e. one for which π
is multiplicative. It inherits from k∗R(F) a linear topology.

Proposition. For a multiplicative admissible pair (F = R/I, k, π) such that F
and k are regular quotients, there is a natural homeomorphism

ψ : Der∗R(F, k) −→ Hom∗F∗(I/I 2[1], k∗).

We then describe the cohomology algebra of F in terms of its derivations. Let
�̂(Der∗R(F, F)) denote the completed exterior algebra on Der∗R(F, F).

Theorem. For a regular quotient ring F = R/I , there is a canonical homeomor-
phism of F∗-algebras F∗R(F) ∼= �̂(Der∗R(F, F)).

These two statements are generalizations of results of Strickland [14]. He con-
sidered the special case where F is a diagonal quotient ring of R.

In the last section, we discuss the case of the Morava K -theories K (n). We
determine explicitly the bilinear form bK (n). The reader will find in [8] more exam-
ples of computations of characteristic bilinear forms.

Here is an overview over the contents of this article. In Sect. 2, we recall some
background material from [14], construct the characteristic homomorphism and
characteristic bilinear form of admissible pairs and compute them in special cases.
In Sect. 3, we consider the homology of admissible pairs. In Sect. 4, we study
derivations and the cohomology of admissible pairs. Finally, in Sect. 5, we discuss
the example of Morava K -theories.

1.1. Notation and conventions

For definiteness, we work in the framework of S-modules of [7]. In this setting,
E∞-ring spectra correspond to commutative S-algebras. Throughout the paper,
R denotes an even commutative S-algebra. We also assume that the coefficient
ring R∗ of R is a domain (see Remark 2.11 for an explanation). Associated to
R is the homotopy category DR of R-module spectra. For simplicity, we refer to
its objects as R-modules. The smash product ∧R endows DR with a symmetric
monoidal structure. We will abbreviate ∧R by ∧ throughout the paper.

Monoids in DR are called R-ring spectra or just R-rings. Unless otherwise spec-
ified, we use the generic notation ηF : R→ F andμF : F∧F → F for the unit and
the multiplication maps of an R-ring F . Mostly, ηF will be clear from the context,
in which case we call a map μF : F ∧ F → F which gives F the structure of an
R-ring an R-product or just a product. We denote the opposite of an R-ring F by
Fop. Its product is given by μFop = μF ◦ τ , where τ : F ∧ F → F ∧ F is the
switch map. An R-ring (F, μF , ηF ) determines multiplicative homology and coho-
mology theories F R∗ (−) = π∗(F∧−) = D−∗R (R, F∧−) and F∗R(−) = D∗R(−, F),
respectively, on DR .
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Since we are working with non-commutative R-rings, we must carefully
describe the various module structures involved. For an R-ring k and an R-module
M , the homology k R∗ (M) is a k∗-bimodule in a natural way. Even if k∗ is commuta-
tive, the left and right k∗-actions may well be different. However, if we assume that
k is a quotient of R, by which we mean that the unit map ηk : R→ k induces a sur-
jection on homotopy groups (see Definition 2.1 below), the left and right k∗-actions
agree. In this case, we can refer to k R∗ (M) as a k∗-module without any ambiguity.
A similar discussion applies to cohomology k∗R(M).

We will assume that k is a quotient of R for the rest of this section.
For R-modules M and N , we write

κk : k R∗ (M)⊗k∗ k R∗ (N ) −→ k R∗ (M ∧ N )

for the Künneth homomorphism, a homomorphism of k∗-modules. Note that k is
not required to be commutative for the definition of κk (see [15, §2]). If k R∗ (M) or
k R∗ (N ) is k∗-flat, then κk is an isomorphism of k∗-modules.

Let F be a second R-ring. The composition

mk
F : k R∗ (F)⊗k∗ k R∗ (F)

κk−→ k R∗ (F ∧ F)
k R∗ (μF )−−−−→ k R∗ (F)

defines a (central) k∗-algebra structure on k R∗ (F), where the unit is given by (1k ∧
ηF )∗ : k∗ → k R∗ (F). In unambiguous situations, we will write a · b for mk

F (a⊗ b).
To relate the homology k R∗ (M) and cohomology k∗R(M), we will use the Kro-

necker duality morphism

d : k∗R(M) −→ Hom∗k∗(k
R∗ (M), k∗),

which associates to f : M → k the homomorphism of k∗-modules d( f ) =
(μk)∗k R∗ ( f ). If k R∗ (M) is k∗-free, d is an isomorphism. This implies that the Hur-
ewicz homomorphism

k R∗ (−) : k∗R(M) −→ Hom∗k∗(k
R∗ (M), k R∗ (k))

is injective whenever k R∗ (M) is k∗-free. See e.g. [15, Lemma 6.2] for a detailed
discussion, which covers in particular the case where k is non-commutative.

For R-modules M and N , we write ζ : M∗⊗R∗ N∗ −→ (M∧N )∗ for the canon-
ical map, which is natural in the following graded sense. Two maps of R-modules
f : 
k M → M ′ and g : 
l N → N ′ induce commutative diagrams

Mm ⊗ Nn
ζ ��

f∗⊗g∗
��

(M ∧ N )m+n

(−1)m·l f∧g
��

M ′k+m ⊗ N ′l+n
ζ �� (M ′ ∧ N ′)k+m+l+n .

(1.1)

We write M∗[d] for the d-fold suspension of a graded abelian group M∗, so
(M∗[d])k = Mk−d . With this convention, we have (
d M)∗ = M∗[d] for an
R-module M . We denote the image of some elementα ∈ Mk under the shift isomor-
phism M∗ ∼= M∗[d] by α[d] ∈ (M∗[d])k+d . We use the convention M∗ = M−∗. If
the ground ring is clear from the context, we omit it from the tensor product symbol
⊗ from now on.
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2. The characteristic bilinear form

2.1. Quotient modules, quotient rings

The point of this subsection is to introduce some convenient terminology and to
recall some basic constructions in the category DR , mainly from [14].

Definition 2.1. A quotient module of R is an R-module F with a map of R-modules
ηF : R → F which induces a surjection on homotopy groups, that is F∗ ∼= R∗/I
where I ⊆ R∗ is an ideal. A morphism f : F → G of quotient modules of R is a
map of R-modules such that f ◦ ηF = ηG .

Let F be a quotient module of R with F∗ = R∗/I and let X be the homotopy
fibre of ηF : R → F . As the canonical map X → R induces an isomorphism
X∗ ∼= I ⊆ R∗, we write I for X . So we have a cofibre sequence of the form

I
ι−→ R

ηF−→ F
β−→ 
 I. (2.1)

We will write F = R/I in the sequel.
Recall that a graded R∗-module F∗ is said to be a (finite) regular quotient of R∗

if it is isomorphic to R∗/(x1, x2, . . .) for some (finite) regular sequence (x1, x2, . . .)

in R∗. There is the following analogous topological notion.

Definition 2.2. A quotient module F = R/I of R is a (finite) regular quotient mod-
ule of R if the ideal I is generated by some (finite) regular sequence (x1, x2, . . .)

in R∗.

We now recall the definition of the building blocks of regular quotients of R.
The coefficient ring R∗ may be canonically identified with the graded endomor-
phisms of R in DR . If x is a given element of Rd , we write R/x for the homotopy
cofibre of x : 
d R → R. As R∗ lies in even degrees, R/x is well defined up to
canonical homotopy equivalence. By construction, R/x fits into a cofibre sequence
of the form


d R
x−→ R

ηx−→ R/x
βx−→ 
d+1 R. (2.2)

Since R∗ is a domain, (R/x)∗ ∼= R∗/(x).

Remark 2.3. If F = R/I is a regular quotient and (x1, x2, . . .) is a regular sequence
generating I , then F is isomorphic in DR to

R/x1 ∧ R/x2 ∧ · · · := hocolimk R/x1 ∧ · · · ∧ R/xk .

Due to the lack of a specific reference, we give a brief outline of the argument
underlying the proof. We construct by induction, using [7, V.1, Lemma 1.5] fac-
torizations R/x1 ∧ · · · ∧ R/xk → F of the unit η : R → F and from these a map
η̄ : hocolimk R/x1∧· · ·∧ R/xk → F . By construction, η̄ induces an isomorphism
on homotopy groups and is thus an isomorphism in DR .



38 A. Jeanneret, S. Wüthrich

Definition 2.4. A (regular) quotient ring of R is an R-ring (F, μF , ηF ) such that
(F, ηF ) is a (regular) quotient module of R.

Products on regular quotients of the form R/x have been studied in [14,
Sect. 3].

Proposition 2.5. Let x ∈ Rd. If u is in R2d+2/x and μ is a product on R/x, then
μ+u ◦(βx ∧βx ) is another product. This construction gives a free transitive action
of the group R2d+2/x on the set of products on R/x.

Proposition 2.6. There is a natural map c from the set of products on R/x to
R2d+2/x such that c(μ) = 0 if and only if μ is commutative.

Recall that R-ring maps f : A → C and g : B → C are said to commute if
μC ◦ ( f ∧ g) = μC ◦ τ ◦ ( f ∧ g) : A ∧ B → C .

Remark 2.7. Let F = R/I be a regular quotient of R and (x1, x2, . . .) a regu-
lar sequence generating the ideal I . For any products μi on R/xi , i � 1, [14,
Prop. 4.8] implies that there is a unique product on F = R/I such that the natu-
ral maps R/xi → F are multiplicative and commute. See Proposition 2.27 for a
generalization.

Definition 2.8. We call F , endowed with the product described in Remark 2.7, the
smash ring spectrum of the R/xi . If we need to be more precise, we refer to the
product map μF on F as the smash ring product of the μi .

