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ABSTRACT 

Purpose: To gain a deeper understanding of the influence of skeletal muscle fibre orientation on 

metabolite visibility, magnetization transfer from water, and water proton relaxation rates in
 1

H MR 

spectra. 

Methods: Non-water-suppressed MR spectroscopy was performed in tibialis anterior muscle (TA) of ten 

healthy adults, with the TA oriented either parallel or at the magic angle to the 3 T field. Spectra were 

acquired with metabolite-cycled PRESS, and water inversion from 50 to 2510 ms prior to excitation. 

Water proton T2 relaxation was sampled with STEAM with echo times from 12 to 272 ms. 

Results: Apparent concentrations of total creatine (tCr), taurine, and trimethylammonium compounds 

were reduced by 29% to 67% when TA was parallel to B0. Both tCr peak areas were strongly correlated to 

the methylene peak splitting. Magnetization transfer rates from water to tCr CH3 were not significantly 

different between orientations. Water T1's were similar between orientations, but T2's were statistically 

significantly shorter by 1 ms in the parallel orientation (p=0.002). 

Conclusion: Muscle metabolite visibilities in MR spectroscopy and water T2 times depend substantially 

on muscle fibre orientation relative to B0. In contrast, magnetization transfer rates appear to depend on 

muscle composition, rather than fiber orientation. 

Keywords: MR spectroscopy; skeletal muscle; orientation; magnetization transfer; magic angle; 
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INTRODUCTION 

Skeletal muscle metabolism, metabolite compartmentation, and tissue microstructure can be probed 

non-invasively in vivo using MR spectroscopy. The dense muscle fibre microstructure gives rise to 

orientation dependent MR features, with anisotropic overall motion of the creatine (Cr) and 

phosphocreatine (PCr) molecules causing residual dipolar couplings first described for the total observed 

creatine (tCr=Cr+PCr) resonances (1,2) while orientation dependence was later also reported for most of 

the other muscle metabolites. Taurine, trimethylammonium containing compounds (TMA), and carnosine 

resonances were all shown to be affected by muscle fibre microstructure since their spectral patterns 

and/or amplitudes depend on the relative orientation of muscle fibers with respect to the main magnetic 

field (3–7). 

In addition, the exchange of water in the hydration sphere of tCr molecules with free water can be 

investigated via an inversion transfer experiment, where the tCr peak areas attenuate in response to 

frequency-selective water inversion. Previous investigations of this effect have demonstrated similar 

attenuation of tCr peak areas in the human brain (8), skeletal muscle (8,9), as well as in rat brain (10). 

Recent in vitro 
1
H NMR magic angle spinning observations suggest that - besides the chemical 

partitioning into unphosphorylated Cr and PCr - there are two pools of Cr; one motionally-free, and one 

motionally-restricted, where the latter may not be visible in vivo but may be involved in the transfer of 

magnetization with water (11). Surprisingly, our previous inversion transfer experiment in human calf 

muscles revealed a significant difference in magnetization transfer (MT) rates between the tibialis anterior 

(TA) and soleus muscles (9), which was attributed to either varying muscle composition or the differing 

muscle fibre orientation. 

Muscle fibre orientation effects on water proton relaxation times have been investigated early on in ex 

vivo rat TA, revealing an orientation effect on T2 but not T1 (12). However, the so-called magic angle 

effect is only well established in vivo for cartilage tissue ((13) and refs. therein), and to date the effects of 

muscle fibre orientation on water relaxation in human skeletal muscle in vivo has not been characterized. 

The present study sought to answer several questions regarding the NMR properties of skeletal 

muscle water and metabolites in humans: 1) do water-tCr MT rates depend on muscle fibre orientation or 

composition; 2) can the varying visibility of skeletal muscle metabolites in different fibre orientations be 

confirmed at 3 T and using non water suppressed MRS; and 3) do water proton relaxation times change 

with muscle fibre orientation?  
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METHODS 

Subjects 

Ten healthy adults aged 20 to 46 years, (median 26 years, 3 males and 7 females) of varying degrees 

of fitness and without any history of musculoskeletal disorders were recruited. The study was approved 

by the local institutional review board, and written, informed consent was obtained.  

