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ABSTRACT 
Urban agriculture is a phenomenon that can be observed world-wide, particularly in cities of devel-
oping countries. It is contributing significantly to food security and food safety and has sustained 
livelihood of the urban and peri-urban low income dwellers in developing countries for many years. 
Population increase due to rural-urban migration and natural, coupled with formal as well as infor-
mal urbanization are competing with urban farming for available space and scarce water re-
sources. A multitemporal multisensoral urban change analysis over the period of 25 years (1982-
2007) was performed in order to measure and visualize the urban expansion along the Kizinga and 
Mzinga valley in the South of Dar es Salaam. Airphotos and VHR satellite data were analyzed by 
using a combination of a composition of anisotropic textural measures and spectral information. 

The study revealed that unplanned built-up area is expanding continuously and vegetation covers 
and agricultural lands decline at a fast rate. The validation showed that the overall classification 
accuracy varied depending on the database. The extracted built-up areas were used for visual in-
terpretation mapping purposes and served as information source for another research project. The 
maps visualize an urban congestion and expansion of nearly 18% of the total analyzed area that 
had taken place in the Kizinga valley between 1982 and 2007. The same development can be ob-
served in the less developed and more remote Mzinga valley between 1981 and 2002. Both areas 
underwent fast changes where land prices still tend to go up and an influx of people both from rural 
and urban areas continuously increase density with the consequence of increasing multiple land 
use interests.  

 

INTRODUCTION 
Urbanisation is one of the major problems of mankind in the near future. In 2008, for the first time 
in history, more than half the world’s population lived in urban areas. The world’s urban population 
is expected to double from 3.3 billion in 2007 to 6.4 billion by 2050, and it is predicted that by 2030, 
over 56% of the world’s population will live in cities (i). This urban population growth will be most 
significant in low income countries, notably in Africa and Asia (ii). Sub-Saharan African countries 
have the world’s highest rates of urban growth and the highest levels of urban poverty. The slum 
population in these countries doubled in the period 1990 to 2005, when it reached 200 million (iii).  

As cities expand, so do the food needs of urban families. The capacity of local municipalities to 
manage this urban growth is threatened in many developing countries, or already on the decline. 
The identification of ways to provide food, shelter and basic services to the city residents and cre-
ate “sustainable cities” are challenges for many city authorities around the world. The phenomenon 
that a growing number of urban dwellers are engaging in agricultural activities, especially in the 
less developed countries has been witnessed all over the world. It is estimated that 800 million 
people are engaged in urban (intra-urban and peri-urban) agriculture world-wide and play an im-
portant role in feeding the world’s cities (iv, v).  

The urbanisation process in many developing countries goes hand in hand with increasing urban 
poverty, growing food insecurity and malnutrition, especially of the urban poor. Food production in 
the city is in many cases a response of urban poor to inadequate, unreliable and irregular access 
to food and inadequate access to formal employment opportunities (vi). Therefore the contribution 



EARSeL eProceedings x, issue/year 2 

 

 
of urban agriculture to enhancing urban food security, healthy nutrition, poverty alleviation, and 
social integration, especially of the poorer sections of the urban population, is of high importance.  

Despite substantial growth, urban agriculture received very limited recognition from the authorities 
in the past. The uncertain legal status of urban agriculture is such that official projects or pro-
grammes aimed at improving urban agriculture have been rare. Typically urban agriculture is not 
taken into account in the urban planning process. In the case of Dar Es Salaam the city govern-
ment has recognised the need to develop strategies that can enhance urban agriculture in order to 
ensure sustainable human development. In 1992 the city has integrated urban agriculture in urban 
planning through a bottom-up approach, under the Environmental Planning and Management 
(EPM) Process and the Strategic Urban Development Plan (SUDP) has officially set apart several 
areas to be used for large and medium scale urban agriculture (vii). 

However, rapid urbanization means that city boundaries as defined by administrative jurisdictions 
may be overtaken by new expansion almost as soon as they have been redrawn to account for 
previous spread (viii). Locations that are rural at one moment become peri-urban the next, and 
urban soon after. For this reason the fringes of most African cities are unstable with respect to set-
tlement patterns, population density and land use (ix). Of late, professionals and politicians have 
realised that if urban agriculture is taken seriously and properly organised, it can be effective land 
management (vii).  

Remote sensing is an important tool to provide information about land use and its development 
over time. It has been used to investigate urban environments, urban land cover changes and city 
growth in particular. Many publications illustrate the automatic or semi-automatic spectral analysis 
of medium to high spatial resolution data, e.g., Landsat TM, SPOT HRV. Spectrally derived land 
cover classifications are further enhanced by visual interpretation of either airphoto, or more re-
cently, of very fine spatial resolution (VHR) optical satellite imagery, e.g., IKONOS or Quickbird [x-
xv].  

