TNFα inhibits the development of osteoclasts through osteoblast-derived GM-CSF

Atanga, Elvis; Dolder, Silvia; Dauwalder, Tina; Wetterwald, Antoinette; Hofstetter, Willy (2011). TNFα inhibits the development of osteoclasts through osteoblast-derived GM-CSF. Bone, 49(5), pp. 1090-100. New York, N.Y.: Elsevier 10.1016/j.bone.2011.08.003

Full text not available from this repository.

Inflammatory cytokines such as tumor necrosis factor-alpha (TNFα) are potent stimulators of osteoclast formation and bone resorption and are frequently associated with pathologic bone metabolism. The cytokine exerts specific effects on its target cells and constitutes a part of the cellular microenvironment. Previously, TNFα was demonstrated to inhibit the development of osteoclasts in vitro via an osteoblast-mediated pathway. In the present study, the molecular mechanisms of the inhibition of osteoclastogenesis were investigated in co-cultures of osteoblasts and bone marrow cells (BMC) and in cultures of macrophage-colony stimulating factor (M-CSF) dependent, non-adherent osteoclast progenitor cells (OPC) grown with M-CSF and receptor activator of NF-κB ligand (RANKL). Granulocyte-macrophage colony stimulating factor (GM-CSF), a known inhibitor of osteoclastogenesis was found to be induced in osteoblasts treated with TNFα and the secreted protein accumulated in the supernatant. Dexamethasone (Dex), an anti-inflammatory steroid, caused a decrease in GM-CSF expression, leading to partial recovery of osteoclast formation. Flow cytometry analysis revealed that in cultures of OPC, supplemented with 10% conditioned medium (CM) from osteoblasts treated with TNFα/1,25(OH)(2)D(3), expression of RANK and CD11c was suppressed. The decrease in RANK expression may be explained by the finding, that GM-CSF and the CM from wt osteoblasts were found to suppress the expression of c-Fos, Fra-1, and Nfatc-1. The failure of OPC to develop into CD11c(+) dendritic cells suggests that cell development is not deviated to an alternative differentiation pathway, but rather, that the monocytes are maintained in an undifferentiated, F4/80(+), state. The data further implies possible interactions among inflammatory cytokines. GM-CSF induced by TNFα acts on early hematopoietic precursors, inhibiting osteoclastogenesis while acting as the growth factor for M-CSF independent inflammatory macrophages. These in turn may condition a microenvironment enhancing osteoclast differentiation and bone resorption upon migration of the OPC from circulation to the bone/bone marrow compartment.

Item Type:

Journal Article (Original Article)

Division/Institute:

04 Faculty of Medicine > Pre-clinic Human Medicine > BioMedical Research (DBMR) > DBMR Forschung Mu35 > Forschungsgruppe Knochenbiologie & Orthopädische Forschung
04 Faculty of Medicine > Pre-clinic Human Medicine > BioMedical Research (DBMR) > DBMR Forschung Mu35 > Forschungsgruppe Knochenbiologie & Orthopädische Forschung

UniBE Contributor:

Atanga, Elvis Achiri, Dolder, Silvia, Wetterwald, Antoinette, Hofstetter, Wilhelm (B)

ISSN:

8756-3282

Publisher:

Elsevier

Language:

English

Submitter:

Factscience Import

Date Deposited:

04 Oct 2013 14:21

Last Modified:

02 Mar 2023 23:20

Publisher DOI:

10.1016/j.bone.2011.08.003

PubMed ID:

21884837

Web of Science ID:

000296405100021

URI:

https://boris.unibe.ch/id/eprint/6994 (FactScience: 212129)

Actions (login required)

Edit item Edit item
Provide Feedback