For the next definition, recall that two R-ring spectra F and G are called equiv-
alent if there is an isomorphism f : F → G in DR which is multiplicative.

Definition 2.9. We call a regular quotient ring F of R diagonal if it is the smash
ring spectrum of ring spectra R/xi , where (x1, x2, . . .) is a regular sequence. We
say that F is diagonalizable if it is equivalent to a diagonal regular quotient ring.

Corollary 2.10. Any regular quotient ring of R∗ can be realized as the coefficient
ring of a diagonal R-ring.

Proof. Let F∗ = R∗/(x1, x2, . . .) be a regular quotient of R∗. By Remark 2.3, the
R-module F = R/x1∧ R/x2∧· · · satisfies π∗(F) = F∗. By Proposition 2.5, every
R/xi admits a product. Finally, endow F with the induced smash ring product. �

Remark 2.11. Note that the proof requires each of the elements xk of the regular
sequence to be a non-zero divisor. This is guaranteed by our assumption that R∗ is
a domain.

Let (R/x, μ, η) be a regular quotient ring, x ∈ Rd , and A an even R-ring.
Clearly, there is a unital map j : R/x → A if and only if x maps to zero in A∗, and
j is unique if it exists. We will extensively use the following fact:

Proposition 2.12. Let A and x be as above and assume that A is a quotient ring
of R. Then there exists a product on R/x such that the canonical map j : R/x → A
is multiplicative.
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Proof. Choose an arbitrary product μ on F = R/x . By Proposition 2.5, any other
product on F is of the form u · μ := μ + u(β ∧ β), for some u ∈ R2d+2/x . By
Proposition [14, Prop. 3.15], there is an obstruction dF (u ·μ) ∈ A2d+2 which van-
ishes if and only if j is multiplicative for u ·μ. Furthermore, dF (u ·μ) is related to
dF (μ) by dF (u ·μ) = dF (μ)+ j∗(u). Thus, on choosing u with j∗(u) = −dF (μ),
j is multiplicative with respect to u · μ. �

Corollary 2.13. Let F = R/I be a commutative regular quotient ring of R. Then
F is diagonalizable.

Proof. Let (x1, x2, . . .) be a regular sequence which generates I . By Proposi-
tion 2.12, there are productsμi on R/xi such that the canonical maps ji : R/xi → F
are multiplicative. By commutativity of F , the ji commute with each other.
By [14, Prop. 4.8], they therefore induce a multiplicative equivalence j : ∧

i�1
R/xi → F . �


2.2. Admissible pairs

In this subsection we introduce the category of admissible pairs. It will play a central
role in the sequel.

Definition 2.14. An admissible pair is a triple (F, k, π) consisting of two quotient
R-rings (F, μF , ηF ), (k, μk, ηk) and a unital map of R-modules π : F → k, i.e.
an R-morphism such that π ◦ ηF = ηk . If π is a map of R-ring spectra, we call
(F, k, π) a multiplicative admissible pair.

Note that π∗ : F∗ → k∗ is always a ring homomorphism, even for non-multipli-
cative admissible pairs, as (ηF )∗ : R∗ → F∗ is surjective. We may therefore view
k∗ as an F∗-module.

Remark 2.15. If F = R/I and k are quotient R-rings, a necessary condition for the
existence of a map π making (F, k, π) into an admissible pair is that (ηk)∗(I ) = 0.
If F is a regular quotient ring, this condition is sufficient, by [14, Lemma 4.7]. If
F = R/x , the map π is unique.

Admissible pairs (F, k, π) form the objects of a category. The morphisms
between two admissible pairs (F = R/I, k, π) and (G = R/J, l, π ′) are pairs
of R-ring maps ( f : F → G, g : k → l) which make the diagram

F
π ��

f
��

k

g

��
G

π ′ �� l

(2.3)

commutative. Observe that in this case I ⊆ J . If we say that a certain construction is
“natural in F and k”, we mean that it is a functor on this category. Similarly, we refer
to a morphism as being “natural in F and k” if it defines a natural transformation
of functors defined on this category.
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Example 2.16. An important example of an admissible pair (F, k, π) is the special
case where k coincides with F as an R-module and π = 1F , the identity on F , but
where we distinguish two products μ and ν on F .

2.3. The characteristic homomorphism

Let (F = R/I, k, π) be an admissible pair. We define a homomorphism of
F∗-modules

ϕk
F : I/I 2[1] −→ k R∗ (F), (2.4)

which is natural in F and k. Here, we view k R∗ (F) as an F∗-module via the ring
homomorphism π∗ : F∗ → k∗ and the k∗-module structure on k R∗ (F) as discussed
in Sect. 1.1.

Applying k ∧− to the cofibre sequence (2.1) yields

k
1∧ηF−−−→ k ∧ F

1∧β−−→ k ∧
 I
1∧ι−−→ 
k. (2.5)

We consider the map ψ : k ∧ F → k, defined as ψ = μk ◦ (1 ∧ π), and we note
that ψ is a retraction of 1 ∧ ηF , natural in F and k. Observe that if k = F as
R-modules (Example 2.16), then ψ is just the second product ν of F .

The cofibre sequence (2.5) induces a short exact sequence of k∗-modules:

0 −→ k∗
k R∗ (ηF )

�� k R∗ (F)
ψ∗

�� �����

k R∗ (β)
�� k R∗ (
 I ) −→ 0 (2.6)

The retraction ψ∗, which is easily seen to be a k∗-homomorphism, induces a
k∗-linear section σ∗ : k R∗ (
 I ) → k R∗ (F), which is natural in F and k as well.
So there is a natural isomorphism of k∗-modules

k R∗ (F) ∼= k∗ ⊕ k R∗ (
 I ),

given by b �−→ (ψ∗(b), k R∗ (β)(b)), with inverse (c, a) �−→ k R∗ (ηF )(c)+ σ∗(a).
We define ϕk

F to be the composite

ϕk
F : I/I 2[1] ∼= F∗ ⊗ I [1] π∗⊗1−−−→ k∗ ⊗ I [1] ζ−→ (k ∧
 I )∗

σ∗−→ k R∗ (F),

where ζ is the map as considered in (1.1). Observe that ϕk
F is a homomorphism of

F∗-modules.

Definition 2.17. We call ϕk
F the characteristic homomorphism of the admissible

pair (F, k, π). If k and F are understood, we just write ϕ.

For another description of ϕ based on a Künneth spectral sequence compare
Remark 3.6.

We defer the proof of the following fact to Sect. 2.5:
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Proposition 2.18. The characteristic homomorphism ϕk
F does not depend on the

products on F and k.

Recall that any regular quotient module F of R can be realized as a regular
quotient ring (Proposition 2.10). The following definition is meaningful by Propo-
sition 2.18:

Definition 2.19. The characteristic homomorphism of a regular quotient module
F = R/I is the characteristic homomorphism ϕF

F : I/I 2[1]→ F R∗ (F) of the multi-
plicative admissible pair (F, F, 1F ), where F is endowed with an arbitrary product.
We will denote it by ϕF or simply by ϕ if F is understood.

2.4. The characteristic bilinear form

Assume that (F, k, π) is an admissible pair. For brevity, we write πϕ for the com-
position of the following k∗-homomorphisms

πϕ : k∗ ⊗F∗ I/I 2[1] 1⊗ϕ−−→ k∗ ⊗k∗ k R∗ (F) ∼= k R∗ (F).

Recall the R-module map ψ : k ∧ F → k from Sect. 2.3 and the algebra structure
on k R∗ (F) from Sect. 1.1.

We define bk
F to be the composite of k∗-homomorphisms

bk
F : (k∗ ⊗F∗ I/I 2[1])⊗2

πϕ⊗2

−−−→ k R∗ (F)⊗2 mk
F−−→ k R∗ (F)

ψ∗−→ k∗.

Definition 2.20. We call bk
F the characteristic bilinear form associated to the admis-

sible pair (F, k, π).

Observe that bk
F preserves the gradings and is natural in F and k.

In the following, we write x̄ for either of the elements (x + I 2)[1] ∈ I/I 2[1]
or 1 ⊗ (x + I 2)[1] ∈ k∗ ⊗F∗ I/I 2[1] associated to some x ∈ I . The context will
make it clear which element is meant.

Associated to bk
F is the quadratic form qk

F : k∗ ⊗F∗ I/I 2[1] → k∗, defined by
qk

F (x̄) = bk
F (x̄ ⊗ x̄) for x ∈ I . Note that qk

F doubles the degrees.
In the special situation of Example 2.16 (k = F as R-modules and π = 1F ),

we write bνμ and qνμ instead of bF
F and q F

F , to keep track of the products. If μ = ν,
we simply write bF and qF . If μ = νop, we write bF

Fop and q F
Fop . Whenever no

confusion can be caused, we simply write b and q.
If (F, k, π) is multiplicative, its bilinear form bk

F is determined by bF as well
as by bk . To describe the relationship, let k∗ ⊗ bF denote the bilinear form on the
k∗-module k∗ ⊗F∗ I/I 2[1] determined by

(k∗ ⊗ bF )((1⊗ x̄)⊗ (1⊗ ȳ)) = π∗(bF (x̄ ⊗ ȳ)).

Let moreover π∗(bk) be the bilinear form on k∗ ⊗F∗ I/I 2[1] determined by

π∗(bk)((1⊗ x̄)⊗ (1⊗ ȳ)) = bk(π̄∗(x̄)⊗ π̄∗(ȳ)),
where π̄∗ : I/I 2 → J/J 2 is the canonical homomorphism and where k = R/J .
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Proposition 2.21. The characteristic bilinear form of a multiplicative admissible
pair (F, k, π) is given by bk

F = k∗ ⊗ bF = π∗(bk).