MRS Data Acquisition 

Subjects were scanned on a 3T Siemens VERIO MR system with the body coil for transmission and a 

flexible phased array coil for reception. Subjects were positioned lying on their right side on a home built 

support on top of the scanner table, with their lower right leg through a rotatable coil mount. The support 

allowed the subject’s body to slide along the table when the right leg was bent or straightened, so as to 

keep the coil at the same position along the external magnetic field. Thus, the entire measurement could 

be performed twice, once with the lower leg aligned at the magic angle and once parallel with respect to 

the external magnetic field, without having to adjust the positioning of the coil. However, it should be 

noted that the flexible coil, which is partly wrapped around the calf, was rotated along with the leg such 

that the receive performance of the coil was smaller at the bent position than when the leg was parallel to 

B0 because the main axis of some of the coil elements did not remain perpendicular to B0. T2 weighted 

images were acquired and used to prescribe a spectroscopy voxel (mean volume 6.9 mL) in the TA with 

as little contamination from extramyocellular lipid deposits as possible, as illustrated in Fig. 1. Voxel 

dimensions and voxel orientiation with respect to the leg were kept the same within a volunteer for the 

two orientations, with the exception of one case in which the parallel orientation voxel was 5% smaller.  

PRESS localized spectra were acquired without water suppression (WS) by presaturation, but using 

metabolite cycling (9,14) with TE/TR = 26/4000 ms, 2 start-up cycles followed by 32 acquisitions, 2048 

samples, and a bandwidth of 4000 Hz. The metabolite cycling pulse had a duration of 22 ms, with a delay 

of 7 ms to the middle of the PRESS 90° pulse. Magnetization transfer between water and tCr was 

measured using an inversion transfer experiment in which an additional Gaussian-shaped frequency 

selective pulse of 12 ms duration was applied to invert the water resonance with varying delay times (TI) 

before the PRESS acquisition (TI = 50, 510, 660, 810, 960, 1110, 1260, 1560, 2510 ms), in addition to a 

non-water-inverted (NI) measurement. Individually acquired free induction decays (FID’s) were stored 

separately for later post-processing. The measurement took 128 s for each TI time. In addition, single shot 

non-WS STEAM spectra with varying TE times (TE = 12, 14, 17, 20, 24, 29, 34, 40, 48, 68, 96, 136, 192, 

272 ms) were also acquired. Automatic B0 shimming was performed, and the transmitter power was 
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optimized for a 90° flip angle in the prescribed voxel using the manufacturer’s work-in-progress B1 

mapping method.  

Data Analysis  

Spectra were preprocessed as described previously (9). Briefly, individual NI shots were frequency 

aligned with the water peak, then eddy-current corrected with its water-only signal. Water inverted shots 

were frequency aligned using the 3.03 tCr methyl peak, and eddy current correction was performed using 

the water signal obtained from the TI = 2510 water signal, then frequency and phase aligned to the NI 

case. Residual water and signals in the lipid region (0 to 2.7 ppm) were removed from the metabolite 

spectra by Hankel-Lanczos Singular Value Decomposition prior to fitting. Both metabolite and water 

spectra were fit in FiTAID (15), which fits peak areas at all TI times simultaneously. This is illustrated 

and described in Fig. 1. Base spectra had been set up heuristically, with the tCr spectrum as one doublet 

for CH2 and one triplet for CH3, a singlet for TMA, and a doublet of doublets for taurine. 

The longitudinal magnetizations of water and tCr were modeled as described previously (9) to extract 

the water and metabolite T1 relaxation times and magnetization transfer rates. In brief, the water inversion 

recovery curve was initially fit for each volunteer to determine the water T1 time, inversion pulse 

efficiency, and equilibrium magnetization. These parameters were then used as constants in the fit of the 

inversion transfer curves for each metabolite’s peak area. The metabolite curves were modeled on an 

idealized pulse sequence, considering only the effects of the water inversion pulse and the 90° pulse in 

PRESS, and was described using the two-pool Bloch-McConnell equations (16). The metabolite curve 

fitting optimized each metabolite’s equilibrium magnetization, T1 in absence of exchange, and forward 

transfer rate constant from water to metabolites, while the backwards transfer rate constant was set to 

fulfill steady state conditions. Non-WS STEAM spectra with varying TE times were fit with a single 

water peak, and peak areas were fit to a mono-exponential decay using least-squares minimization. The 

Wilcoxon signed-rank test was used to compare T1 times and magnetization transfer rates of the tCr CH3 

peak in between the two fibre orientations. 

