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Numerous studies reported a strong link between working memory capacity (WMC) and fluid in-
telligence (Gf), although views differ in respect to how close these two constructs are related to 
each other. In the present study, we used a WMC task with five levels of task demands to assess 
the relationship between WMC and Gf by means of a new methodological approach referred to as 
fixed-links modeling. Fixed-links models belong to the family of confirmatory factor analysis (CFA) 
and are of particular interest for experimental, repeated-measures designs. With this technique, 
processes systematically varying across task conditions can be disentangled from processes un-
affected by the experimental manipulation. Proceeding from the assumption that experimental 
manipulation in a WMC task leads to increasing demands on WMC, the processes systematically 
varying across task conditions can be assumed to be WMC-specific. Processes not varying across 
task conditions, on the other hand, are probably independent of WMC. Fixed-links models allow for 
representing these two kinds of processes by two independent latent variables. In contrast to tradi-
tional CFA where a common latent variable is derived from the different task conditions, fixed-links 
models facilitate a more precise or purified representation of the WMC-related processes of interest.
By using fixed-links modeling to analyze data of 200 participants, we identified a non-experimen-
tal latent variable, representing processes that remained constant irrespective of the WMC task 
conditions, and an experimental latent variable which reflected processes that varied as a func-
tion of experimental manipulation. This latter variable represents the increasing demands on 
WMC and, hence, was considered a purified measure of WMC controlled for the constant proc-
esses. Fixed-links modeling showed that both the purified measure of WMC (β = .48) as well as 
the constant processes involved in the task (β = .45) were related to Gf. Taken together, these 
two latent variables explained the same portion of variance of Gf as a single latent variable ob-
tained by traditional CFA (β = .65) indicating that traditional CFA causes an overestimation of 
the effective relationship between WMC and Gf. Thus, fixed-links modeling provides a feasible 
method for a more valid investigation of the functional relationship between specific constructs.
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Introduction

Since Galton’s (1869) first attempt to show that individuals differ in 

their mental capacities, the area of intelligence has been one of the 

most fascinating ones in psychology. Besides questions about the 

structure of intelligence, a lot of research focused on the question of 

why people perform differently in intelligence tests. A still increasing 

number of explanations have been investigated, such as brain volume, 

amplitude and latency of event-related brain potentials, cerebral glu-

cose consumption, and nerve conduction velocity (Vernon, Wickett, 

Bazana, & Stelmack, 2000). The most widely examined cognitive cor-

relates of psychometric intelligence are speed of information process-

ing (Deary, 2000), attention (Hunt & Lansman, 1982; Schweizer, 

Moosbrugger, & Goldhammer, 2005), and working memory capacity 

(WMC; Ackerman, Beier, & Boyle, 2005), with the latter one being of 

particular interest in the last 20 years. 

WMC can be defined as the ability to store and process informa-

tion simultaneously (Daneman & Carpenter, 1980; for a review see 

Miyake & Shah, 1999), or as the ability to build and maintain arbitrary 

bindings of information (Oberauer, Süss, Wilhelm, & Sander, 2007). 

The capacity limit of this process has repeatedly been shown to share 

substantial variance with fluid intelligence (Gf; e.g., Colom, Abad, 

Quiroga, Shih, & Flores-Mendoza, 2008; Engle, Tuholski, Laughlin, & 

Conway, 1999; Fry & Hale, 1996; Kane & Engle, 2002; Kyllonen, 1996; 

Kyllonen & Christal, 1990; Salthouse, 1992). Gf is a core component of 

general intelligence (g), and refers to the ability to think logically and 

solve novel problems (Cattell, 1971). It is considered to be independent 

of acquired knowledge or cultural influences and has been shown to 

correlate highly with g (Gustafsson, 1984; Snow, Kyllonen, & Mashalek, 

1984; Sommer, Arendasy, & Häusler, 2005; Süss, Oberauer, Wittman, 

Wilhelm, & Schulze, 2002). The close relationship between WMC 

and Gf led some researchers to assume that WMC and Gf are identi-

cal constructs (e.g., Colom, Flores-Mendoza, & Rebollo, 2003; Engle, 

2002; Kyllonen, 2002; Stauffer, Ree, & Caretta, 1996). Meta-analytical 

results, however, did not support this idea. Ackerman et al. (2005), for 

example, reported a latent correlation of r = .50 between WMC and Gf 

casting some doubt on the assumption that WMC and Gf are identical 

constructs. Oberauer, Schulze, Wilhelm and Süss (2005) argued that 

this is an underestimation because of several methodological short-

comings and biases. These latter authors reanalyzed the data examined 

by Ackerman et al. (2005) and obtained a correlational relationship 

of r = .85 between the two constructs. Despite the close association 

between WMC and Gf, the two constructs were still clearly dissociable 

from each other (Oberauer et al., 2005).