Proof. This follows from naturality, by considering the admissible pairs (F, F, 1F ),
(F, k, π) and (k, k, 1k). �


The bilinear form bk
F will be determined for various k and F in the next sub-

section. At this point, we can offer the following general statement, which will be
useful in the sequel.

Proposition 2.22. Let (F, k, π) be a multiplicative admissible pair. Then the char-
acteristic bilinear form bk

Fop of the admissible pair (Fop, k, π) is trivial. In partic-
ular, bF

Fop = 0 for a quotient ring F.

Proof. We first show that bF
Fop = 0 for a quotient ring F . The natural left and right

actions of F on F ∧ F and F induce left actions of F ∧ Fop. The product map
μ : F ∧ F → F respects these actions, and so μ∗ : F R∗ (F)→ F∗ is a map of left
F R∗ (Fop)-modules. On F R∗ (Fop), the F R∗ (Fop)-action is the same as the one given
by left multiplication in the algebra F R∗ (Fop). As a consequence, we have for any
x, y ∈ I with residue classes x̄, ȳ ∈ k∗ ⊗F∗ I/I 2[1] (where ·op denotes the product
in F R∗ (Fop)):

bF
Fop(x̄ ⊗ ȳ) = ψ∗(ϕ(x̄) ·op ϕ(ȳ)) = μ∗(ϕ(x̄) ·op ϕ(ȳ))

= ϕ(x̄) · μ∗(ϕ(ȳ)) = 0,

because ψ∗ = μ∗ (second equality), μ∗ is F R∗ (Fop)-linear (third equality) and F∗
is concentrated in even degrees (fourth equality).

The statement for arbitrary multiplicative admissible pairs (F, k, π) now fol-
lows directly from Proposition 2.21. �

Corollary 2.23. For a commutative quotient ring F, we have bF = 0.

2.5. The test case F = R/x

Assume that (R/x, k, π) is an admissible pair, where x ∈ Rd . We will first deter-
mine its characteristic homomorphism and bilinear form.

We need some preparations. Applying k R∗ (−) to the cofibre sequence (2.2) gives
the short exact sequence of k∗-modules

0 −→ k R∗ (R)
k R∗ (ηx )−−−−→ k R∗ (R/x)

k R∗ (βx )−−−−→ k R∗ (
d+1 R) −→ 0. (2.7)

Because of kodd = 0, k R∗ (
d+1 R) ∼= k∗[d + 1] and because d is even, there exists
a unique class ax ∈ k R∗ (R/x) with k R∗ (βx )∗(ax ) = 1[d + 1]. Therefore

k R∗ (R/x) ∼= k∗ ⊕ k∗[d + 1], (2.8)

where 1 ∈ k R∗ (R/x) corresponds to (1, 0) and ax ∈ k R∗ (R/x) to (0, 1[d + 1]).
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Remark 2.24. By (2.8), the k∗-module k R∗ (R/x) is k∗-free. As a consequence,
k R∗ (F) is k∗-free for any regular quotient F . Namely, by Remark 2.3 and a Künneth
isomorphism, k R∗ (F) ∼= colimk k R∗ (R/x1)⊗· · ·⊗k R∗ (R/xk) is k∗-free. For another
argument based on a Künneth spectral sequence, see Remark 3.6.

The k∗-module k∗ ⊗F∗ I/I 2[1] is freely generated by x̄ . Therefore, b = bk
R/x

and q = qk
R/x are determined by the single element b(x̄ ⊗ x̄) = q(x̄).

Lemma 2.25. We have ϕk
R/x (x̄) = ax and qk

R/x (x̄) · 1 = a2
x .

Proof. The first equality is a direct consequence of the definition of ϕ. For the
second one, notice that by definition of q and by the first equality, we have

q(x̄) = ψ∗(k R∗ (μ)(κ(ax ⊗ ax ))) = ψ∗(mk
F (ax ⊗ ax )) = ψ∗(ax · ax ).

This implies the statement for dimensional reasons. �

We can now prove Proposition 2.18:

Proof of Proposition 2.18. Observe first that ϕk
F is obviously independent on the

product on F , since the latter does not enter into its definition.
To show independence on μk , we let x ∈ I be arbitrary and show that ϕk

F (x̄)
can be expressed without reference to μk . Let η̄F : R/x → F be the unique fac-
torization of ηF : R→ F . Choose a product on R/x such that η̄F is multiplicative
(Proposition 2.12). Then the pair (η̄F , 1F ) is a morphism between the admissible
pairs (R/x, k, πη̄F ) and (F, k, π). Therefore, by naturality of the characteristic
homomorphism, the following diagram commutes:

(x)/(x2)[1]

��

ϕk
R/x �� k R∗ (R/x)

��
I/I 2[1] ϕk

F �� k R∗ (F).

Now ϕk
R/x (x̄) = ax by Lemma 2.25, which is defined independently of the product

on k. Hence so is ϕk
F (x̄). �


We now aim to relate qR/x to Strickland’s commutativity obstruction c(μR/x )

(Proposition 2.6).

Proposition 2.26. For a regular quotient ring F = R/x with product μ, we have
qF (x̄) = −c(μ) ∈ R∗/x.

Proof. The quadratic form qF on (x)/(x2)[1] ∼= R∗/x · x̄ on the one hand is deter-
mined by q = qF (x̄) = μ∗(a2

x ) (we are in the situation whereψ = μ). The obstruc-
tion c = c(μ) on the other hand is characterized by the identity c(β∧β) = μ−μτ ,
where β = βx : F → 
|x |+1 R is taken from the cofibre sequence (2.2). Therefore
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we need to show that the maps f1 = −q(β ∧ β) and f2 = μ − μτ coincide. We
prove this using the isomorphism of F∗-modules

dκ∗ : F∗R(F ∧ F) −→ HomR∗(F
R∗ (F)⊗ F R∗ (F), F∗) (2.9)

given by composing the duality isomorphism d from Sect. 1.1 with the one induced
by the Künneth isomorphism κ = κμ.

First consider (dκ∗)( f1). Observe that by definition k R∗ (β)(1) = 0 and
k R∗ (β)(ax ) = 1. From this, we easily deduce that

(dκ∗)( f1)(1⊗ 1) = (dκ∗)( f1)(ax ⊗ 1) = (dκ∗)( f1)(1⊗ ax ) = 0

and that

(dκ∗)( f1)(ax ⊗ ax ) = −q(k R∗ (β)⊗ k R∗ (β))(ax ⊗ ax ) = q

A sign is arising here according to (1.1), because we let commute an odd degree
map, k R∗ (β), with an odd degree element, ax .

Now consider (dκ∗)( f2).As both μ and τμ = μop are products on F , we have

0 = (dκ∗)( f2)(1⊗ 1) = (dκ∗)( f2)(ax ⊗ 1) = (dκ∗)( f2)(1⊗ ax ).

By definition of q, we have (dκ∗)(μ)(ax ⊗ ax ) = μ∗(ax · ax ) = q and moreover,
as ax ·op ax = 0 ∈ F R∗ (Fop) by Lemma 2.25 and Proposition 2.22,

(dκ∗)(μop)(ax ⊗ ax ) = μ∗(ax ·op ax ) = 0.

It follows that (dκ∗)( f2) = (dκ∗)( f1), which concludes the proof. �


2.6. Diagonal ring spectra

The main aim of this subsection is to determine the characteristic bilinear form of
a diagonal regular quotient ring. More generally, we consider R-rings F which are
obtained by smashing together an arbitrary family of quotient R-ring spectra Fi .
We specify conditions on the Fi which imply that F is a quotient ring and that the
characteristic bilinear form bF is determined by those of the Fi .

Suppose that (Fi , μi , ηi )i�1 is a family of R-ring spectra. There is an obvi-
ous way to endow a finite smash product F1 ∧ · · · ∧ Fn with a product structure,
by mimicking the construction of the tensor product of finitely many algebras.
We now show that this construction extends to infinitely many smash factors. Let
F = F1∧F2∧· · · and let ji : Fi → F be the natural maps. The following statement
generalizes [14, Prop. 4.8]:

Proposition 2.27. There is a unique R-ring structure on F such that jk commutes
with jl if k �= l.
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Proof. There is an obvious right action of Fn on F(n) = F1 ∧ · · · ∧ Fn . It extends
in an evident way to compatible Fn-actions on F(i) for all i � n, which induce an
actionψn : F∧Fn → F . We claim that the natural mapsπn : [B∧Fn, F] → [B, F]
induced by the units ηn : R → Fn are surjective for any R-module B. In fact,
we obtain a section of πn by associating to a map α : B → F the composition
ψn(α ∧ 1) : B ∧ Fn → F , because the diagram

B ∧ Fn
α∧1 �� F ∧ Fn

ψn �� F

B

1∧ηn

��

α �� F

1∧ηn

�� ���������

���������

commutes. As a consequence, we find that [F∧r , F] ∼= limn[F(n)∧r , F] for r � 1,
by Milnor’s exact sequence. For the rest of the argument, we follow the proof of
[14, Prop. 4.8]. �

Definition 2.28. We call F with the product from Proposition 2.27 the smash ring
spectrum of the Fi .

Suppose now that (Fi = R/Ii , μi , ηi )i�1 is a family of quotient rings. Let
(F, μ, η) be the smash ring spectrum of the Fi (Definition 2.28) and let I =
I1 + I2 + · · ·. We aim to express bF in terms of the bFi under conditions on the
ideals Ii which guarantee that F∗ ∼= R∗/I and that

I/I 2 ∼=
⊕

i

R∗/I ⊗R∗ Ii/I 2
i .