To determine absolute concentrations for tCr-CH2 and -CH3, TMA, and taurine, metabolite signals 

were scaled to the water peak area with the assumption that skeletal muscle is 78% water (17) and fully 

visible, independent of fibre orientation. The water peak area was corrected with the measured T1 and T2 

values, and scaled by a factor of 1.25 to account for the effect of direct saturation by the metabolite 

cycling pulses. The tCr and TMA peak areas were corrected with orientation-independent relaxation 

values reported previously (18). Both tCr peak areas were corrected with the same T2 values, and the 
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taurine peak area was corrected with the T2 value of tCr CH3. Metabolite concentrations between the 

magic angle and parallel orientations were compared using the Wilcoxon signed-rank test. tCr 

concentrations for each resonance (CH2 and CH3) and T2 values of water were fit to a linear relationship 

with CH2 peak splitting. Signal pre-processing, model optimization, statistics, and graphing were 

performed in MATLAB (7.10.0 R2010a, The Mathworks, Natick, MA, USA). 

RESULTS 

Creatine peak areas at 3.03 and 3.93 ppm in the tibialis anterior muscle are affected by frequency 

selective inversion of water, as demonstrated in Fig. 2, with maximal difference from the non-inverted 

spectrum approximately 1 s following water inversion. This effect is similar at both the magic angle and 

parallel orientations with respect to the external magnetic field. Inversion transfer modeling of the change 

in tCr CH3 peak area with water inversion delay time is shown in Fig. 3, and revealed MT rates of 

(median (25
th
 & 75

th
 percentiles)) 0.43 (0.37 – 0.48) s

-1
 and 0.41 (0.36 – 0.51) s

-1
 in the tibialis anterior at 

the magic angle or parallel to the B0 field, respectively. The median longitudinal relaxation times were 

determined to be 1.14 (1.00 – 1.32) s and 1.47 (1.12 – 1.69) s, respectively. No significant difference 

between muscle fibre orientations was detected for either the MT rate (p=0.85) or the tCr CH3 T1 

relaxation time (p=0.10). 

All apparent metabolite concentrations were significantly higher in the magic angle orientation as 

compared to the parallel orientation (p<0.01), as illustrated in Fig. 4. The median tCr CH2 concentration 

exhibited a 33% decrease from 28.8 (27.7 – 30.5) mM at the magic angle to 19.2 (18.7 – 20.8) mM in the 

parallel orientation, while the tCr CH3 concentrations exhibited a 29% drop from 35.2 (34.0 – 37.2) mM 

to 25.0 (23.3 – 27.5) mM. The TMA and taurine concentrations exhibited even stronger decreases, with 

TMA decreasing 55% from 10.4 (8.8 – 13.4) mM to 4.7 (3.9 – 5.2) mM, and taurine decreasing 67% from 

15.8 (14.3 – 18.0) mM to 5.2 (4.6– 6.1) mM. 

The measured concentrations of both tCr peaks were strongly correlated to the CH2 doublet splitting 

of tCr (R
2
 = 0.79 p<1×10

-6
 for CH2, and 0.65, p<1×10

-4
 for CH3), as shown in Fig. 5. Furthermore, the 

slope of the linear relationship was similar between the CH2 and CH3 peaks. 

The water proton T1 relaxation time was also extracted from the inversion transfer model, and was 

similar between muscle fibre orientations: 1.34 (1.32 – 1.38) s at the magic angle, and 1.34 (1.32 – 1.35) s 

for the parallel orientation (p=0.97). Conversely, the water proton T2 relaxation time determined from the 

non-WS STEAM TE series was significantly different between orientations: 28.7 (28.3 – 29.9) ms at the 

magic angle and 27.6 (27.2 – 27.9) ms in the parallel orientation (p=0.002). Its dependence on orientation, 
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represented by the tCr CH2 peak splitting, is plotted in Fig. 6, where a strong correlation is observed over 

the whole cohort (R
2 
= 0.60 p<0.0001). 

