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Abstract

In learning from trial and error, animals need to relate behavioral decisions to environmental reinforcement even though it
may be difficult to assign credit to a particular decision when outcomes are uncertain or subject to delays. When
considering the biophysical basis of learning, the credit-assignment problem is compounded because the behavioral
decisions themselves result from the spatio-temporal aggregation of many synaptic releases. We present a model of
plasticity induction for reinforcement learning in a population of leaky integrate and fire neurons which is based on a
cascade of synaptic memory traces. Each synaptic cascade correlates presynaptic input first with postsynaptic events, next
with the behavioral decisions and finally with external reinforcement. For operant conditioning, learning succeeds even
when reinforcement is delivered with a delay so large that temporal contiguity between decision and pertinent reward is
lost due to intervening decisions which are themselves subject to delayed reinforcement. This shows that the model
provides a viable mechanism for temporal credit assignment. Further, learning speeds up with increasing population size, so
the plasticity cascade simultaneously addresses the spatial problem of assigning credit to synapses in different population
neurons. Simulations on other tasks, such as sequential decision making, serve to contrast the performance of the proposed
scheme to that of temporal difference-based learning. We argue that, due to their comparative robustness, synaptic
plasticity cascades are attractive basic models of reinforcement learning in the brain.
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Editor: Boris S. Gutkin, École Normale Supérieure, College de France, CNRS, France

Received November 10, 2010; Accepted May 2, 2011; Published June 30, 2011

Copyright: � 2011 Friedrich et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Swiss National Science Foundation (SNSF, Sinergia grant CRSIKO-122697) and a grant from the Swiss SystemsX.ch
initiative (evaluated by the SNSF). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: senn@pyl.unibe.ch

Introduction

Learning from reinforcement involves widely differing spatial

and temporal scales both within the behavioral decision making

process itself as well as when relating decisions to outcomes. Since

they are adaptive, synapses may be viewed as the elementary

decision making entities in the brain. But the presynaptic input of

any single synapse will contain only very limited information about

the task and, further, the millisecond duration of a synaptic release

is much shorter than behaviorally relevant time scales. The

behavioral decision results from a spatio-temporal aggregation of

synaptic releases which is highly non-linear due to e.g. threshold-

ing in the generation of action potentials. Hence the relationship

between any single synaptic release and the behavioral decision is

not only tenuous but also non-linear.

In relating behavioral decisions to rewarding or unrewarding

outcomes, problems arise which are analogous to the ones

encountered when relating synaptic releases to decisions. In the

‘‘spatial’’ domain: The state of the world is only partially

observable, and hence, what appears to be one and the same

decision may sometimes be rewarded and sometimes not. Also, in

social interactions, reward may depend on the decisions of other

players. In the temporal domain: Whether a decision was appro-

priate or not may not be immediately obvious and reward may

even change with time. Proverbially, short term gain may lead to

long term pain (and vice versa).

Hence the spatio-temporal credit assignment problem arises:

How can a synapse adapt given that reward delivery is delayed

and also depends on the releases of many other synapses as well as

on external factors? As one basic mechanism for addressing the

temporal problem, theories of reinforcement learning use the

eligibility trace, a quantity, decaying exponentially in time, which

memorizes the elementary decision up to the time when

information about reward becomes available to trigger the

persistent adaptive change [1]. Here we point out that a cascade

of such synaptic memory traces can in fact provide an integrated

solution to the spatio-temporal credit assignment problem by

remodulating the presynaptic signal in view of information arising

at different stages of the behavioral decision making.

Evidence for synaptic eligibility traces comes from experiments

on spike timing dependent plasticity (STDP) where a synaptic

release leads to longterm potentiation (LTP) if the neuron emits an

action potential shortly thereafter [2,3]. Importantly, the length of

the LTP-induction time window (some 15 ms) is on the order of

the membrane time constant (tM ), i.e. it reflects the time during

which the synaptic release has influence on somatic action

potential generation. The release itself lasts only for some 2 ms,

so this form of LTP is most easily accounted for by assuming a

local synaptic quantity E1 providing, just like an eligibility trace, a

memory of the release which decays with time constant tM . When

an action potential is generated, E1 is read-out to determine a

quantity E2 which, in the simplest interpretation of the STDP
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findings, gives the change (Dw) of the synaptic strength [4]. Simply

equating E2 with Dw, however, may be hasty because many

repeated pre/post pairings are required in the STDP-protocol to

induce a noticeable change. So it seems more reasonable to view

E2 as a second synaptic eligibility trace, keeping a running record

of recent pre/post pairings to modulate synaptic strength, perhaps

even in a non-linear manner.

As has been widely noted [5–11], one can connect the STDP-

findings with reinforcement learning by assuming that the

transcription of the second eligibility trace E2 into the synaptic

change Dw is modulated by neurotransmitters like dopamine

which provide feedback about external reward (Fig. 1A). Such

plasticity rules address the spatial credit assignment problem for

synapses sharing a postsynaptic neuron since E2 captures the

relevant correlations between a given synaptic release and the

releases of other synapses when they contribute to postsynaptic

firing in the neuron. But E2 does not take into account the

interaction in decision making between synapses which have

different postsynaptic neurons. For temporal credit assignment,

the memory length of E2 must correspond to the delay between a

synaptic release and the delivery of pertinent reward feedback.

This delay consists of the time tD needed to reach a behavioral

decision and the time tR for this decision to be rewarded. A value

on the order of 1 s seems reasonable for tD, but tR can easily be

much longer, as in a game where multiple decisions are needed to

reach a rewarding state. In this case, E2 simply averages pre/post

pairing over multiple decisions even if the firing of the particular

neuron was important only for some of the decisions.

Here we propose extending the eligibility trace cascade by a

further trace E3 which takes into account the behavioral decision

making process (Fig. 1B). Now the time constant of E2 is simply

tD, since E2 only needs to capture pre/post pairings upto the time

when a decision is reached. The decision triggers a transcription of

E2 into E3 which is modulated by a feedback signal from the

decision making circuitry and a signal derived from the firings of

the postsynaptic neuron during the decision period. So while E2

only captures the pre/post correlations, E3 additionally captures

the post/decision correlations. The time constant of E3 is tR, and

when reward feedback does become available, the reward together

with E3 determines the synaptic change Dw.