To begin with, note that the canonical homomorphisms

R∗/(I1 + · · · + Ik) ∼= (F1)∗ ⊗ · · · ⊗ (Fk)∗ −→ (F1 ∧ · · · ∧ Fk)∗

induce on passing to colimits a map θ : R∗/I = R∗/(I1+ I2+· · · )→ F∗. Consider
the following hypotheses:

(i) θ is an isomorphism;
(ii) (I1 + · · · + Ik−1) · Ik = (I1 + · · · + Ik−1) ∩ Ik for all k > 1.

Remark 2.29. It may be interesting to note that in the case where Ik = (xk) for all k,
hypothesis (ii) is equivalent to the condition that (x1, x2, . . .) is a regular sequence.
This is easy to verify. The assumption that R∗ is a domain is essential here.

Proposition 2.30. Hypotheses (i) and (ii) are both satisfied if for k > 1

TorR∗
i,∗(R∗/(I1 + · · · + Ik−1), R∗/Ik) = 0 ∀i > 0.

In particular, (i) and (ii) hold if Ik is generated by a sequence which is regular on
R∗/(I1 + · · · + Ik−1), for all k > 1.
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Proof. To show (i), we prove by induction that

R∗/(I1 + · · · + Ik) ∼= (F1 ∧ · · · ∧ Fk)∗.

For the inductive step, it suffices to consider the Künneth spectral sequence

E2∗,∗ = TorR∗∗,∗((F1 ∧ · · · ∧ Fk−1)∗, (Fk)∗) �⇒ (F1 ∧ · · · ∧ Fk)∗,

(see [7, IV.4]), which degenerates by assumption.
For (ii), recall that for ideals J, K ⊆ R∗, we have [6, Exercise A3.17]

TorR∗
1,∗(R∗/J, R∗/K ) = (J ∩ K )/(J · K ).

The last statement can be easily verified by using Koszul complexes. �

The following fact must be well known. For lack of a reference, we indicate its

proof in Appendix A.

Proposition 2.31. Suppose that (ii) is satisfied. Then there is a canonical isomor-
phism of R∗/I -modules

I/I 2 ∼=
⊕
i�1

R∗/I ⊗R∗ Ii/I 2
i . (2.10)

We record the following immediate, well-known consequence:

Corollary 2.32. Let I ⊆ R∗ be an ideal generated by a regular sequence
(x1, x2, . . .) and let x̄i ∈ I/I 2 denote the residue classes of the xi . Then there
is an isomorphism of R∗/I -modules I/I 2 ∼=⊕

i R∗/I x̄i .

The next proposition describes the characteristic bilinear form associated to
a smash ring spectrum. For the definition of the bilinear forms F∗ ⊗ bFi see the
paragraph preceding Proposition 2.21.

Proposition 2.33. Let F be the smash ring spectrum of quotient rings Fi and sup-
pose that conditions (i) and (ii) above are satisfied. Then the bilinear form bF is
isomorphic to the direct sum of the F∗ ⊗ bFi .

Proof. Let Vi = Ii/I 2
i [1], V = I/I 2[1] and let ji : Fi → F be the natural maps.

As a consequence of naturality, the diagonal terms of the bilinear form bF with
respect to the decomposition in condition (ii) are given by F∗⊗bFi . Hence we need
to show that the off-diagonal terms of bF vanish. More precisely, we must have
bF (x̄k ⊗ x̄l) = 0 for k �= l, xk ∈ Ik and xl ∈ Il . By definition, this means that the
composition

Vk ⊗ Vl → V ⊗ V
ϕF⊗ϕF−−−−→ F R∗ (F)⊗ F R∗ (F)

m F
F−−→ F R∗ (F)

μ∗−→ F∗ (2.11)

has to be trivial, where the first map is induced by the inclusions of Ik and Il into I .
By naturality, the composition of the first two morphisms of (2.11) coincides with

Vk ⊗ Vl

ϕF
Fk
⊗ϕF

Fl−−−−−→ F R∗ (Fk)⊗ F R∗ (Fl)
F R∗ ( jk)⊗F R∗ ( jl )−−−−−−−−−→ F R∗ (F)⊗ F R∗ (F).
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Because jk : Fk → F and jl : Fl → F commute, the composition of the last two
morphisms of (2.11) with F R∗ ( jk)⊗ F R∗ ( jl) coincides with

F R∗ (Fk)⊗ F R∗ (Fl)
F R∗ ( jk )⊗F R∗ ( jl )−−−−−−−−−→ F R∗ (F)⊗ F R∗ (F)

m F
Fop−−−→ F R∗ (F)

μ∗−→ F∗.

Note that m F
Fop can be viewed as the left action map of F R∗ (Fop) on itself which

is induced by the left action of F ∧ Fop on itself. Now μ∗ : F R∗ (F) → F∗ is left
F R∗ (Fop)-linear, as we have noted earlier. Because Vk and Vl are concentrated in
odd degrees, an argument as in the proof of Proposition 2.22 shows that (2.11) is
zero. �


We close this section by determining the characteristic bilinear form bF of a
diagonal regular quotient ring F .

Proposition 2.34. Let (x1, x2, . . .) be a regular sequence in R∗ generating an
ideal I ⊆ R∗. Suppose that μi are products on R/xi and let F = R/I =
R/x1 ∧ R/x2 ∧ · · · be the induced diagonal regular quotient ring. Then the char-
acteristic bilinear form bF : I/I 2[1] ⊗F∗ I/I 2[1] → F∗ is diagonal with respect
to the basis x̄1, x̄2, . . . and bF (x̄i ⊗ x̄i ) ≡ −c(μi ) mod I .

Proof. Combine Propositions 2.26 and 2.33. �


3. The homology algebra

The aim of this section is to study the homology algebra k R∗ (F) for an admissible
pair (F, k, π), with its natural product mk

F from Sect. 2.4.

3.1. The main result and some consequences

Before stating the main result, we recall the definition and the universal property
of Clifford algebras.

Let M∗ be a graded quadratic module, i.e. a graded module over a graded com-
mutative ring k∗, endowed with a quadratic form q : M∗→k∗which doubles degrees
(for instance the quadratic form associated to a degree-preserving bilinear form).
Let T(M∗) denote the tensor algebra over k∗, with its natural grading. The Clifford
algebra C�(M∗, q) is defined as

C�(M∗, q) = T(M∗)/(x ⊗ x − q(x) · 1; x ∈ M∗).

As the ideal (x⊗ x−q(x) ·1; x ∈ M∗) is homogenous, C�(M∗, q) inherits a grad-
ing from T(M∗). Up to unique isomorphism, C�(M∗, q) is characterized by the
following universal property: Any degree-preserving k∗-linear map f : M∗→ A∗
into a graded k∗-algebra A∗ such that f (x)2 = q(x) · 1 for all x ∈ M∗ lifts to a
unique algebra map C�(M∗, q)→ A∗.
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Theorem 3.1. Let (F = R/I, k, π) be an admissible pair. Then the characteristic
homomorphism

πϕ : k∗ ⊗F∗ I/I 2[1] −→ k R∗ (F)

lifts to a natural homomorphism of k∗-algebras

� : C�(k∗ ⊗F∗ I/I 2[1], qk
F ) −→ k R∗ (F).

If F is a regular quotient, then � is an isomorphism.

We will prove this result in Sect. 3.2 and draw some consequences now. Let us
first spell out the following important special cases:

Corollary 3.2. Let F = R/I be a regular quotient ring. Then there is a natural
F∗-algebra isomorphism

F R∗ (F) ∼= C�(I/I 2[1], qF ).

Corollary 3.3. Let F = R/I be a regular quotient ring. Then there is an F∗-algebra
isomorphism

F R∗ (Fop) ∼= �(I/I 2[1]).
Under this isomorphism, the homomorphism (μF )∗ : F R∗ (Fop)→ F∗ corresponds
to the canonical augmentation ε : �(I/I 2[1])→ F∗.

Proof. The first statement follows from the fact that q F
Fop = 0, by Proposition 2.22.

For the second statement, note that the map (μF )∗ is determined as the unique
F R∗ (Fop)-bilinear map which is trivial on the image of ϕ. The augmentation ε, in
turn, is a map of algebras, hence �(I/I 2[1])-bilinear, and it is trivial on I/I 2[1].
Hence the two maps coincide. �

Remark 3.4. Let (F, k, π) be a multiplicative admissible pair, with F = R/I a
regular quotient ring. From Corollary 3.3 and Proposition 2.21, we deduce that
there is an isomorphism of k∗-algebras

k R∗ (Fop) ∼= �(k∗ ⊗F∗ I/I 2[1]).
We can be more explicit in the case of a regular quotient ring F = R/I if we

fix a regular sequence (x1, x2, . . .) generating I . By Corollary 2.32, this choice
determines an isomorphism I/I 2 ∼=⊕

i F∗ x̄i , where x̄i denote the residue classes,
as usual. Letting ai = ϕ(x̄i ) ∈ F R∗ (F), we have

F R∗ (Fop) ∼= �(a1, a2, . . .). (3.1)

Assume now that F is diagonal and let ci ∈ R∗/xi be the commutativity obstruction
of R/xi of Proposition 2.6 and let c̄i be its residue class in F∗. Using the explicit
description of bF (and hence qF ) from Proposition 2.34, we find:

F R∗ (F) ∼= T(a1, a2, . . .)/(a
2
i + c̄i · 1, akal + alak; i � 1, k �= l). (3.2)

We add an example to illustrate the usefulness of the naturality of the isomor-
phism � in Theorem 3.1.
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Example 3.5. Let R = HZ and p be a prime. Recall that R, F = HZ/p4 and
G = HZ/p3 are commutative S-algebras and that the canonical map F → G
corresponding to the inclusion I = (p4) → J = (p3) is multiplicative [7, IV.2].
Multiplication by p4 and p3 induces isomorphisms Z/p4 ∼= I/I 2 and Z/p3 ∼=
J/J 2, respectively. Under these identifications, the map I/I 2 → J/J 2 corre-
sponds to p : Z/p4 → Z/p3. For any (G, k, π) admissible, the map of k∗-algebras
k R∗ (F) → k R∗ (G) identifies with �k∗(a) → �k∗(b), a �−→ p · b. If k = HZ/p,
this map is trivial, if k = HZ/p2, it is non-trivial.