DISCUSSION 

Selective inversion of the water resonance leads to attenuation of the total observed creatine 

resonances in human tibialis anterior muscle, as determined by 
1
H MRS without water presaturation. The 

MT rates reported here are in agreement with our previous study in the same muscle (9), and exhibit a 

similar time course to earlier reports in human brain and skeletal muscle (8). Our previous work 

demonstrated a significant difference in water-tCr MT rates between the tibialis anterior and soleus 

muscles, which could be attributable to either different muscle compositions or fibre orientations. The 

present study found similar MT rates in the tibialis anterior muscle aligned with the external magnetic 

field and at the magic angle, suggesting that the varying water-tCr MT rates reported earlier (9) probably 

arise from different fibre type compositions between the tibialis anterior and soleus muscles, though this 

will need corroboration with studies including determinations of fiber type. 

Histological examination of post-mortem human muscle tissue determined that the tibialis anterior is 

composed of roughly 78% type 1 and 22% type 2 fibres, while the soleus is composed of 96% type 1 and 

4% type 2 fibres (19). Given that the kinases involved in the creatine-phosphocreatine energy shuttle are 

bound to the mitochondria and myofibrils (20), and that there is a larger mitochondrial content in type 1 

fibres than type 2 fibres, type 1 fibres may have a higher ratio of bound to free creatine, which might 

enable a faster diffusion of magnetization from water to free creatine via the bound pool. In this case, it 

would be expected that muscles high in type 1 fibres would experience faster water to tCr MT rates, as 

was found in our previous study (9). 

Indeed, high resolution magic angle spinning (HRMAS) 
1
H NMR spectroscopy of fresh human 

skeletal muscle tissue resolved the tCr resonances into 3 separate peaks assigned to PCr, as well as mobile 

and motionally restricted creatine (11). Given that the intensities of the PCr and creatine multiplets are 

similar in spectra of spinning and non-spinning samples, the restricted creatine pool is likely not to be 

observable without magic angle spinning, i.e. in vivo. Moreover, nuclear Overhauser effect spectroscopy 

of these samples indicated that this motionally restricted creatine pool is confined in a small space with 

water molecules (11). The confirmed presence of a motionally restricted creatine pool in close association 

with water molecules invites the speculation that the MT-related attenuation of the tCr peak areas in the 

present study occurs due to transfer of the inverted water magnetization to the motionally restricted 

creatine pool, followed by an exchange between the restricted and free creatine pools to produce the 
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observed effect on the tCr peak areas. Since bound pools were not observed for any other metabolites in 

HRMAS and the MT is clearly much larger for creatine than other peaks, this link may be more than pure 

coincidence.  

Regarding the observed reduced visibility of the metabolite signals off the magic angle, there are 

several related findings in the published literature. In terms of the creatine signals, there is an ongoing 

debate about the full visibility of unphosphorylated creatine. Strong correlations between exercise-

induced depletion of the phosphocreatine signal in 
31

P MRS and 
1
H tCr peak areas in human TA 

suggested that the entire tCr methylene signal arises from PCr and that free creatine is MR invisible (21). 

For the methyl peak pattern, this study suggested a partial visibility, with changes in lineshape. This 

finding was corroborated in a study with electric stimulation of muscle contraction (22). The 

measurements on the effect of exercise were performed in the parallel orientation, which is now 

demonstrated to have a 29% decrease in the tCr CH3 peak area and a 33% decrease in tCr CH2 peak area 

compared to the magic angle setting. Given that 20-30% of total creatine is known to be 

unphosphorylated from chemical biopsy measurements in resting conditions for human skeletal muscle, 

these two observations would match up well, if one assumes that unphosphorylated creatine becomes 

visible at the magic angle, while at other angles the dipolar splitting could be substantially larger and/or 

less uniform for free creatine than for PCr, and thus free creatine signals might be broadened and 

distributed beyond detectability over a larger frequency range. This explanation is also supported by the 

determined tissue content for total creatine, which is in taking with the biopsy literature for the magic 

angle, but not the parallel arrangement. In contrast, the correlation between 
1
H and 

31
P tCr peak areas was 

not observed in mouse gastrocnemius muscle pre- and post-mortem (though there were some lineshape 

effects specific to the off-magic angle settings), and furthermore, similar tCr CH2 visibility was observed 

for both wild type and creatine kinase deficient mice who exhibit decreased PCr levels (23). However, 

these measurements were done at 7T and in another species, which still leaves room for the above 

interpretation for 3T and human muscle. In addition to, and in support of, the theory that creatine 

visibility is limited off the magic angle, it has been reported that creatine indeed shows larger dipolar 

couplings than PCr - at least in model systems featuring residual dipolar couplings (24,25).  