Aerial photographs as well as VHR data provide very fine spatial but coarse spectral resolution 
data, by comparison with medium and fine spatial and spectral resolution satellite data. So far, 
these kinds of data were analyzed mainly by analogue, visual interpretation, which is very time 
consuming, which has led to the new challenge of finding ways to successfully extract and classify 
urban areas in a more automated way. Single buildings, roads, gardens and lawns that make up 
the complex heterogeneous urban fabric [xvi] are visible in detail and VHR imagery provides an 
opportunity for their classification and delineation. Carleer and Wolff [xvii] combined spectral infor-
mation on VHR imagery together with spectral, textural and morphological features for the im-
provement of urban land cover classification. The features were calculated after previously seg-
menting the image into meaningful objects. Herold et al. [xviii] conducted a similar segmentation or 
object based classification of an urban area in California based on IKONOS data. Another ap-
proach is the use of image textural information to discriminate built-up structures. Zhang et al. [xix] 
successfully merges spectral and textural information for improving urban recognition by analysing 
SPOT panchromatic data. Another methodology was developed by Pesaresi [xx] and is based on a 
fuzzy rule-based composition of anisotropic textural measures, based on the gray-level co-
occurrence matrix (GLCM). This method was successfully applied with medium resolution data of 
different source and quality dealing with built-up area discrimination in urban and suburban areas 
[xxi-xxiii, xxvi], therefore it was tested in this study to successfully derive built-up areas on b&w 
aerial photographs and VHR satellite data, in order to map the remaining agricultural areas suit-
able for urban agriculture. The maps will then be used as important information source for a project 
on the suitability of wastewater irrigated agriculture in the Kizinga and Mzinga valleys in the South 
of Dar es Salaam.  

METHODS 
Aerial photographs of 1981, 1982, 2003 and VHR satellite data of 2007 was used to monitor urban 
development in two valleys of high importance for urban agriculture of Dar Es Salaam (Table 1, 
Figure 1).  
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Figure 1: Overview of Dar Es Salaam and the two analyzed areas: Kizinga (a) and Mzinga (b) val-
leys. 

Two sample data subsets are shown in Figure 2. Vector features of building footprints of a 1km x 
1km area were available for validation purposes. All remote sensing data was mosaiked and geo-
referenced and resampled to a spatial resolution which is considered optimal for the discrimination 
of built-up areas using the proposed textural approach. It was applied to the black and white and 
red-green-blue coloured areal photographs as well as to the visible-near-infrared VHR satellite 
data. 

Table 1: Remote sensing data. 

Acquisition 
date/Year 

Sensor Approx. Resolution of 
texture kernel used 
[m] 

Area Coverage 

1981 B&W analogue camera 2.0 Mzinga 

1982 B&W analogue camera 0.7 Kizinga 

2002 RGB colour analogue cam-
era 

1.8 Mzinga 

2007 RGB, NIR Quickbird 2.4 Kizinga 
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Figure 2: Sample subset area (1km x 1km) of Quickbird data acquired in 2007 (left) and b&w aerial 
photograph of 1982. The urban congestion and expansion towards Kizinga river in the South are 
clearly visible.  

The anisotropic rotation-invariant built-up presence index [xxii] was applied to delineate urban and 
non-urban regions. The main component of the workflow computes the contrast textural statistic 
based on the grey-level co-occurrence matrix (GLCM) as introduced by Haralick et al. [xxiv]. The 
method is based on image texture and therefore is advantageous for multisensor and multitempo-
ral image analysis. The efficiency of this method to delineate built-up areas has been shown to 
work for optical panchromatic images [xxii] as well as SAR images [xxv]. Pesaresi [xxi,xxiii] has 
shown that the GLCM contrast statistic is the most efficient at discriminating between built-up and 
non-built-up areas. To determine good contrast statistics between building roofs, shadows and 
background, the input imagery must have a spatial resolution that is equal to or better than the 
dimensions of the discernable built-up objects. Different displacement vectors are used to compute 
the contrast statistic to take advantage of the anisotropic nature of the urban texture. The direc-
tional components of the contrast statistic are used to produce a single texture layer using the in-
tersection and union operators (xxii).  

The result provides structural information on the urban regions, including buildings and tarmac 
areas, such as roads, squares or other open spaces. The final binary built-up mask is produced by 
interactively choosing a threshold value that delineates the image into built-up and non built-up 
areas. These thresholds were chosen by comparing the built-up area result with the natural color 
input imagery to maximize urban area overlap. 