Remark 3.6. 1 The Künneth spectral sequence (see [7, IV.4])

E2
p,q = TorR∗

p,q(k∗, F∗) �⇒ k R
p+q(F) (3.3)

is a multiplicative spectral sequence of k∗-algebras, see [3, Lemma 1.3]. By standard
techniques,

TorR∗∗,∗(k∗, F∗) ∼= �(k∗ ⊗F∗ I/I 2[1])
as k∗-algebras (this follows for instance from [11, VII.6, Exercise 3]). For dimen-
sional reasons, the elements of k∗ ⊗F∗ I/I 2[1] are permanent cycles and thus by
multiplicativity, the spectral sequence collapses. As �(k∗ ⊗F∗ I/I 2[1]) is a free
k∗-module, there are no additive extensions and hence k R∗ (F) ∼= �(k∗⊗F∗ I/I 2[1])
as k∗-modules. The proof of Theorem 3.1 can be seen as resolving the multiplicative
extensions in the spectral sequence.

The characteristic homomorphism πϕ : k∗ ⊗F∗ I/I 2[1] → k R∗ (F) can also be
considered from the point of view of this spectral sequence. Let F0 ⊆ F1 ⊆ · · · ⊆
k R∗ (F) be the filtration naturally associated to the spectral sequence. Consider the
short exact sequence

0 −→ F0 −→ F1 −→ E∞1,∗ −→ 0. (3.4)

The retraction ψ∗ from (2.6) induces a natural retraction in (3.4). Therefore we
obtain a natural isomorphism F1 ∼= F0⊕ E∞1,∗. We can show that the composition

k∗ ⊗F∗ I/I 2[1] ∼= TorR∗
1,∗(k∗, F∗) = E∞1,∗ ⊆ F1 ⊆ k R∗ (F)

coincides with πϕ.

3.2. Proof of Theorem 3.1

To begin with, suppose that F = R/x , for some x ∈ R∗, and let ax = ϕk
R/x (x̄).

Then k R∗ (F) ∼= k∗ ⊕ k∗ax by (2.8) and a2
x = qk

x (x̄) · 1 by Lemma 2.25. Hence �
is an isomorphism of algebras

Tk∗(ax )/(a
2
x − qk

x (x̄) · 1) ∼= k R∗ (R/x), (3.5)

which is exactly the statement of the theorem for F = R/x .

1 This remark has been suggested by the referee.
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Assume now that F is a quotient ring of R. By the universal property of Clifford
algebras, the lift� exists if and only if ϕk

F (x̄)
2 = qk

F (x̄) · 1 for all x ∈ I . Fix x ∈ I
and consider the natural map j : R/x → F . There exists a productμx on R/x such
that j is multiplicative by Proposition 2.12. Now the inclusion (x) ⊆ I induces a
commutative diagram of the form

(x)/(x)2[1]
ϕk

R/x ��

��

k R∗ (R/x)

k R∗ ( j)
��

I/I 2[1] ϕk
F �� k R∗ (F).

As j is multiplicative, k R∗ ( j) is a map of algebras. We thus obtain

ϕk
F (x̄)

2 = k R∗ ( j)(ϕk
R/x (x̄)

2) = k R∗ ( j)(qk
R/x (x̄) · 1) = qk

F (x̄) · 1,

by Lemma 2.25 and by naturality of q. It follows that ϕk
F lifts to an algebra map

� = �k
F , as asserted.

Suppose now that F is a regular quotient ring. To show that � is an isomor-
phism, it suffices to prove this for the case where I is generated by a finite regular
sequence (x1, . . . , xn). The general case then follows easily by passing to colimits.
Let ii : (xi ) → I denote the inclusions and īi : (xi )/(xi )

2 → I/I 2 the induced
maps. As before, we choose products μi on the R/xi such that the natural maps
ji : R/xi → F are multiplicative. Consider the diagram of k∗-modules

n⊗
i=1

k∗ ⊗ C�((xi )/(xi )
2, qk

R/xi
)
k∗⊗

(⊗
�k

R/xi

)
��

⊗
(1⊗īi )

��

n⊗
i=1

k R∗ (R/xi )

⊗
k∗( ji )

��
n⊗

i=1
k∗ ⊗ C�(I/I 2, qk

F )
k∗⊗

(⊗
�k

F

)
��

��

n⊗
i=1

k R∗ (F)

��
k∗ ⊗ C�(I/I 2, qk

F )
k∗⊗�k

F �� k R∗ (F).

The two lower vertical maps are given by the multiplication maps of the respective
algebras. The top square commutes because�k

F is natural in F and the bottom one
because �k

F is a morphism of algebras. The top horizontal map is an isomorphism
by (3.5). As I/I 2 ∼= ⊕n

i=1 F∗ x̄i by Corollary 2.32, the composite of the two left
vertical maps is an isomorphism by [5, Chap. VI, §9.3, Cor. 3]. We easily check
that the composite of the two right vertical maps is just the Künneth morphism and
therefore an isomorphism. It follows that �k

F is an isomorphism, as asserted. �
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3.3. The antipode

Theorem 3.1 allows us to give a neat description of the antipode (or conjugation)
homomorphism τ∗ : F R∗ (F) → F R∗ (F) induced by the switch map τ : F ∧ F →
F ∧ F . For this, we recall a definition from the theory of Clifford algebras. Let
C�(M∗, q) be the Clifford algebra on a quadratic graded module M∗. Then the
principal automorphism α is the uniquely determined algebra automorphism of
C�(M∗, q) whose restriction to M∗ is given by α(m) = (−1)|m|m.

Proposition 3.7. Let F be a regular quotient ring. Under the isomorphism from
Corollary 3.2, the morphism τ∗ : F R∗ (F) → F R∗ (F) corresponds to the principal
automorphism

α : C�(I/I 2[1], qF )→ C�(I/I 2[1], qF ).

Proof. Since the switch map τ : F ∧ F → F ∧ F is a ring isomorphism,
τ∗ : F R∗ (F) → F R∗ (F) is an algebra isomorphism. It therefore suffices to check
that τ∗(ϕ(x̄)) = −ϕ(x̄) for x ∈ I . Because there is always a product on R/x such
that the natural map R/x → F is multiplicative (Proposition 2.12) and because ϕ
is natural, we may therefore restrict to the case where F = R/x . We set d = |x |.
Recall that d is even.

Let ax = ϕ(x̄). Then F R∗ (F) = F∗1⊕ F∗ax by (2.8). Clearly, we have τ∗(1) =
1. We therefore need to show that τ∗(ax ) = −ax .

We prove this by considering the canonical homomorphism

ι : F R∗ (F) ∼= (R ∧ F ∧ F)∗
(η∧1∧1)∗−−−−−→ (F ∧ F ∧ F)∗ = F R∗ (F ∧ F)

from the homotopy groups of F ∧ F to its homology groups. As ι is injective (μ
induces a retraction), it suffices to prove that F R∗ (τ )(ι(ax )) = −ι(ax ). We do this
by first identifying ι(ax ) and then computing F R∗ (τ )(ι(ax )).

To simplify the notation, we identify F R∗ (F ∧ F) with F R∗ (F)⊗F∗ F R∗ (F) via
the Künneth isomorphism and (R ∧ M)∗, as well as (M ∧ R)∗, with M∗, for any
R-module M .

To determine ι(ax ), we start by noting that for dimensional reasons and as
Fodd = 0, we have

ι∗(ax ) = r · 1⊗ ax + s · ax ⊗ 1,

where r, s ∈ F0. Consider the commutative diagram

R ∧ F ∧ F

1∧1∧β
��

η∧1∧1 �� F ∧ F ∧ F

1∧1∧β
��

R ∧ F ∧ R
η∧1∧1 �� F ∧ F ∧ R.

The composition of the upper and the right morphisms induces

F R∗ (1 ∧ β)(ι∗(ax )) = 1⊗ F R∗ (β)(r · 1⊗ ax + s · ax ⊗ 1)

= r · F R∗ (β)(ax ) = r · 1,
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whereas the composition along the two other edges of the diagram induces
η∗(F R∗ (β)(ax )) = η∗(1) = 1. It follows that r = 1.

The computation of s requires another commutative diagram, namely

R ∧ F ∧ F

1∧μ
��

η∧1∧1 �� F ∧ F ∧ F

1∧μ
��

R ∧ F
η∧1 �� F ∧ F.