The exact nature of the orientation dependence of apparent concentrations or relaxation times cannot 

be derived from our data as given in Figs 5 and 6. The suggested linear relation is not founded in the data, 

but is just the most basic correlation. Given that dipolar couplings may play a crucial role for the MR 

visibilities, either through residual dipolar splittings or through relaxation enhancements, it is reasonable 

to use the residual dipolar coupling of tCr as first approximation of an orientation measure, but the 

relations may equally well be non-linear. 
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Further evidence with regard to variable MR-visibilities for metabolite peaks as function of 

orientation, in particular for TMA and tCr, comes from a spectroscopic imaging study of the human calf 

muscle. At 1.5 T the authors demonstrated the variability of tCr and TMA peak areas across different 

muscles, which was suggested to partially depend on fibre orientation (3). This finding was further 

supported by similar spectroscopic imaging of the human calf at 1.5 T with the lower leg oriented at 0°, 

30°, and 70° with respect to the main magnetic field, revealing nearly twice the tibialis anterior TMA/tCr 

ratio at 70° versus 0° (4), which is consistent with our finding of a larger orientation dependence for TMA 

than tCr. On the other hand, two other investigations did not find an effect of orientation on tCr peak area, 

but both studies experienced relevant limitations. Gao et al. did not observe changes in the tCr CH3 peak 

areas when the human forearm muscles were placed at different angles to the B0 field, however the tCr 

CH3 peak splitting in the parallel orientation was not accounted for in the spectral fitting (26). In addition, 

tCr measurements in the human soleus muscle under muscle stretching caused by varying foot 

orientations did not reveal changing peak areas, however, the induced muscle fibre orientation changes 

may not have been strong enough to produce an amplitude effect (27).  

Furthermore, for TMA the visibility may depend on field strength, too. TMA is a composite peak 

with choline, phosphocholine, glycerophosphorylcholine, betaine, carnitine, acetylcarnitine, and 

acylcarnitines all contributing and all with the potential for residual dipolar couplings and differential 

visibilities. From work at 1.5 T (28) and 3T (29), it appeared that free carnitine is only partially visible 

both on and off the magic angle. This was concluded from difference spectra obtained for the exercise-

induced transfer of carnitine to acetylcarnitine, which showed a well resolved positive peak for the 

appearance of the TMA singlet (3.19 ppm) of acetylcarnitine, but only a broad negative peak for the 

disappearance of the free carnitine TMA contribution in TA, vastus intermedius, and rectus. Similarly, 

such difference spectra showed an increased signal for total TMA in soleus proportional to the appearance 

of acetylcarnitine, as determined from the acetyl peak at 2.1 ppm. In soleus at 7 T (30), such difference 

spectra feature a clear and equally sized negative contribution of free carnitine, thus suggesting full 

visibility of this component at 7 T – at least near the magic angle
1
.  

The present study confirmed at 3 T the observations of the 1.5 T studies that tCr CH3, tCr CH2, TMA, 

and taurine peak areas are increased when the TA is at the magic angle as opposed to parallel to the main 

magnetic field. Moreover, the tCr CH3 and CH2 concentrations exhibited a strong linear correlation with 

the splitting of the tCr CH2 resonance, reinforcing an earlier correlation of TMA/tCr ratio with tCr CH2 

splitting (4).  

                                                      
1
 In ref (30), spectra recorded for an off magic angle orientation in gastrocnemius muscle were mentioned, but 

the results not included in the report. 
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It should be noted that the orientation dependence could in principle also arise from inherent technical 

differences between the setups at the two orientations. For one, the receive coil, which was angulated 

along with the leg, has a lower sensitivity at MA than PA, but since water, which was used as an internal 

standard, is subject to the same field differences, no relevant net effect is expected. Secondly, B0 field 

homogeneity at the ROI is better with the leg stretched along the external field than when it is angulated 

creating substantial perpendicular air-tissue interface components. However, the median difference in 

water line with was less than 1 Hz, which is expected to have been compensated by the Voigt line model. 