In Text S1 we show that, for a population of spiking neurons

feeding into a decision making circuitry (Fig. 1C), such a synaptic

cascade can be mathematically derived by calculating the gradient

of the expected reward. The resulting gradient ascent rule,

however, has a few biologically undesirable aspects. For instance,

it requires that E2 averages pre/post correlations over each

decision period. Synapses, however, are unlikely to know when

decision periods start and end. For biological realism, we present a

modified rule in the main text, where e.g. the averaging over the

Author Summary

The key mechanisms supporting memory and learning in
the brain rely on changing the strength of synapses which
control the transmission of information between neurons.
But how are appropriate changes determined when
animals learn from trial and error? Information on success
or failure is likely signaled to synapses by neurotransmit-
ters like dopamine. But interpreting this reward signal is
difficult because the number of synaptic transmissions
occurring during behavioral decision making is huge and
each transmission may have contributed differently to the
decision, or perhaps not at all. Extrapolating from
experimental evidence on synaptic plasticity, we suggest
a computational model where each synapse collects
information about its contributions to the decision process
by means of a cascade of transient memory traces. The
final trace then remodulates the reward signal when the
persistent change of the synaptic strength is triggered.
Simulation results show that with the suggested synaptic
plasticity rule a simple neural network can learn even
difficult tasks by trial and error, e.g., when the decision -
reward sequence is scrambled due to large delays in
reward delivery.

Figure 1. Plasticity cascades and decision making. (A) Synaptic plasticity cascades for reinforcement learning in the single neuron approach
and (B) in the proposed population level approach. The meaning of the symbols is the following. Ei: synaptic eligibility traces, Dw: change in synaptic
strength, pre: synaptic input, post: feedback from the postsynaptic neuron, R: external reward feedback, Dec: feedback about the behavioral
decision. The symbol </ denotes low pass filtering with the time constant t given next to the symbol. (C) Sketch of the studied population model for
reinforcement learning: A stimulus X is read by a population of neurons yielding a spatio-temporal activity pattern Y which depends on the synaptic
strength of the neurons. A decision making circuitry transforms the population response Y into a behavioral decision. The synaptic strength of the
neurons should adapt so that population responses lead to behavioral decisions which maximize an external reward signal.
doi:10.1371/journal.pcbi.1002092.g001

Credit Assignment in Neuronal Population Learning
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decision period is replaced by low pass filtering. Learning in a

population of spiking neurons using this synaptic plasticity rule is

illustrated by simulation results. These show that learning speeds

up with increasing population size and that learning speed

degrades gracefully when the delay period between decision and

reinforcement is increased. In particular, perfect performance is

approached even when in the delay period the network has to

make further decisions which themselves give rise to delayed

reinforcement.

Eligibility traces memorize information about the decision

making upto the time when reinforcement becomes available.

In contrast, temporal difference (TD) learning, the other basic

approach for temporal credit assignment in reinforcement

learning, back-propagates reward to the time of the decision.

For this, TD-learning estimates the value of states, or state-

decision pairs, where, in the simplest case, a state corresponds to

a stimulus. The value itself is the (discounted) expected future

reward when being in the state, or when making a particular

decision in the state. The value can then serve as an immediately

available surrogate for the delayed reward signal. During

Pavlovian learning, a backward shift in time is observed for the

appetitive reaction from the delayed unconditioned stimulus to the

conditioned stimulus, and the shift is found as well in the activity of

midbrain dopaminergic neurons. The backward shift also occurs

in the value estimation error computed by a TD-algorithm

modeling the conditioning task, when a state of the algorithm

corresponds to the time elapsed since the presentation of the

conditioning stimulus [12]. Further to this observation, there has

been a surge of interest in modeling dopaminergic activity in terms

of TD-learning concepts, as reviewed in [13].

Temporal difference algorithms are based on the assumption

that the information available for decision making is rich enough

to make the learning problem Markovian. This means that the

future is independent of past events, given the current state

accessible to the TD-learner. In contrast, eligibility trace based

approaches such as our population learning do not require such a

completeness of available information. Hence, we present

simulation results comparing the performance of the proposed

approach to that of TD-learning on tasks, where the Markovian

assumption may be violated.

Results

The model
We consider a population of leaky integrate and fire neurons

driven by a common presynaptic stimulus and read-out by a

decision making circuitry. To facilitate exploration both the

population neurons and the decision making are stochastic. As in

forced choice tasks, the decision circuitry determines a behavioral

choice D at the end of stimulus presentation, based on its

monitoring of the population activity for the duration of the

stimulus. We focus on binary decision making and denote the two

possible behavioral choices by D~+1. Immediately, or at some

later point in time, a behavioral decision may influence whether

reward is delivered to the system, but the decision may also impact

the environment, i.e. influence the sequence of stimuli presented to

the population neurons. Due to the last point, our framework goes

beyond operant conditioning and also includes sequential decision

tasks.

For the decision making circuitry itself, we use a very simple

model, assuming that it only considers the number of population

neurons which fire in response to the stimulus: For low population

activity the likely decision is D~{1, but the probability of

generating the decision D~1 increases with the number of

neurons that respond by spiking to the stimulus. Given this

decision making circuitry, we present a plasticity rule for the

synapses of the population neurons, which enables the system to

optimize the received reward.

In presenting the plasticity rule we focus on one synapse, with

synaptic strength w, of one of the population neurons. (In the

simulations, of course, the rule is applied to all synapses of all

population neurons.) Let xt be the set of spike times representing

the presynaptic spike train impinging on the synapse upto time t. A

presynaptic spike at some time spre[xt leads to a brief synaptic

release with a time constant ts on the order of a millisecond. The

postsynaptic effect of the release will however linger for a while,

decaying only with the membrane time constant tM which is in the

10 ms range. The first synaptic eligibility trace E1 bridges the gap

between the two time scales by low pass filtering (Fig. 2, column 1).

It evolves as:

tM
_EE1~{E1z

X
spre[xt

1

ts
e{(t{spre)=ts : ð1Þ

Correlations between synaptic and post-synaptic activity are

captured by transcribing E1 into a second trace E2 of the form

tD
_EE2~{E2zE1(t)post1(t), ð2Þ

see Fig. 2, column 2. The postsynaptic modulation function

post1(t) depends on the postsynaptic spike times and on the time

course u(t) of the neuron’s membrane potential. Denoting by Y
the set of postsynaptic spike times, the specific form we use for

post1(t) is

post1(t)~{kbebu(t)zb
X

spost[Y

d(t{spost):

Here d is Dirac’s delta-function, k and b are parameters given in

Methods.

As has been previously shown [14], E2 is a useful factor in

plasticity rules due to the following properties:

N A small synaptic change proportional to E2 reinforces the

observed neuronal response, i.e. it increases the likelihood that

the neuron reproduces the observed postsynaptic spike train on

a next presentation of the same stimulus.

N Conversely, a small synaptic change proportional to {E2

impedes the observed neuronal response. It encourages

responding by a different spike train on a next presentation

of the stimulus and thus facilitates exploration.