With the same strategy as above, we obtain that

F R∗ (μ)(ι∗(ax )) = F R∗ (μ)(1⊗ ax + s · ax ⊗ 1) = ax + s · ax

and η∗(μ∗(ax )) = 0. This implies that s = −1.
We now consider the two maps i = 1∧η, j = η∧1 : F → F∧F . The induced

morphisms in homology satisfy F R∗ (i)(ax ) = ax ⊗ 1 and F R∗ ( j)(ax ) = 1 ⊗ ax ,
respectively. Since τ ◦ i = j and τ 2 = 1F∧F , we deduce that

F R∗ (τ )(ax ⊗ 1) = 1⊗ ax , F R∗ (τ )(1⊗ ax ) = ax ⊗ 1. (3.6)

Therefore, we have shown that

F R∗ (τ )(ι(ax ) = F∗(τ )(1⊗ ax − ax ⊗ 1) = ax ⊗ 1− 1⊗ ax = −ι(ax ),

which concludes the proof. �


4. The cohomology algebra

The aims of this section are to to give a natural description of the cohomology mod-
ule k∗R(F) for an admissible pair, to identify the derivations θ : F → k in case the
pair is multiplicative and to identify canonically the cohomology algebra F∗R(F)
for a regular quotient ring F .

4.1. The cohomology of admissible pairs

Let (F, k, π) be an admissible pair. Using our identification of homology k R∗ (F)
and Kronecker duality, we derive an analogous expression for cohomology k∗R(F).
As for homology, we aim for an isomorphism which is natural in both F and k.

For this, we need to modify the category of admissible pairs. We keep the
objects, but declare a morphism (F, k, π)→ (G, l, π ′) in the new category to be
a pair of ring maps f : G → F and g : k → l such that

F
π �� k

g

��
G

f

��

π ′ �� l
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commutes. We refer to this category as the bivariant category of admissible pairs
(this category is also named the twisted arrow category of the category of admissi-
ble pairs). Similarly, we refer to the full subcategory spanned by the multiplicative
admissible pairs as the bivariant category of multiplicative admissible pairs. We
use the expression “natural in F and k” in an analogous sense as for ordinary
admissible pairs.

Cohomology k∗R(F) defines a functor on the bivariant category of admissi-
ble pairs. Ordinary Kronecker duality d : k∗R(F)→ Dk∗(k

R∗ (F)) (where Dk∗(−) =
Homk∗(−, k∗)) is not appropriate to study this functor, because Dk∗(k

R∗ (F)) is
not functorial on the bivariant category. We can get around this inconvenience by
defining a modified version of Kronecker duality, which is of the form

d ′ : k∗R(F) −→ Hom∗F∗(F
R∗ (F), k∗). (4.1)

It associates to a map f : F → k the homomorphism

F R∗ (F)
F R∗ ( f )−−−−→ F R∗ (k)

(π∧1)∗−−−−→ k R∗ (k)
(μk )∗−−−→ k∗.

We leave the easy verification of the fact that d ′ is a natural transformation between
functors defined on the bivariant category to the reader.

We will need to work with the profinite topology on k∗R(M) for R-modules M .
This is discussed in detail in [15, §2], following ideas of [4]. Recall that for any
graded k∗-module N∗, Dk∗(N∗) carries a natural linear topology, the dual-finite
topology [4, Def. 4.8], which is complete and Hausdorff.

We endow HomF∗(M∗, k∗), for a graded F∗-module M∗, with the linear topol-
ogy inherited from the dual-finite topology on Dk∗(k∗⊗F∗M∗) under the adjunction
isomorphism

Hom∗F∗(M∗, k∗) ∼= Dk∗(k∗ ⊗F∗ M∗). (4.2)

By a slight abuse of terminology, we refer to this topology as the dual-finite
topology, too. By naturality (in the variable M∗) of (4.2), the function M∗ �−→
Hom∗F∗(M∗, k∗) gives rise to a functor from the category of F∗-modules to the
category of complete Hausdorff k∗-modules. As d ′ agrees with the following com-
position (the unlabelled maps are the canonical ones)

k∗R(F)
d−→ Dk∗(k

R∗ (F)) −→ Dk∗(k∗ ⊗F∗ F R∗ (F)) ∼= Hom∗F∗(F
R∗ (F), k∗), (4.3)

it is continuous, since the Kronecker homomorphism d is continuous.

Proposition 4.1. Let (F = R/I, k, π) be an admissible pair. Then there exists a
natural continuous homomorphism of k∗-modules

� : k∗R(F) −→ Hom∗F∗(�(I/I 2[1]), k∗).

If F is a regular quotient ring, � is a homeomorphism.
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Proof. We define � as the composition of continuous homomorphisms

k∗R(F)
d ′−→ Hom∗F∗(F

R∗ (Fop), k∗)
�∗−→ Hom∗F∗(�(I/I 2[1]), k∗),

where �∗ is induced by the homomorphism � : �(I/I 2) → F R∗ (Fop) (Theo-
rem 3.1, Proposition 2.22). If F is a regular quotient ring, the Kronecker duality
homomorphism d is a homeomorphism, as k R∗ (F) is free over k∗ see [15, Prop.
2.5]. Furthermore, it follows from Theorem 3.1 that the canonical homomorphism
k∗ ⊗F∗ F R∗ (F)→ k R∗ (F) is an isomorphism. Thus all the maps in (4.3) are homeo-
morphisms and hence d ′ as well. Moreover, � is an isomorphism by Theorem 3.1
and hence�∗ is a homeomorphism by functoriality. It follows that� is an homeo-
morphism. �


4.2. Derivations of regular quotient rings

Let F be an R-ring and M an F-bimodule. Recall that a map θ : F → 
i M in DR

is called a (homotopy) derivation if the diagram

F ∧ F
1∧θ∨θ∧1 ��

μF

��

(F ∧
i M) ∨ (
i M ∧ F)

��
F

θ �� 
i M

(4.4)

commutes, where the unlabelled map is induced by the left and right actions of F
on M . We write Deri

R(F,M) for the set of all such derivations and Deri
R(F) for

Deri
R(F, F).
Suppose that (F = R/I, k, π) is a multiplicative admissible pair. Then k is

an F-bimodule in a natural way, and so we may consider Der∗R(F, k). We endow
Der∗R(F, k)with the subspace topology induced by the profinite topology on k∗R(F).

We now define a natural transformation

ψ : Der∗R(F, k) −→ Hom∗F∗(I/I 2[1], k∗)

between functors on the bivariant category of multiplicative admissible pairs with
values in the category of topological k∗-modules. We set ψ to be the composition

Der∗R(F, k) ⊆ k∗R(F)
�−→ Hom∗F∗(�(I/I 2[1]), k∗)

ι∗−→ Hom∗F∗(I/I 2[1], k∗),

where� is the homomorphism from Proposition 4.1 and where ι denotes the canon-
ical injection I/I 2[1] → �(I/I 2[1]).
Proposition 4.2. Suppose that (F, k, π) is a multiplicative admissible pair and that
both F = R/I and k are regular quotient rings.

(i) The homomorphism

ψ : Der∗R(F, k)→ Hom∗F∗(I/I 2[1], k∗)

is a natural homeomorphism.
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(ii) The composition

Hom∗F∗(I/I 2[1], k∗)
ψ−1

−−→ Der∗R(F, k) ⊆ k∗R(F).

is independent of the products on F and k.

The proof of Proposition 4.2 requires some preparations and will be given at
the end of this subsection.

To be able to detect derivations, we now relate homotopy derivations with alge-
braic ones. We denote by Der∗k∗(A∗,M∗) the derivations from a k∗-algebra A∗ to an
A∗-bimodule M∗ and write Der∗k∗(A∗) for Der∗k∗(A∗, A∗). The grading convention
is that ∂ ∈ Der∗k∗(A∗,M∗) satisfies

∂(a · b) = ∂(a) · b + (−1)|∂|·|a|a · ∂(b).
Lemma 4.3. Let (F, k, π) be a multiplicative admissible pair, where F = R/I is a
regular quotient, and let k̄ be k, endowed with a second (not necessarily different)
product. Then the Hurewicz homomorphism

h = k R∗ (−) : k∗R(F) −→ Hom∗k∗(k̄
R∗ (F), k̄ R∗ (k)) (4.5)

restricts to a monomorphism

h̄ : Der∗R(F, k) −→ Der∗k∗(k̄
R∗ (F), k̄ R∗ (k)).

The induced commutative diagram

Der∗R(F, k) h̄ ��

incl

��

Der∗k∗(k̄
R∗ (F), k̄ R∗ (k))

incl
��

k∗R(F)
h �� Hom∗k∗(k̄

R∗ (F), k̄ R∗ (k))

is a pullback diagram. Explicitly, this means that the derivations are precisely those
maps in k∗R(F) which induce derivations on applying k̄ R∗ (−).
Proof. Applying the functor h = k̄ R∗ (−) to the diagram (4.4) and precomposing
with the Künneth map κk̄ : k̄ R∗ (F)⊗k∗ k̄ R∗ (F)→ k̄ R∗ (F∧F) shows that a derivation
θ : F → 
i k induces a derivation h(θ) on the homology algebra k̄ R∗ (F). Hence h,
which is monomorphic (see Sect. 1.1), restricts to a monomorphism h̄, as asserted.

For the second statement, we need to verify, for θ ∈ k∗R(F), the equivalence

θ ∈ Der∗R(F, k)⇐⇒ h(θ) ∈ Der∗k∗(k̄
R∗ (F), k̄ R∗ (k)). (4.6)

We have shown “⇒” above and now prove “⇐”. By definition of k̄ R∗ (F) and k̄ R∗ (k),
h(θ) is a derivation if the diagram obtained by applying k̄ R∗ (−) to (4.4) and pre-
composing with κνk commutes. This implies that (4.4) commutes (see Sect. 1.1),
i.e. that θ is a derivation. �
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Using Lemma 4.3, we now construct certain derivations in Der∗R(F). We first
consider the case F = R/x . Recall the maps βx , ηx from (2.2). We refer to the
composition

Qx : R/x
βx−→ 
d+1 R

ηx−→ 
d+1 R/x (4.7)

as the Bockstein operation associated to x .
The following lemma is already known from Strickland [14]. Let y ∈

DR∗/(x)
(
(x)/(x2)[1]) denote the dual of x̄ ∈ (x)/(x)2[1].