In addition, a minor part of the orientation dependence of metabolite peak areas may also have arisen 

through inaccurate model fitting of the MR spectra, where base spectra had been adjusted heuristically for 

plausibility and minimal residues. In particular, the taurine peaks may not be modelled properly and some 

of the differences between the orientations could be attributable to the fact that there is no exact or widely 

accepted model for the peak pattern of taurine as a function of orientation or extent of residual dipolar 

coupling. Similarly, the overlapping TMA resonance may suffer indirectly somewhat from this deficit, 

and in addition some of the constituent molecules contributing to the overall TMA peak may actually also 

show a dipolar pattern off the magic angle, which was not accountable in this evaluation. Whether strictly 

speaking the whole apparent reduced visibility of metabolites relates to unaccountably complicated and 

large dipolar splitting effects for some of the constituents or whether strongly reduced T2’s play the major 

role is still up for investigation. 

 

Summarizing, the present study adds to a growing body of evidence supporting the relationship 

between muscle fibre orientation and measured metabolite peak areas, which is crucial for any 

quantitative assays of muscle metabolites in health and disease. 

Finally, the water proton T2 relaxation time was found to be 1 ms longer when the muscle fibres were 

near the magic angle, as compared to the parallel orientation, while the T1 relaxation time was 

indistinguishable between orientations. The orientation dependence of T2 and independence of T1 for 

water protons is reminiscent of the so called magic angle effect reported for water associated with 

collagen fiber orientation (13,31). It has actually been reported early on for ex vivo rat TA muscle (12), 

where a longer T2 time was also found at the magic angle (12). This study, as well as ours, suggests that a 

hydration sphere of actin-myosin filaments exhibits a similar behavior as hydrating layers of collagen 

fibers and that fast exchange with the bulk of muscle water leads to the same, but largely downscaled, 

effects as for tendons. Whether this effect may have implications in imaging, as is the case for cartilage, is 

questionable because of the small extent of the T2 shortening, but not excluded.  
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In conclusion, we have determined that our previous observation of differing water to creatine MT 

rates between the tibialis anterior and soleus muscles arises from differences in muscle composition and 

not orientation dependence. In contrast, metabolite peak areas are orientation dependent, with more 

accurate concentrations for tCr, TMA, and taurine determined with the muscle fibre oriented at the magic 

angle where dipolar coupling is negligible. Finally, a small but significant difference in water proton T2 

but not T1 relaxation rates was detected between muscle fibre orientations, proving that the magic angle 

effect also occurs for tissues that are not particularly rich in collagen. 
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Figure Captions 

Figure 1. Tibialis anterior muscle spectra obtained with fibres oriented either parallel (upper chart) or at 

the magic angle to the external magnetic field (lower chart). Top black spectra for each orientation depict 

the measured spectra averaged over 10 volunteers, coloured lines show the fitted metabolite spectra 

determined by FiTAID (10) and lower black lines show the residuals. Inset: position of the spectroscopy 

voxel. FiTAID modeled spectra with Voigt line patterns for a baseline, total creatine (tCr) CH2 and CH3, 

taurine, and trimethylammonium (TMA) groups. Peak frequencies, phases, and widths were optimized 

simultaneously for all spectra in the magnetization transfer measurement in each volunteer, while peak 

areas were permitted to change with water inversion delay time. 

 

Figure 2.  Average spectra from the water inversion recovery measurement. Top line shows the non-

water-inverted (NI) spectra obtained parallel or at the magic angle to the external magnetic field, while 

each subsequent line shows the difference between spectra obtained with increasing water inversion delay 

times and the NI spectrum. Delay times are given in ms at the right of the figure. 

 

Figure 3.  Creatine CH3 peak areas with increasing water inversion delay times or not water inverted 

(NI). Symbols mark peak areas fit in FiTAID, with error bars showing the Cramér–Rao lower bounds of 

the peak area fit, and lines demonstrating the fit of the inversion transfer exchange model, which 

determined the magnetization exchange rate from water to tCr CH3, k (s
-1

), as well as the T1 relaxation 

time (s). Medians (25
th
 and 75

th
 quartiles) of the exchange rate and T1 relaxation times for both fibre 

orientations are given, but neither were significantly different between fibre orientations. The median root 

mean square errors of the inversion transfer fit expressed as a percent of the non-water-inverted peak area 

were 8% (5 – 12%) for the magic angle, and 4% (3 – 7%) in the parallel orientation. 