Thanks to these properties, plasticity rules where synaptic

change is driven by the product of E2 and reward have been

widely used in reinforcement learning models [6,15–17]. Due to

E2, the neuronal quantities modulating plasticity in these rules are

not just the pre- and post synaptic firing times but also the

membrane potential u(t). This further modulatory factor also

arises in models matching STDP-experiments which measure

plasticity induction by more than two spikes [18].

In our model, the time constant tD in Eq. (2) should be matched

to the decision time during which stimuli are presented and we use

tD~500 ms. Since the match may be imperfect in reality, we

denote the actual stimulus duration by the symbol T . To describe

the stochastic decision making in this period, we introduce the

population activity variable A which is reset each time one

Credit Assignment in Neuronal Population Learning
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decision is made and subsequently increased when a neuron spikes

for the first time in response to the next presented stimulus (Fig. 2,

column 3). A high (low) value of A at the end of the decision period

biases the next behavioral decision towards D~1 (D~{1). We

do not model the temporal accumulation of population activity

leading to A explicitly in neural terms, since this could be achieved

along the lines previously suggested in [19].

Since the decision circuitry is stochastic, even for a fairly high

level of population activity the behavioral decision {1 may be

made by chance. In this case, by spiking, a population neuron in

fact decreased the likelihood of the behavioral choice which was

actually taken, whereas a neuron that stayed silent made the

choice more likely. Hence, when the goal is to reinforce a

behavioral decision, a sensible strategy is to reinforce a neuronal

response when it is aligned with D (firing for D~1, not firing for

D~{1) and to impede it when it is not aligned. To this end, the

third eligibility trace E3 captures the interactions between single

neuron activity, population activity and behavioral decision. It

evolves as

tR
_EE3~{E3zE2(t)post2(t)Dec(t) ð3Þ

where Dec(t) is a feedback signal, based on A and D, generated by

the decision making circuitry and, further, post2(t) is determined

by the postsynaptic activity of the neuron. Mathematically,

post2(t) should reflect how the neuron contributed to the decision

and equal +1 according to whether or not the neuron fired in

response to the decision stimulus. The feedback signal Dec(t)
should consist of pulses generated at the times when a decision D is

made. The value of Dec(t) should have the same sign as the

corresponding decision D and be modulated by the population

activity A which gave rise to the decision. In particular, the

magnitude of the pulse is large when A is close to the stochastic

decision threshold, increasing synaptic plasticity in the cases where

the decision making is still very explorative.

Since the post-stimulus value of Dec(t) has the same sign as D,

the term post2(t)Dec(t) in Eq. (3) is positive when the neuronal

response is aligned with the decision - otherwise it is negative.

Because this term remodulates E2 during the transcription and in

view of the above characterization of E2, the eligibility trace E3

has the following property:

N A small synaptic change proportional to the post-stimulus

value of E3 reinforces the neurons response when the response

is aligned with the behavioral decision but, in the not aligned

case, the response is impeded.

Since E3 encodes the correlations between the releases of the

synapse and the behavioral decision, the final stage of the cascade

becomes very simple (Fig. 2, column 4). It just remodulates E3 by

reward to yield the synaptic change:

_ww~E3(t)Rew(t), ð4Þ

Mathematically, the reward function Rew(t) should be made up of

pulses at the times when external reinforcement information

becomes available, with the height of each pulse proportional to

the reward received at that time.

The above description uses some mathematical idealizations

which biologically are not quite realistic. We envisage that the

reinforcement and decision feedback is delivered to the synapses

by changes in levels of neurotransmitters such as dopamine,

acetylcholine or norepinephrine [20–22]. Then, in contrast to the

pulses assumed above, the feedback read-out by the synapses

Figure 2. Examples for the modulatory signals and the resulting traces in the plasticity cascade of a synapse. Top row: An input stream
(stimulus boundaries marked by shading) gives rise to the pre- and the postsynaptic activity shown in the first two panels. The next panel shows the
population activity arising from the stimuli as well as the forced choice decisions made at times T and 2T . Of the total 15 population neurons used in
this example simulation, 5 fired during the the first stimulus (i.e. upto time T ), for the second stimulus 12 fired. Further, during presentation of the
second stimulus external reinforcement generates a reward signal (rightmost panel). Bottom row: Each of the stages in the plasticity cascade depends
on the trace in the previous stage and the modulatory signals in the top row as indicated by the diagram in Fig. 1B. Mathematically, E1 is determined
by Eq. (1), E2 by (2), E3 by (3) and w by (4).
doi:10.1371/journal.pcbi.1002092.g002

Credit Assignment in Neuronal Population Learning
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should change only quite slowly. In our simulations, this is

addressed by low pass filtering the above feedback pulses when

obtaining the signals Rew(t) and Dec(t). Further, we assumed

above that post2(t) in Eq. (3) encodes whether the neuron fired in

response to the decision stimulus. But it seems unrealistic, that a

population neuron knows when a stimulus starts and ends. In the

simulations we use low pass filtering to compute a version of

post2(t) which just encodes whether the neuron spiked recently,

on a time scale given by tD (Methods). Such a delayed feedback

about postsynaptic activity could realistically be provided by

calcium related signaling.

Learning stimulus-response associations with delayed
reinforcement

To study the proposed plasticity rule, we first consider an

operant conditioning like task, where for each of the stimuli

presented to the network, one of the two possible behavioral

decisions D~+1 is correct. A correct decision is rewarded,

whereas an incorrect one is penalized, but in both cases the

delivery of reinforcement is delayed for some time. While operant

conditioning with delayed reward has been widely considered in

the context of temporal discounting [23], here, we are interested in

a quite different issue. We do not wish to assume that little of

relevance happens in the delay period between the decision and

the corresponding reinforcement since this seems artificial in many

real life settings. In the task we consider, during the delay period,

other decisions need to be made which are themselves again

subject to delayed reinforcement (Fig. 3A). Then temporal

contiguity between decision and reward is no longer a proxy for

causation. So the issue is not how to trade small immediate reward

against a larger but later reward, but how to at all learn the

association between decision and reward.

In the simulations, a stimulus is represented by a fixed spike

pattern made up of 80 Poisson spike trains, each having a duration

of T~500 ms and a mean firing rate of 6 Hz. To allow for some

variability, on each presentation of the stimulus, the spike times in

the pattern are jittered by a zero mean Gaussian with a standard

deviation of 2 ms. This stimulus representation is used throughout

the paper. In the present task, we use 10 stimuli and, for each, one

of the two possible decisions is randomly assigned as the correct

one. Stimuli are presented in random order and right after the

decision on one stimulus has been made, the next stimulus is

presented.

Fig. 3B shows learning curves for tasks where there is a fixed

delay Dt between each decision and the delivery of the

reinforcement pertinent to that decision. Perfect performance is

eventually approached, even for the largest value of Dt considered.