Lemma 4.4. The Bockstein operation Qx : R/x → 
|x |+1 R/x is a derivation for
any product on R/x. It satisfies ψ(Qx ) = y.

Proof. We have (R/xop)R∗ (R/x) ∼= �(a)with a = ϕ(x̄), by Corollary 3.3. Apply-
ing (R/xop)R∗ (−) to the cofibre sequence (2.2), we find that under this isomorphism,
(R/xop)R∗ (Qx ) corresponds to ∂

∂a : �(a)→ �(a). Therefore, by Lemma 4.3, Qx

is a derivation, with ψ(Qx ) = y. �

Remark 4.5. The proof shows that F R∗ (Qx ) corresponds to ∂

∂a under the isomor-
phism F R∗ (R/x) ∼= �(a), where a = ϕ(x̄).

Next, we construct derivations in Der∗R(F) for an arbitrary regular quotient
ring F = R/I . Let (x1, x2, . . .) be a regular sequence generating the ideal I and
yi ∈ DF∗(I/I 2[1]) be the dual of x̄i ∈ I/I 2[1].

Consider the R∗-algebra homomorphisms

χi : (R/xi )
∗
R(R/xi ) −→ F∗R(F)

defined by f �−→ f ∧ 1, where 1 denotes the identity map on F ′i = ∧ j �=i R/x j

and where we identify F with R/xi ∧ F ′i .

Lemma 4.6. Let F = R/I be a regular quotient ring and let (x1, x2, . . .) be a
regular sequence generating the ideal I . For any products on R/xi , χi restricts to
an R∗-homomorphism

χ̄i : DerR(R/xi ) −→ Der∗R(F).

The derivations Qi = χ̄i (Qxi ) satisfy ψ(Qi ) = yi .

Proof. Fix a product on F . To prove the first statement, it suffices to verify that
χi (θ) ∈ Der∗R(F) for θ ∈ Der∗R(R/xi ). Choose a product ν on R/xi such that the
canonical map j : R/xi → F is multiplicative (Proposition 2.12). By Lemma 4.4,
θ is also a derivation with respect to ν. The diagram

(Fop)R∗ (R/xi )

F R∗ ( j)
��

F R∗ (θ) �� (Fop)R∗ (R/xi )

F R∗ ( j)
��

(Fop)R∗ (F)
F R∗ (χi (θ)) �� (Fop)R∗ (F)
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commutes by definition of χi (θ). Since θ ∈ Der∗R(R/xi ), Lemma 4.3 implies that
F R∗ (θ) ∈ Derk∗((F

op)R∗ (R/xi )). We set as usual axi = ϕFop

R/xi
(x̄i ) ∈ (Fop)R∗ (R/xi )

and a j = ϕFop

F (x̄ j ) ∈ (Fop)R∗ (F). Then (Fop)R∗ (R/xi ) ∼= �F∗(axi ) and
(Fop)R∗ (F) ∼= �F∗(a1, a2, . . .). Since j is multiplicative and the characteristic
homomorphismϕ is natural, F R∗ ( j) is an algebra morphism such that F R∗ ( j)(axi ) =
ai . Via the isomorphism

(Fop)R∗ (F) ∼=
⎛
⎝⊗

k �=i

�F∗(ak)

⎞
⎠⊗�F∗(ai ),

F R∗ (χi (θ)) corresponds to 1 ⊗ F R∗ (θ). It follows that F R∗ (χi (θ)) is a derivation.
By Lemma 4.3, χi (θ) is a derivation as well. In addition, we have ψ(Qi ) = yi , by
naturality of ψ and by Lemma 4.4. �

Definition 4.7. Let F = R/I be a regular quotient ring. The Bockstein operation
Qα ∈ Der∗R(F) associated to α ∈ Hom∗F∗(I/I 2[1], F∗) is defined to be ψ−1(α).
We write Qi for Qyi , where (x1, x2, . . .) is a regular sequence generating I and
where yi is dual to x̄i .

Remark 4.8. Strickland defines in [14] for F = R/I a regular quotient ring a
homomorphism d : Der∗R(F)→ Hom∗R∗(I/I 2, F∗) and shows that d is injective.
Moreover, he proves that d is an isomorphism for diagonal F . The homomorphism
d coincides with our ψ , as d(Qi ) = yi [14, Corollary 4.19].

Proof of Proposition 4.2. (i) We first show that ψ is surjective. Choose a regular
sequence (x1, x2, . . .) generating I . Let Qi and yi be as above. By Lemma 4.6 and
by naturality of ψ , we have ψ(π ◦ Qi ) = π∗ ◦ yi . Because Hom∗F∗(I/I 2[1], k∗) is
generated by the elements π∗ ◦ yi , ψ is surjective.

To show that ψ is injective, suppose that θ ∈ Der∗R(F, k) satisfies ψ(θ) = 0.
By Corollary 3.3 (μk)∗ : (kop)R∗ (k)→ k∗ is the augmentation of an exterior algebra
and hence an algebra homomorphism. Therefore, the composition

�(I/I 2[1]) �−→∼= (Fop)R∗ (F)
F R∗ (θ)−−−→ (Fop)R∗ (k)

(π∧1)∗−−−−→ (kop)R∗ (k)
(μk )∗−−−→ k∗, (4.8)

where � is the isomorphism from Corollary 3.3, is a derivation. By assumption,
its restriction to I/I 2[1] is zero. This implies that (4.8) is zero. By duality (see
Sect. 1.1), it follows that θ is trivial.

It remains to prove thatψ is open. By definition of the topology on Der∗R(F, k)
and the fact that � is a homeomorphism (Proposition 4.1), it suffices to show that

ι∗ : Hom∗F∗(�(I/I 2[1]), k∗) −→ Hom∗F∗(I/I 2[1], k∗)

is open. By definition of the topologies involved here, this is a consequence of the
fact that an injection of k∗-modules V∗ → W∗ induces an open map on the duals
with respect to the dual-finite topologies.

(ii) This is clear, because ψ(π ◦ Qi ) = π∗ ◦ yi and because Qi = χi (Qxi ) is
defined independently on any products. �
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Remark 4.9. It is a consequence of Proposition 4.2 that the χ̄i from Lemma 4.6
induce an isomorphism

∏
i�1

F∗ ⊗R∗/xi Der∗R(R/xi ) ∼= Der∗R(F).

We close this section by giving two properties of derivations which we will
need later on.

Lemma 4.10. Any derivation θ ∈ Der∗R(F) satisfies θ2 = 0.

Proof. By Proposition 4.2, we may assume that θ = Qi . By Lemma 4.6, we have
θ = χ̄i (Qxi ). Hence θ2 is given by smashing Q2

xi
with the identities on the other

smash factors. But Q2
xi

is trivial, by definition. �

Lemma 4.11. For any θ ∈ Der∗R(F), the diagram below commutes:

I/I 2[1]
ϕ

��

ψ(θ) �� k∗
(1∧η)∗

��
k R∗ (F)

k R∗ (θ) �� k R∗ (F).

Proof. Let x̄ ∈ I/I 2[1]. Choose a product on R/x such that the canonical map
j : R/x → F is multiplicative (Proposition 2.12). Consider the maps

Der∗R(F) −→ Der∗R(R/x, F)←− F∗ ⊗R∗/x Der∗R(R/x)

induced by j . It follows from Proposition 4.2(i) that the second map is an isomor-
phism. Therefore, there is a derivation θx ∈ Der∗R(R/x) such that

R/x

j
��

θx �� R/x

j
��

F
θ �� F

commutes. By naturality of ϕ and ψ , we may therefore assume that F = R/x .
By Proposition 4.2(i) and Lemma 4.4, we can restrict to θ = Qx . But then, the
statement comes down to the statement in Remark 4.5. �


4.3. Cohomology of regular quotients

We now determine the cohomology algebra F∗R(F) for a regular quotient F .
We need a notation. Let M∗ be a module over a graded ring F∗. The dual-

finite filtration on D(M∗) = DF∗(M∗) induces a filtration of the exterior algebra
�(D(M∗)). We write �̂(D(M∗)) for the completion of�(D(M∗)) with respect to
this filtration.

An isomorphism of the form below was constructed by Strickland for diagonal
F [14, Cor. 4.19]. His construction relies upon the choice of a regular sequence
generating I . We show that there is an isomorphism which is independent on any
choices, for any regular quotient ring F .



Clifford algebras from quotient ring spectra 59

Theorem 4.12. For a regular quotient ring F = R/I , there is a canonical homeo-
morphism of F∗-algebras

� : �̂(Der∗R(F)) ∼= F∗R(F).

Remark 4.13. Proposition 4.2 and Theorem 4.12 imply that if F = R/I is a regular
quotient module, then

�̂(D(I/I 2[1])) ∼= F∗R(F).

Note that on fixing a regular sequence (x1, x2, . . .) generating I , we obtain

�̂(Q1, Q2, . . .) ∼= F∗R(F),

where the Qi are defined according to Definition 4.7.