 

Figure 4.  Comparison of apparent metabolite concentrations between the magic angle (MA) and parallel 

(PA) orientations. The measured concentration for each metabolite was significantly higher in the magic 

angle (MA) orientation versus the parallel (PA) orientation (p<0.01). (Tau: taurine) 
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Figure 5.  Relationship between muscle fibre orientation, represented by the splitting of the tCr CH2 

doublet, and apparent tCr peak concentrations. Top: tCr CH2 concentration versus tCr CH2 doublet 

splitting. Bottom: CH3 concentration versus tCr CH2 doublet splitting. The apparent concentration of each 

tCr resonance correlated with the CH2 doublet splitting (p<10
-4

). Diamonds represent measurements 

intended to be obtained at the magic angle, while circles represent measurements intended to be recorded 

near a parallel configuration. Standard deviations of the concentration values were always smaller than 

the symbol size and thus are not shown for clarity. (For abbreviations, see Fig. 4.) 

 

Figure 6.  Relationship between muscle fibre orientation, represented by the splitting of the tCr CH2 

doublet, and water T2 relaxation time. (For abbreviations, see Fig. 4.) 
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Figure 1.  
Tibialis anterior muscle spectra obtained with fibres oriented either parallel (upper chart) or at the magic 

angle to the external magnetic field (lower chart). Top black spectra for each orientation depict the 

measured spectra averaged over 10 volunteers, coloured lines show the fitted metabolite spectra 
determined by FiTAID (10) and lower black lines show the residuals. Inset: position of the spectroscopy 
voxel. FiTAID modeled spectra with Voigt line patterns for a baseline, total creatine (tCr) CH2 and CH3, 
taurine, and trimethylammonium (TMA) groups. Peak frequencies, phases, and widths were optimized 
simultaneously for all spectra in the magnetization transfer measurement in each volunteer, while peak 

areas were permitted to change with water inversion delay time.  
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Figure 2.    
Average spectra from the water inversion recovery measurement. Top line shows the non-water-inverted 
(NI) spectra obtained parallel or at the magic angle to the external magnetic field, while each subsequent 

line shows the difference between spectra obtained with increasing water inversion delay times and the NI 
spectrum. Delay times are given in ms at the right of the figure.  
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Figure 3.  Creatine CH3 peak areas with increasing water inversion delay times or not water inverted (NI). 
Symbols mark peak areas fit in FiTAID, with error bars showing the Cramér–Rao lower bounds of the peak 
area fit, and lines demonstrating the fit of the inversion transfer exchange model, which determined the 

magnetization exchange rate from water to tCr CH3, k (s-1), as well as the T1 relaxation time (s). Medians 
(25th and 75th quartiles) of the exchange rate and T1 relaxation times for both fibre orientations are given, 
but neither were significantly different between fibre orientations. The median root mean square errors of 
the inversion transfer fit expressed as a percent of the non-water-inverted peak area were 8% (5 – 12%) 

for the magic angle, and 4% (3 – 7%) in the parallel orientation.  
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Figure 4.  
Comparison of apparent metabolite concentrations between the magic angle (MA) and parallel (PA) 

orientations. The measured concentration for each metabolite was significantly higher in the magic angle 
(MA) orientation versus the parallel (PA) orientation (p<0.01). (Tau: taurine)  
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Figure 5.    
Relationship between muscle fibre orientation, represented by the splitting of the tCr CH2 doublet, and 

apparent tCr peak concentrations. Top: tCr CH2 concentration versus tCr CH2 doublet splitting. Bottom: CH3 

concentration versus tCr CH2 doublet splitting. The apparent concentration of each tCr resonance correlated 
with the CH2 doublet splitting (p<10-4). Diamonds represent measurements intended to be obtained at the 
magic angle, while circles represent measurements intended to be recorded near a parallel configuration. 

Standard deviations of the concentration values were always smaller than the symbol size and thus are not 
shown for clarity. (For abbreviations, see Fig. 4.)  

122x174mm (300 x 300 DPI)  

 
 

Page 21 of 38

Magnetic Resonance in Medicine

Magnetic Resonance in Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Figure 6.    
Relationship between muscle fibre orientation, represented by the splitting of the tCr CH2 doublet, and 

water T2 relaxation time. (For abbreviations, see Fig. 4.)  
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