For this value, Dt~1350 ms, two other decisions are made in the

delay period. Learning time increases in a stepwise manner when

extending the delay, with a step occurring each time a further

intervening decision has to be made in the delay period (Fig. 3B

inset).

To demonstrate that the proposed plasticity rule addresses the

spatial credit assignment problem as well, we studied learning

performance as function of the number N of population neurons.

The results in Fig. 3C show that learning speeds up with increasing

population size. In a larger population there are more synapses

and the speedup indicates that the plasticity rule is capable of

recruiting the additional synapses to enhance learning.

To gauge robustness, we used the same synaptic plasticity

parameters for all simulations in Panels B and C. In particular tR

was always set to 1 s even though the actual delay Dt in reward

delivery is varied substantially in Panel B. To further highlight

robustness, Fig. 3D shows the performance for different values

of tR when the actual delay in reward delivery is fixed at

Dt~600 ms.

In the above simulations the delay between decision and reward

did not change from trial to trial. But the proposed plasticity rule

does not rely on this for learning and also works with variable

delays. This is shown in Fig. 3E, where a different, randomly

chosen, delay Dt was used on each trial.

Two armed bandit with intermittent reward
To achieve near perfect performance in the above operant

conditioning task, our network had to learn to make close to

deterministic decisions. Here we show that, when appropriate, the

architecture can also support stochastic decision making. For this

we consider a two armed bandit where one of the two targets

delivers a fixed reward of 1 when chosen. The second choice target

(which we call intermittent) will deliver a reward of 10 or 0
depending on whether or not the target is baited. Baiting occurs on

a variable interval schedule: Once the reward of 10 has been

collected, the target becomes un-baited. It stays un-baited for

between 6 to 12 time steps (randomly chosen) and is then baited

again. Once baited, the target stays in this state until it is chosen.

As a consequence, always choosing the intermittent target yields

an average reward equal to 1. This does not improve on choosing

the fixed reward target and, hence, a better policy is to pick the

intermittent target less frequently.

We assume that our network does not have access to the past

decisions it has made. Hence on every trial one and the same

stimulus is presented to the network (with the same spike pattern

statistics as in the previous subsection). The evolution of the

average reward collected by the network is shown in Fig. 4A. Due

to learning, average reward increases, reaching a value which is

within 10% of the reward achievable by the optimal stochastic

policy. The probability pint of choosing the intermittent target

decreases from 0:5 to around 0:4 as shown in Fig. 4B. This panel

also plots the evolution of the value Vint of choosing the

intermittent target. The value being the expected reward collected

from choosing the intermittent target assuming that the policy is to

pick this target with a probability of pint.

Asymptotically Vint approaches a value around 2:1. So choosing

the intermittent target is much more rewarding on average than

choosing the fixed target (which has a value of 1). Nevertheless, the

intermittent target is chosen less frequently than the fixed target.

This amounts to a strong deviation from matching or melioration

theory [24] which stipulates that choice frequencies adjust up to

the point where the value of the two choices becomes the same -

this would lead to pint~1 in the present task. On a task similar to

ours, deviations from matching and melioration, favoring a more

global optimization of reward, have also been observed in a

behavioral experiment with rats [25].

Our plasticity rule, of course, does not explicitly value choices

but directly adapts the choice policy to optimize overall reward.

This is in contrast to temporal-difference (TD) based approaches

to learning, where estimating the value of choices (or, more

generally, the value of state-action pairs) is the key part of the

learning procedure. Hence it is of interest to compare the above

results to those obtainable with TD-learning.

The two most common strategies in TD-learning for making

decisions based on the valuation of choices are e-greedy and

softmax. For e-greedy the choice with the highest estimated value

is taken with probability 1{e, where e is typically a small positive

parameter. This does not allow for a fine grained control of the

level of stochasticity in the decision making, so we will only

consider softmax here. For softmax, a decision i is made with a

probability pi related to its value Vi as pi!ebVi . Here the positive

Credit Assignment in Neuronal Population Learning
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parameter b, called inverse temperature, modulates the level of

stochasticity in the decision making. TD-theory does not give a

prescription for choosing b and, hence, we will consider a large

range of values for the inverse temperature. The results in panels

4C and 4D plot the asymptotic performance as function of b.

Panel 4c shows that the average reward achieved by the TD-

learner decreases with increasing b. So best performance is

obtained for b~0, i.e. when the choice valuations estimated

during learning are irrelevant. The probability pint of choosing the

intermittent target increases with b, Panel 4D. The panel also

Figure 3. Stimulus-response association with delayed reinforcement. (A) Sketch of the task. After each stimulus (spike pattern of duration T )
a decision D~+1 is taken and reward R~+1 reflecting the correctness of the decision is delivered with a delay Dt. (B) Performance, i.e. the
percentage of correct decisions, achieved by a population with N~135 neurons for different delays: Dt~100 ms (blue), Dt~350 ms (red), Dt~600 ms
(green), Dt~850 ms (magenta), Dt~1100 ms (cyan), Dt~1350 ms (orange). The inset shows the number of pattern presentations required to reach a
performance of 90% as function of the delay Dt. (C) Performance vs. number of pattern presentations for a fixed delay Dt~600 ms but with different
population sizes: N~33 (blue), N~67 (red), N~135 (green). Inset: Number of trials needed to reach 90% performance as function of the population
size N . (D) Performance as function of the plasticity parameter tR representing a guess at the delay between decision and reward. The actual delay
was Dt~600 ms. Performance is plotted after 500 (blue), 1000 (red), 4000 (green) and 15000 (magenta) trials; the population size was N~135. (E)
Results when the delay Dt is no longer fixed but changes from trial to trial, being randomly chosen from the probability density shown in the inset.
The mean delay is SDtT~600 ms. Learning parameters and color coding are as in Panel C. In all panels, error bars show 1 SEM of the mean.
doi:10.1371/journal.pcbi.1002092.g003

Credit Assignment in Neuronal Population Learning

PLoS Computational Biology | www.ploscompbiol.org 6 June 2011 | Volume 7 | Issue 6 | e1002092



shows that the estimates of Vint computed by the TD-algorithm

are in excellent agreement to the true values of Vint for the policy

characterized by pint. Hence, the TD-learner fails to optimize

reward not because the valuation of the decisions is wrong, but it

fails because softmax is a poor strategy for transforming valuations

into decisions in the present task.