Proof. Set V = I/I 2[1] and recall that V is a free F∗-module with basis x̄1, x̄2, . . .,
where (x1, x2, . . .) is a regular sequence generating I . We define

δ : D(V ) −→ D(�(V ))

by δ(yi ) = ε ◦ ∂
∂ x̄i

where ε is the canonical augmentation of �(V ) and yi is dual
to x̄i . We easily check that δ lifts to a homeomorphism

� : �̂(D(V )) −→ D(�(V ))

with�(yi1 ∧ · · · ∧ yin ) = ε ◦ ∂
∂ x̄i1
◦ · · · ◦ ∂

∂ x̄i1
(for the proof, consider first the case

where V is finitely generated and then pass to limits).
The homeomorphism � : F∗R(F)−→ D(�(V )) from Proposition 4.1 is, in the

case we are considering, just the composition of the usual Kronecker homomor-
phism with the dual of the isomorphism � : �(V )∼= F R∗ (Fop). The Kronecker
homomorphism is a homeomorphism, since F R∗ (Fop) is F∗-free.

Lemma 4.6 implies that F R∗ (Qi ) is a derivation of the algebra F R∗ (Fop). Using
Remark 4.5 and the isomorphism F R∗ (Fop) ∼= �(V ), we easily check that�(Qi ) =
ε ◦ ∂

∂ x̄i
. Sinceψ(Qi ) = yi (Lemma 4.6), we have that δψ(Qi ) = ε ◦ ∂

∂ x̄i
. Therefore

the following diagram commutes:

F∗R(F)
� �� D(�(V ))

Der∗R(F)

⊆
��

ψ �� D(V ).

δ

��

As any derivation squares to 0 (Lemma 4.10) and as F∗R(F) is complete, the injec-
tion Der∗R(F) ↪→ F∗R(F) lifts to a continuous F∗-algebra homomorphism

� : �̂(Der∗R(F)) −→ F∗R(F).
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Explicitly, � is given by �(Qi1 ∧ · · · ∧ Qin ) = Qi1 ◦ · · · ◦ Qin . Because of
�(Qi1 ◦ · · · ◦ Qin ) = ε ◦ ∂

∂ x̄i1
◦ · · · ◦ ∂

∂ x̄i1
, the diagram below commutes, too:

F∗R(F)
� �� D(�(V ))

�̂(Der∗R(F))

�

��

�̂(ψ) �� �̂(D(V )).

�

��

Together with �, � and �̂(ψ), � is therefore a homeomorphism, too. �


5. Examples

In this section we discuss the example of the Morava K -theories K (n). Their 2-
periodic versions Kn can be treated similarly. They are discussed in detail in [8].

5.1. Definition of Morava K -theory

We fix a prime number p. Recall that the p-localization MU(p) of the spectrum
associated to the complex cobordism MU is a commutative S-algebra (see [7])
satisfying:

(MU(p))∗ ∼= Z(p)[x1, x2, . . .], |xi | = 2i.

The Hopkins–Miller theorem [9] has as a consequence that for n � 0, there
exists an MU(p)-algebra Ê(n) with

Ê(n)∗ ∼= lim
k

Z(p)[v1, . . . , vn−1][vn, v
−1
n ]/I k

n ,

where In is the ideal generated by the regular sequence (v0 = p, v1, . . . , vn−1).
Details can be found in [13, Theorem 1.5] and in his unpublished correction “A not
necessarily commutative map”, available on the author’s home page.

The n-th Morava K -theory may be defined as the regular quotient of Ê(n) by
In :

K (n) = Ê(n)/In ∼= Ê(n)/v0 ∧Ê(n) · · · ∧Ê(n) Ê(n)/vn−1.

Its coefficient ring satisfies K (n)∗ ∼= Fp[vn, v
−1
n ].

5.2. The case p odd

We first consider the case where p is an odd prime. According to Strickland [14,
Cor. 3.12], there is a commutative Ê(n)-productμk on Ê(n)/vk for 0 � k � n−1.
Let μ be the smash ring product of the μk on K (n). Since μ is commutative, we
have bK (n) = 0 by Corollary 2.23. Therefore if K (n) is endowed with this product
μ, then

K (n)Ê(n)∗ (K (n)) ∼= �(In/I 2
n [1]) ∼= �(a0, . . . , an−1)

where ai = ϕ(v̄i ), as in Sect. 3.1.
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5.3. The case p = 2

The case of the prime p = 2 is much more interesting. We use some arguments
and notation from [14, Sect. 7] in the following.

Let wk ∈ MU2(2k−1) denote the bordism class of a smooth hypersurface W2k

of degree 2 in CP2k
and let Jk ⊆ (MU(2))∗ be the ideal (w0, . . . , wk−1), where

w0 = 2. The sequence of the wi is regular, and the image of Jk in Ê(n)∗ is the
ideal Ik = (v0, . . . , vk−1), for k = 0, . . . , n (see [14]). To simplify the notation,
we write again wk for the image of wk ∈ (MU(2))∗ in Ê(n)∗.

Proposition 5.1. There is a product μk on Ê(n)/wk with c(μk) ≡ wk+1 mod Ik

for k � 0.

Proof. As Ê(n) is an MU(2)-algebra, the functor E : DMU(2) → DÊ(n) defined as
E (M) = M ∧MU(2) Ê(n) is strictly monoidal. This can be seen as follows: For
MU(2)-modules M and N , M ∧MU(2) Ê(n) ∼= Ê(n)∧MU(2) M is an (Ê(n), Ê(n))-
bimodule and exactly as in [7, III. 3] there is a natural isomorphism

(M ∧MU(2) Ê(n)) ∧Ê(n) (Ê(n) ∧MU(2) N ) ∼= Ê(n) ∧MU(2) (M ∧MU(2) N )

of (Ê(n), Ê(n))-bimodules. As a consequence, the functor E maps MU(2)-rings to
Ê(n)-rings. Strickland constructs a MU(2)-product μ̃k on MU(2)/wk with c(μ̃k) ≡
wk+1 mod Jk for k � 0 [14, Sect. 7]. Via the functor E , μ̃k induces an Ê(n)-prod-
uctμk on Ê(n)/wk . By definition of the obstruction c, we check that c(μk) ≡ wk+1
mod Ik . �


We endow K (n) with the diagonal product μ, defined as the smash ring prod-
uct of the μk . As vn ≡ wn mod In , Propositions 2.34 and 5.1 imply that bK (n) =
vn · yn−1 ⊗ yn−1, where yn−1 ∈ DÊ(n)∗(In/I 2

n [1]) is dual to v̄n−1 ∈ In/I 2
n [1].

Therefore, μ is not commutative, see Corollary 2.23.
The opposite product μop is the smash ring product of the μop

k . It follows from
[14, Prop. 3.1 and Lemma 3.11] that c(μop

k ) ≡ wk+1 mod Ik , as 2 ∈ Ik .
Let 1 � k � n. For dimensional reasons, we have (Ê(n)/wk−1)2|wk−1|+2 =

{0, vk}. Therefore, Proposition 2.5 implies that

μ
op
k−1 = μk−1 ◦ (1+ vk · Qwk−1 ∧ Qwk−1).

The elements w̄k−1, v̄k−1 ∈ Ik/I 2
k [1] coincide, hence their duals are the same and

so Proposition 4.2 implies that Qwk−1 = Qvk−1 ∈ Der∗̂
E(n)

(Ê(n)/wk−1). As a
consequence, we recover the well known formula:

μop = μ ◦ (1+ vn · Qn−1 ∧ Qn−1),

where Qn−1 is defined as in Definition 4.7. Observe that bK (n) = bK (n)op although
μ �= μop. We now compute

K (n)Ê(n)∗ (K (n)) ∼= �(a0, . . . , an−2)⊗ T(an−1)/(a
2
n−1 − vn · 1),

where K (n) is endowed with the product μ described above and the ai are defined
as in the case where p is odd.
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Appendix A.: An algebraic fact

Proposition A.1. Suppose that I1, I2, . . . ⊆ R∗ are ideals which satisfy

(I1 + · · · + Ik−1) · Ik = (I1 + · · · + Ik−1) ∩ Ik

for all k > 1. Let I = I1 + I2 + · · ·. Then there is a canonical isomorphism of
R∗/I -modules

I/I 2 ∼=
⊕
i�1

R/I∗ ⊗R∗ Ii/I 2
i .

Proof. We prove the statement only for I = I1 + I2. The argument needed for the
inductive step is similar and therefore left to the reader. For infinitely many Ii , the
statement follows by passing to colimits.
We begin by showing that I 2 = (I1+ I 2

2 )∩ (I 2
1 + I2). The inclusion⊆ is trivial. To

show ⊇, suppose that α ∈ (I1 + I 2
2 ) ∩ (I 2

1 + I2). Write α as α = x + w = v + y,
where x ∈ I1, w ∈ I 2

2 , y ∈ I2 and v ∈ I 2
1 . It follows that x − v = y−w ∈ I1 ∩ I2.

By hypothesis, we have I1 ∩ I2 = I1 · I2, and therefore α = (x − v) + v + w ∈
I1 · I2 + I 2

1 + I 2
2 = I 2.

It follows that the canonical homomorphism

I/I 2 −→ I/(I 2
1 + I2)⊕ I/(I1 + I 2

2 ) (A.1)

is an isomorphism. Moreover, the canonical map

I1/(I1 ∩ I2 + I 2
1 ) −→ I/(I 2

1 + I2) (A.2)

and its symmetric analogue are easily seen to be isomorphisms. Finally, there is a
natural isomorphism

R∗/I ⊗R∗ I1/I 2
1
∼= I1/(I1 ∩ I2 + I 2

1 ), (A.3)

given by the following composition:

R∗/I ⊗R∗ I1/I 2
1
∼= R∗/I2 ⊗R∗ I1/I 2

1
∼= (I1/I 2

1 )/
(

I2 · (I1/I 2
1 )

)

∼= I/(I1 · I2 + I 2
1 )
∼= I1/(I1 ∩ I2 + I 2

1 ).

Combining (A.1), (A.2) and (A.3) implies the result. �
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