RESULTS 
The validation of the resulting built-up mask is not easy, since the procedure classifies not only 
buildings but also sealed, open spaces and roads as built-up areas. Still, a validation was con-
ducted for a randomly selected area of 1km x 1km in the suburbs of Dar Es Salaam, close to the 
Kizinga river. First, the roads in the generated built-up mask were excluded from the validation. 
Second, buildings in the validation area were digitized and buffered by 2.5m to assure the genera-
tion of a comprehensive buildings reference layer. The validation was done for two remote sensing 
datasets used for the analysis of the Kizinga valley area: the Quickbird dataset as well as the aerial 
photographs acquired in 1982. The achieved accuracies are listed in Table 2. 
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Table 2: Validation results of built-up (BU) and non-built-up (NBU) classes for a subset area of 1km 
x 1km in the Kizinga valley.  

 2007 1982 

 BU NBU BU  NBU 

Overall Accuracy 80.85 82.63 

Kappa Coefficient 0.56 0.42 

Producer Accuracy 64.50 89.70 47.08 91.49 

User Accuracy 77.22 82.36 58.48 87.13 

 

The classification accuracy varied depending on the database, with the Quickbird data of 2007 
achieving a better result than the b&w aerial photograph of 1982. Figure 3 clearly shows that a lot 
of buildings in the aerial photograph were not recognized as such leading to a high omission error. 
Additionally, areas of high contrast such as trees and bare soil in the background, along roads, and 
areas around buildings identified as buildings lead to a high commission error. Another reason 
contributing to the omission error is the fact that the reference contains only buildings whereas the 
presented methodology classifies also bare soil areas, parking lots, construction sites, side roads 
or dumps as built-up areas (Figure 3).  

 
Figure 3: Validation area in the Kizinga valley for the built-up mask derived from Quickbird data 
(left) and b&w aerial photographs (right). Correctly classified built-up (BU) (dark green) and non-
built-up (NBU) (light green). Errors of omission are presented in (orange) and errors of commission 
in (red).  

The same reasons lead to classification errors when applying the methodology to the Quickbird 
dataset but due to a better radiometric resolution and a generally better quality of the data the ac-
curacy is generally higher than that of the b&w aerial photograph dataset. Actually, most buildings 
are detected as such only that the areas of detection are smaller than the actual built-up area. This 
is clearly visible in the South of the subset area where a lot of new buildings had been constructed 
in recent years. The performance of the methodology, basing on textural contrast, depends not 
only on the materials used for the roof but also on the surroundings of buildings. If roofs are made 
of red adobe, rusty corrugated iron sheets or are surrounded or partially covered by large trees 
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leading to little contrast between the buildings and the soil background the detection of buildings 
may fail. 

However, the results show that the methodology works with b&w aerial photographs of reduced 
quality as well as high-resolution VHR satellite data. Built-up masks may be extracted in a fast and 
uncomplicated way and built-up maps may be generated that, on a smaller scale, e.g. on regional 
or city level, offer the possibility to recognize and address the challenges of uncontrolled urban 
sprawl and its consequences for peri-urban and urban farming. 

 

CONCLUSIONS 
The anisotropic rotation-invariant built-up presence index [xxii] was applied to delineate urban and 
non-urban regions. So far the method had been applied mainly on medium resolution data of 5 -10 
m geometric resolution. In this study VHR data as well as b&w and rgb aerial photographs with 
higher geometric resolution but some of them of lower quality, served as input data. The validation 
showed that some of the generated built-up/non-built-up masks contain rather larger errors. The 
reasons of which have been discussed in the results section. However, the extracted areas can 
still be used for a visual interpretation of change analysis and mapping purposes (Figure 4). Addi-
tional manual editing could further improve the results in a way that statistical data may be derived. 
It could also be tried to geometrically further resample the data in order to derive more generalized 
built-up/non-built-up classifications suitable for urban change analysis on a larger scale. However, 
Figure 4 visualizes well the urban congestion and expansion that had taken place in the Kizinga 
valley between 1982 and 2007. The same can be observed in the Mzinga valley between 1981 and 
2002. Both areas undergo rapid changes where land prices tend to go up and an influx of people 
both from rural and urban areas increase density with the consequence of multiple land use inter-
ests. Both valleys, for example, are also prone to flooding and serve as water reservoirs. They also 
have the potential of becoming important recreational areas and function as “green lungs”. All 
these multiple interests call for a coordinated urban land use management officially integrating 
urban agriculture and strengthening its role as a sustainable source of income, employment and 
food.  



EARSeL eProceedings x, issue/year 7 

 

 

 

 
Figure 4: Generated maps representing urban development in the Kizinga valley (top) and the 
Mzinga valley (bottom), where pink represents built-up areas in 1982/1981 and orange in 
2007/2002 respectively. The delineation of the analysed areas was determined by the geographic 
overlap of the remotely sensed data. 
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