The root cause for the failure of TD-learning is that our decision

task is not Markovian. Due to the variable interval schedule, the

probability that the intermittent target is baited depends on the

previous decisions made by the TD-learner. But as in the

simulation on population learning, we have assumed that previous

decisions are not memorized and the TD-learner is in the same

state in each trial. Hence, even given the state accessible to the

TD-learner, past events are nevertheless predictive of future ones

because the information about the present encoded in the state is

incomplete. This violates the Markovian assumption on which

TD-learning theory is based. To rectify this, one needs to assume

that decisions are made in view of previous decisions and

outcomes. Given that the intermittent target can stay un-baited

for a maximum of 12 steps, this requires a TD-learner which

memorizes decisions and outcomes (reward/no reward) for the last

12 time steps. Hence, we simulated a TD-learner with the

212|212 states needed to represent the task history in sufficient

detail to render the decision problem Markovian. We found that

the algorithm after learning (with softmax and b~30) achieved an

average reward of 1:75+0:01 per decision. The algorithm learned

to employ sophisticated policies such as not choosing the

intermittent target for 8 time steps after it had delivered reward

- but polling it frequently thereafter until the intermittent target

again delivered reward. Obviously such policies are beyond the

scope of the simple memoryless stochastic decision making

considered above.

Sequential decision making
We next studied population learning in a sequential decision

making task, where reward delivery is contingent on making a

sequence of correct decisions. For this, a simple path finding task

on a linear track was used (Fig. 5A). We imagine an owner who is

tired of having to take his dog for a walk and wants to teach the

animal to exercise all by itself. The dog is put in front of the door

(position 1 on the track), can move left or right, and may be

rewarded on coming home (position 0). But since the point is to

exercise the dog, reward (R~1) is only delivered when the dog has

reached position 3 at least once while moving on the track. If the

dog comes home early without visiting the required position 3, the

learning episode simply ends with neither reward or punishment.

The episode ends in the same way if position 5 is ever reached (the

dog should not run away).

In an initial simulation, we assumed that decisions have to be

made based just on the current position on the track. So the stimuli

presented to the population just encode this position (using the

same spike pattern statistics as in the previous tasks). Given such

stimuli, our population model is faced with a non-Markovian

decision problem because, the appropriateness of a decision may

depend not just on the current stimulus but also on the stimuli

which were previously encountered. For instance, whether one

should go left or right in position 1 depends on whether position 3
has been visited already. In fact the learning problem is even more

dire. When the basis of decision making is just the current position,

complete failure will result for any deterministic policy which must

lead to one of the following three outcomes: (i) direct exit from

position 1 to 0, (ii) exit at position 5, (iii) an infinite cycle. This is

not to say that nothing can be learned. As the result in the bottom

row of Fig. 5A shows, it is possible to increase the odds that an

episode will end with reward delivery by adapting a stochastic

Figure 4. Two armed bandit with intermittent reward. Panels (A) and (B) plot the results for learning with N~135 population neurons and
tR~3 s. The evolution of average reward per decision is shown in (A) and compared to the reward achievable by the optimal stochastic policy
(dashed line). The latter was determined by Monte Carlo simulation. The probability pint of choosing the intermittent target is shown in (B) as well as
the value Vint, i.e the average reward obtained when choosing the intermittent target with probability pint. Panels (C) and (D) show the asymptotic
performance of TD-learning (reached after 1000 trials) for different values of the inverse temperature b. The red empty circles in panel (D) show the
estimate of Vint computed by the TD-algorithm. The full red circles give the exact value of Vint for the choice probability pint used by the TD-
algorithm (blue curve).
doi:10.1371/journal.pcbi.1002092.g004
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policy. Initially the network was almost equally likely to go left or

right in any position but after learning this has changed. In

position 3 for instance left is much more likely than right, whereas,

in position 2, left is just a little bit more likely than right. After

learning, the average number of steps per episode is lower than

initially (Fig. 5B, red curve). So in terms of average reward per step

taken, there is even more improvement through learning than

suggested by the blue curve in Fig. 5B. In the simulations we used

tR~3 s. This is somewhat longer than the minimal time of 2.5 s (5

steps of T~500 ms duration) needed from position 1 to reward

delivery.

Thanks to working memory, a real dog is of course entirely

capable to collect reward by simply running from position 1 to 3
and then back to 0. So for describing the behavior of an animal

with a highly developed nervous system, the above model is

woefully inadequate. Nevertheless, it may usefully account for

behavior in the presence of working memory impairments. To

allow for working memory, in a next set of simulations we switched

to stimuli encoding not just the current but also the immediately

preceeding position on the track. Of the 80 spike trains in a

stimulus presented to the network, 50 were used to encode the

current and 30 to encode the preceeding position (Methods). Now,

learning with the proposed plasticity rule converges towards

perfect performance with the reward per episode approaching 1
and the number of decision steps per episode approaching 5
(Fig. 5C).

It is worthwhile noting, that even with a working memory

reaching one step back, the decision task is non-Markovian: For

instance, knowing that coming from 2 we are now in position 1
does not allow us to tell whether moving left leads to reward. For

this we would need to know if we have been in position 3, say, two

steps back. Technically, when remembering the sequence of past

positions, the memory depth required to make the decision

problem Markovian is infinite because any finite memory can be

exhausted by cycling many times between positions 1 and 2. The

non-Markovian nature of the task is highlighted by Fig. 5D, which

shows simulation result for TD-learning. The specific algorithm

used is SARSA with e-greedy decision making (see [1] and

Methods). Similarly to Fig. 5C, we assumed that the states upon

which the TD-learner bases decisions represents the current and

the immediately preceeding position on the track. The solid blue

curve in Fig. 5D, computed by averaging performance over

multiple runs of the algorithm, demonstrates that TD-learning

does not converge towards perfect performance. The dotted blue

curve, giving results for a typical single run, shows that in fact TD-

learning leads to large irregular oscillations in performance, which

are averaged away in the solid curve. While optimal performance

is approached initially in the single run, the algorithm is not stable

and at some point performance breaks down, initiating a new cycle

in the oscillation.

To understand the instability in more detail, we denote the states

of the TD-learner by notation such as 21, meaning that coming from

2 the current position is 1. The TD-learner assigns values to state-

decision pairs, which we write as e.g. (21, left), by estimating

discounted future reward. Now consider the single run of the TD-

learner (dotted blue curve, Fig. 5D) after some 1500 episodes. The

strategy then is close to optimal, so in most episodes when we are in

state 21, i.e. on the inbound leg of the tour, position 3 will have

previously been visited. Then left in 21 leads to immediate reward

delivery, so the state-action pair (21, left) has a high value. Next

assume that we are on the outbound leg in state 12. Since the policy

is close to optimal, in most episodes the next move is right, in order to

visit position 3. But, due to exploration, the TD-learner will

occasionally try the shortcut of going left in state 12, testing the state-

action pair (12, left ). This leads to state 21 and then most likely to the

high value decision left, terminating the episode without reward

Figure 5. Sequential decision making. (A) Top row, sketch of the path finding task. Bottom row, example stochastic policy learned by the
population when decisions are based on just the current position, arrow thickness represents probability of transition. (B) Evolution of the average
reward per episode (blue) and the average number of steps per episode (red) for population learning with decisions based on current position. (C)
Same as in (B), but for population learning with decisions based on the current and previous position. The above population simulations used N~67
and tR~3 s. (D) TD-learning with decisions based on the current and previous position. Average reward per episode (solid blue curve) and reward per
episode in a typical single run (dotted blue). For this run, the green curve shows the evolution of the value assigned by the TD-learner to making a
shortcut, i.e. to the state action pair (12, left). Error bars show 1 SEM of the mean.
doi:10.1371/journal.pcbi.1002092.g005

Credit Assignment in Neuronal Population Learning

PLoS Computational Biology | www.ploscompbiol.org 8 June 2011 | Volume 7 | Issue 6 | e1002092



because the shortcut was taken. But the TD-learner updates the

value of the tested state-action pair (12, left ) based not on the failure

at the very end of the episode but based on the value of the

subsequent state-action pair, in this case (21, left ). As noted above,

the latter pair has high value, so the update increases the value of the

shortcut (12, left ) even-though the shortcut resulted in failure (green

curve in Fig. 5D). This happens most of the times when the shortcut

is tested for exploration, leading to further increases in the green

curve, upto the point where the value of (12, left ) is so high that

making a shortcut becomes the dominant policy. This causes the

observed breakdown in performance. In summary, a central idea in

temporal difference learning is to handle non-immediate reward by

back-propagating it in time via the valuations of intermediate state-

decision pairs. This is mathematically justified in the Markovian

case, but may lead to unexpected results for general sequential

decision making tasks.

Discussion

We have presented a model of reinforcement learning in a

population of spiking neurons read out by a decision making

circuitry where plasticity induction is controlled by a cascade of

synaptic memory traces. In each synapse of the population

neurons, the presynaptic trace is in stages remodulated by somatic

feedback, by feedback about the behavioral decision making and

by an external reward signal before being consolidated into a

persistent change of the synaptic strength. Simulation results show

that this leads to robust learning performance in a variety of

reinforcement tasks.

Our model builds on, but goes beyond, the classical STDP

findings [2,3,26]. On the neuronal level, we assume that plasticity

does not only depend on the timings in a pre- and postsynaptic

spike pair but that there is a further modulation by postsynaptic

subthreshold activity. Such a modulation also arises when

modeling the plasticity findings obtained when the standard

STDP-protocol is extended to allow multi spike interactions [18].

For reinforcement learning, plasticity cannot be blind to activity-

related downstream information. This matches with experimental

observations revealing that the polarity and magnitude of STDP

can in fact be regulated by neuromodulators such as dopamine,

acetylcholine or noradrenaline which may even revert the sign of

the synaptic change [10,21,22], e.g. by entering after the mGluR

signaling pathways [27–29]. Some recent research has further

highlighted astrocytes as local communication elements which are

capable of modulating synaptic plasticity [30,31]. Research on

synaptic tagging has revealed the astonishingly large time span

during which the consolidation of early-LTP into long lasting

synaptic change can be dependent on behavioral reinforcement

[32,33]. The present work provides a phenomenological model

showing how the multi-stage processes observed in the induction

of long-term synaptic plasticity can be bound into a functional

whole.

Previous modeling of population learning has already consid-

ered the modulation of plasticity by feedback from the decision

circuitry [16,34]. However, in these works the cascade was

shortcut, with decision and reward feedback interacting directly in

the modulation of plasticity. As a consequence the previous

plasticity rule was capable of handling delays between decision and

reward feedback only when these where very small, namely a

fraction of typical stimulus duration. The present rule achieves a

far more general solution to the temporal credit assignment

problem by using a further stage in the synaptic cascade to

decouple decision from reward feedback. Further, the rule is now

based directly on optimizing the average reward rate (Text S1) and

not just, as previously, a related objective function. This puts the

present approach squarely into the field of policy gradient methods

[35–37]. Within this field, our main contribution is to show how

the spatial credit assignment problem of distributing the learning

between the population neurons can be solved in a biophysically

plausible way. As the results in the section on learning stimulus-

response association demonstrate, our plasticity rule leads to a

learning performance which scales well to large population sizes (a

more detailed scaling analysis has been given in [34]). This is in

contrast to the straightforward policy gradient approach of

treating the neurons as independent agents which results in a

rapid deterioration of learning performance with increasing

population size [16].

Crucially in our population model neurons need to cooperate in

order to receive reward and hence during learning a difficult

spatial credit assignment problem arises. The appropriateness of

any single neuron response cannot be determined without taking

the responses of the other neurons into account and hence

synapses in different neurons need to co-adapt in optimizing

reward. This is in contrast to previous work [38] modeling a

biofeedback experiment in monkeys [39] where reward delivery

was contingent on the firings of a single target neuron. In the

model [38] background activity was high, so that reinforcement

could be increased by simply strengthening the synapses of the

target neuron without any need for coordinated adaptation by the

other neurons in the system.

Some parameters in our plasticity scheme are related to

properties of the learning task. For instance the time constant tR

in the last stage of the cascade represents a guess at the typical

delay between decision and reinforcement. Our simulation results

indicate that learning is not overly sensitive to the choice of the

synaptic parameters (see e.g. Fig. 3D). Nevertheless, learning does

of course deteriorate once the mismatch between synaptic and

actual task parameters becomes too large. An intriguing possibility

for further increasing robustness could be an inhomogeneous

population of neurons. After all, a key point in population coding

is to provide redundancy [40,41]. This is borne out by findings in

[16] where, with increasing population size, decision performance

improves but the correlation between single neuron performance

and decision decreases. Hence it is of interest to study learning

when different population neurons have different synaptic

parameters. Then the neurons with parameters best matched to

the task at hand, are expected to learn best. Thanks to their

resulting correlated activity, they should be able to carry the

population decision because the contributions from the badly

learning mismatched neurons should be uncorrelated and thus

tend to cancel. Unfortunately, meaningfully testing whether

neuronal variability increases robustness in this manner, requires

the simulation of population sizes which are an order of magnitude

larger than what is currently within our computational reach.

With regard to the temporal credit assignment problem, we

think it is important to note that delayed interaction between

decision making and reward delivery can arise in diverse manners:

i. Delays in causation. Sometimes it just takes a while till the effect

of decisions and actions becomes apparent - as when taking a

pill against headache.

ii. Incomplete information. The stimulus on which the decision is

based does not encode all of the decision relevant

information. Then previous stimuli and decisions can be of

importance to the current decision because they induce a bias

on the missing information. A case in point is the two armed

bandit task, where previous decisions influence the odds that

the intermittent target is baited. If, in contrast, the decision
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stimulus where to encode whether or not the intermittent

target is baited, optimal decision making would be possible

based just on the current stimulus.

iii. Moving towards a rewarding state. Appropriate decisions or

actions are needed to navigate through a set of intermediate

non-rewarding states towards a rewarding goal - as when first

going to the kitchen, then opening the fridge in order to

finally get a beer. In contrast, for the sequential decision

making task we considered above, reward is not just

contingent on reaching the home state but also on the path

taken.

Policy gradient methods work in all of the above settings. Of

course, missing information can be detrimental to the performance

which is achievable at all. But, given this constraint, policy

gradient methods will nevertheless optimize the performance.

Temporal difference (TD) methods, however, by design handle

only problems of type iii. In the first two cases TD-learning only

applies when the state which serves as basis for the decision

making represents the recent task history to the extent that the

problem becomes Markovian. Formally, this maps the first two

kinds of delays onto the third kind.

Representing the recent task history is what working memory is

good for - and working memory is well known to enter into

decision making as in delayed match to sample tasks. On the other

hand, transforming a non-Markovian into a Markovian decision

problem can pose daunting demands on the working memory

capacity needed to adequately represent the states in the TD-

algorithm. With insufficient working memory the algorithm can

fail in two distinct ways. The estimates for the value of some state-

action pairs may be wrong (as demonstrated in the sequential

decision making task), or, even when the estimates are correct,

preferentially choosing the available action with highest estimated

value may lead to a suboptimal policy (as in the two armed bandit).

Policy gradient methods such as our population learning rule

seem attractive as basic biological models of reinforcement

learning because they work in a very general setting. Arguably,

this generality is also a drawback. Precisely because the Markovian

property is restrictive, exploiting it in the cases where it does apply,

can substantially speed up learning. Hence, it is of interest that

policy gradient methods can easily be combined with TD-state

valuations in the framework of actor-critic methods. This amounts

to simply replacing the direct reward signal in the policy gradient

plasticity rule with a signal generated by the TD-valuation

circuitry. The TD-signal can either be the estimated value of the

current state [42] or the value prediction error [15]. Combining

policy gradient with TD-valuations in this way, again brings about

the Markovian restriction. Hence, if reinforcement learning is to

be both robust and fast, issues of metaplasticity arise: How does

brain learn how to learn when?

Methods

Population neurons
The model neurons in our population are escape noise

neurons [14], i.e. leaky integrate and fire neurons where action

potentials are generated with an instantaneous firing rate which

depends on the membrane potential. Focusing on one of the

population neurons, we denote by X its input which is a spike

pattern made up of M spike trains Xi (i~1,:::,M). Each Xi is a

list of the input spike times in afferent i. We use the symbol Y to

refer to the postsynaptic spike train produced by the neuron, Y is

also a list of spike times. If the neuron, with synaptic vector w,

produces the output Y in response to X, its membrane potential

is determined by

tM _uu~u0{uz
XM
i~1

wi

X
spre[Xi

H(t{spre)

ts

e{(t{spre)=ts{

X
spost[Y

d(t{spost):

ð5Þ

Here H is the unit step function and, further, d is Dirac’s delta

function, leading to immediate hyperpolarization after a

postsynaptic spike. For the resting potential, denoted above by

u0, we use u0~{1 (arbitrary units). Further, tM~10 ms is used

for the membrane time constant and tS~1:4 ms for the synaptic

time constant.

By integrating the differential equation, the membrane potential

can be written in spike response form as

u(t)~u0z
XM
i~1

wi

X
spre[xi

e(t{spre){
X

spost[y

k(t{spost) : ð6Þ

The postsynaptic kernel e(t) and the reset kernel k(t) vanish for

tƒ0. For tw0 they are given by

e(t)~
1

tM{tS

e{t=tM {e{t=tS

� �
and k(t)~

1

tM

e{t=tM

Note that the first eligibility trace E1 of synapse i can be expressed

in terms of the postsynaptic kernel as E1(t)~
P

spre[Xi
e(t{spre).

Action potential generation is controlled by an instantaneous

firing rate w(u) which increases with the membrane potential. So,

at each point t in time, the neuron fires with probability w(u(t))dt
where dt represents an infinitesimal time window (we use

dt~0:2 ms in the simulations). Our firing rate function is

w(u)~kebu,

with k~0:01 and b~5. (In the limit of b?? one would recover a

deterministic neuron with a spiking threshold h~0.)

As shown in [14], the probability density, Pw(Y ), that the

neuron actually produces the output spike train Y in response to

the stimulus X during a decision period lasting from t~0 to t~T
satisfies:

ln Pw(Y )~
X
s[Y

ln w(u(s)){

ðT

0

dtw(u(t)): ð7Þ

The derivative of ln Pw(Y ) with respect to the strength of synapse i
is known as characteristic eligibility in reinforcement learning [35].

For our choice of the firing rate function one obtains

L
Lwi

ln Pw(Y )~

ðT

0

dt post1(t)E1(t) ð8Þ

where E1 is the first eligibility trace of the synapse (Eq. 1) and

post1(t) the postsynaptic signal of the neuron given right below

Eq. (2). Note that (8) is similar to our second eligibility trace E2, see

Eq. (2), except that we have replaced the integration over the

decision period by low pass filtering with a time constant matched

to the stimulus duration. The reason for this is that it seems un-

biological to assume that the synapses of the population neurons

know when decision periods start and end.

Architecture and decision making
We use the superscript n, running from 1 to N, to index the

population neurons. For instance, Y n is the postsynaptic spike
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train produced by neuron n in response to its input spike pattern

Xn. As suggested by the notation, the population neurons have

different inputs, but their inputs are highly correlated because the

neurons are randomly connected to a common input layer which

present the stimulus to the network. In particular, we assume that

each population neuron synapses onto a site in the input layer with

probability p~0:8, leading to many shared input spike trains

between the neurons.

The population response is read out by the decision making

circuitry based on a spike/no-spike code. For notational

convenience we introduce the coding function c(Y n), with

c(Y n)~{1, if the there is no spike in the postsynaptic response

Y n, otherwise, if neuron n produce at least one spike in response to

the stimulus, c(Y n)~1. In term of this coding function the

population activity A being read out by the decision making

circuitry can be written as:

A(Y)~
1ffiffiffiffiffi
N
p

XN

n~1

c(Y n):

Using this activity reading, the behavioral decision D~+1 is

made probabilistically, the likelihood P(DjA) of producing the

decision is given by the logistic function

P(DjA)~
1

1ze{2DA
: ð9Þ

Note that due to the 1=
ffiffiffiffiffi
N
p

normalization in the definition of A,

the magnitude of A can be as large as
ffiffiffiffiffi
N
p

. This is why, decisions

based on the activity of a large population can be close to

deterministic, despite of the noisy decision making circuitry.

Feedback signals and the postsynaptic trace
We start with the reward feedback Rew(t), modulating synaptic

plasticity in Eq. (4). This feedback is encoded by means of a

concentration variable cRew, representing ambient levels of a

neurotransmitter, e.g. dopamine. In the absence of reward

information, the value of cRew approaches a homeostatic level

c0
Rew with a time constant tRew~50 ms. For any point in time s

when external reward information Rs is available, this reinforce-

ment leads to a change in the production rate of the

neurotransmitter. The change is proportional to Rs and lasts for

LRew~50 ms. So up to the point in time s’ when further

reinforcement becomes available, the concentration variable

evolves as:

tRew _ccRew~{cRewzc0
RewzRs H(t; s,LRew):

Here the step function H(t; s,LRew) equals 1 if sƒtƒszLRew,

otherwise the function value is zero. The reward feedback read-out

at a synapse is determined by the deviation of the current

neurotransmitter level cRew(t) from its homeostatic value and

equals

Rew(t)~g cRew(t){c0
Rew

� �
:

Here the parameter g is the positive learning rate which, for

notational convenience, we absorb into the reward signal.

The decision feedback Dec(t) used in Eq. (3) is encoded in the

concentration cDec of a second neurotransmitter. As for reward

feedback, this is achieved by a temporary change in the production

rate of the encoding neurotransmitter. For describing cDec, we

assume a stimulus that ended at time nT , evoking the population

activity A and behavioral decision D. As shown in Text S1, the

value of Dec(t) should then be determined by the derivative of

log P(DjA) with respect to A and, in view of Eq. (9), this derivative

is simply D{tanh(A). Hence we use

tDec _ccDec~{cDeczc0
Decz(D{tanh(A))H(t; nT ,LDec)

for the temporal evolution of cDec. Parameter values in the

simulations are tDec~10 ms and LDec~50 ms. The above

equation holds up to time (nz1)T when the subsequent stimulus

presentation ends, at which point the decision variables D and A
are replaced by their values for the latter stimulus. The decision

feedback Dec(t) is simply

Dec(t)~cDec(t){c0
Dec:

For the postsynaptic trace post2(t) in Eq. (3), we assume a

concentration variable C which reflects the spiking of the neuron.

Each time there is a postsynaptic spike, C is set to 1; at other times,

C decays as tD
_CC~{C. The value of C should reflect whether or

not the neuron spiked in response to the decision stimulus. So, as

for the eligibility trace E2 (see Eq. 2), the relevant time scale is the

decision period and this is why the same time constant tD is used

in both cases. The trace post2(t) is obtained as

post2(t)~sign(C(t){q),

comparing C to an appropriate threshold q. In the simulation we

use q~e{1:1. For the reasoning behind this choice, consider a

stimulus ending at time T of duration T~tD. The value of

post2(t) at time T will accurately reflect whether or not the

decision stimulus elicited a postsynaptic spike, if we choose

q~e{1. But since decision feedback is not instantaneous, the

value of post2(t) is mainly read-out at times later than T . This is

why the smaller value q~e{1:1 seemed a somewhat better choice.

TD-learning
For TD-learning we used the SARSA control algorithm [1]

which estimates the values of state-action pairs (st,Dt). At each

point in time, the value estimates V (st,Dt) are updated according

to

V (st,Dt)/(1{a)V (st,Dt)za Rtz1zcV (stz1,Dtz1)ð Þ:

Here a and c have values between 0 and 1. The parameter a is

similar to a learning rate and c controls the temporal discounting.

The above update is done after every transition from a nonterminal

state st. If stz1 is terminal, then V (stz1,Dtz1) is defined as zero.

When in state st, the next action Dt is chosen using either e-greedy

or softmax. In both cases only the values V (st,D) pertinent to the

current state enter into the decision making.

For memoryless TD-learning in the two armed bandit we used

a~0:01 and c~0. A positive discount factor would not

qualitatively change the result. For each of 30 runs per chosen

value of b, we simulated 2:000 trials. After 1:000 trials learning

had converged and the reported asymptotic quantities are the

average over the next 1:000 trials. For learning with memory we

used a~0:1, b~30 and c~0.

For the sequential decision making task decision selection used

e-greedy with e~0:01. The discount factor was set to c~0:9 and

the step-size parameter to a~0:1.
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With regard to the failure of TD-learning in the sequential

decision making task, we note that there are also eligibility trace

based versions, SARSA(l), of the algorithm with the above version

corresponding to l~0. For 0vlƒ1, the value update takes into

account not just the next state-action pair but the value of all

subsequent state-action pairs. Importantly, for the special case l~1
the subsequent values occurring in the update cancel, and the value

update is in effect driven directly by the reward signal [1]. So

SARSA(1) is just a complicated way of doing basic Monte Carlo

estimation of the values. It hence does not assume that the process is

Markovian and SARSA(1) does reliably converge towards optimal

performance in our task. For 0vlv1 the procedure interpolates

between the two extremes 0 and 1. Consequently the valuation of

some state-action pairs (e.g. the shortcut 12, left) will then be wrong

but the error will be smaller than for l~0. If action selection is

based on softmax the incorrect valuation will nevertheless be

detrimental to decision making. However, this need not always be

the case for e-greedy, due to the thresholding inherent in this deci-

sion procedure. In particular, there is a positive critical value for l
(which depends mainly on the discount factor c) above which the

valuation error will no longer affect the decision making. In this

parameter regime, SARSA(l) will reliably learn the optimal policy

(upto the exploration determined by e).

Miscellaneous simulation details
In all the simulations initial values for the synaptic strength were

picked from a Gaussian distribution with mean zero and standard

deviation equal to 4, independently for each afferent and each neuron.

A learning rate of g~20 was used in all simulations, except for

the 2-armed bandit task where g~0:2 was used.

In the sequential decision making task with working memory,

the population is presented stimuli encoding not just the current

but also the immediately preceeding position. For this, each

location on the track is assigned to a fixed spike pattern made up of

50 spike trains representing the location in the case that it is the

current position and, further, to a second spike pattern with 30

spike trains for the case that it is the immediately preceeding

position. The stimulus for the network is then obtained by

concatenating the 50 spike trains corresponding to the current

position with the 30 spike trains for the preceeding position.

The curves showing the evolution of performance were

obtained by calculating an exponentially weighted moving average

in each run and then averaging over multiple runs. For the

sequential decision making task reward per episode was considered

and the smoothing factor in the exponentially weighted moving

average was 0:02. In the other task, where performance per trial

was considered, the smoothing factor was 0:005. For each run a

new set of initial synaptic strength and a new set of stimuli was

generated. The number of runs was 20, except in the two armed

bandit where we averaged over 40 runs.

Supporting Information

Text S1 We show how the plasticity rule presented in the main

text is based on a gradient ascent procedure maximizing the

average reward rate.

(PDF)
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