To date, it is unclear why some results indicate a very strong re-

lationship whilst others reveal only a moderate association between 

WMC and Gf. Schweizer (2007) put forward the idea of impurity of 

WMC measures as a possible explanation of the high correlations 

found in previous studies. Impurity results from the fact that tasks 

capturing cognitive functions do not only measure the intended vari-

ance due to the process of interest, but also variance caused by other 

processes, such as basic aspects of information processing. A WMC 

task, for example, can only be solved when a person is able to perceive 

the presented stimuli and to pay sufficient attention to the task. Hence, 

sensory acuity and the participant’s state of alertness may affect per-

formance on a WMC task even though the task intends to measure 

WMC (and WMC certainly plays a crucial role for task performance). 

The numerous processes contributing to task performance produce 

the impurity. Due to impurity the association between Gf and WMC 

measures may be overestimated because not only WMC processes but 

also other processes may have contributed to an observed correlation. 

If we want to measure pure relationships between specific constructs, 

we need to decompose the performance stimulated by a measure into 

different processes and isolate the processes of interest. When the 

decomposition of the contributing processes is neglected, it remains 

unclear whether an observed correlation between performance on a 

particular task (e.g., WMC) and a potentially related construct (e.g., 

Gf) is caused by the experimentally induced variance of interest or by 

an unrelated source of variance (e.g., sensory acuity or general speed of 

information processing). 

As a methodological approach to identify and decompose variance 

of a given task into independent components and to isolate the process-

es of interest, Schweizer (2006a, 2006b, 2008, 2009) introduced the so-

called fixed-links modeling approach. Fixed-links modeling is a special 

kind of confirmatory factor analysis (CFA) for data derived from an 

experimental repeated-measures design. In many WMC tasks, the task 

demands are systematically increased from easy conditions, with only a 

small number of items to be stored and processed in working memory, 

up to highly demanding conditions, with a large number of items. To 

depict this experimental manipulation of working memory demands, 

a latent variable can be derived by means of fixed-links modeling with 

factor loadings fixed in a way that reflects the increasing order of the 

conditions. Thus, a condition with higher working memory demands 

gets a higher weight on the latent variable compared to a condition 

with lower working memory demands. Because the factor loadings 

are fixed, it is also possible to derive additional latent variables from 

the same set of manifest variables (i.e., performance measures in the 

task conditions) as long as the course of the numbers serving as fac-

tor loadings differs from each other. If we assume, for example, that 

variables such as sensory acuity, a person’s general state of alertness, 

and/or motivation also influence WMC task performance, then the 

influence of these variables probably varies within, but not among, task 

conditions in a systematic way. Consequently, a latent variable can be 

derived from performance measures in the different task conditions 

with factor loadings fixed to the same value. In case that factor loadings 

are fixed, the variance of the latent variable is freely estimated and it 

is necessary that there is a statistically significant amount of variance 

to indicate that the latent variable reflects a psychologically meaning-

ful process. Thus, while in traditional CFA the variance of the latent 

variable is fixed to 1 and the factor loadings are freely estimated, in 

fixed-links models, the factor loadings are fixed and the variance of the 

latent variable is freely estimated. Furthermore, while in a traditional 

CFA all common variance of the manifest variables is assigned to one 

latent variable , more than only one latent variable1 can be derived from 
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the same set of manifest variables in a fixed-links model to decompose 

the influence of different sources of variance.

Recently, Schweizer (2007) used the fixed-links modeling ap-

proach to investigate the relationship between individual differences 

in intelligence and working memory processes. Using the Exchange 

Test (Schweizer, 1996) as a measure of WMC, Schweizer (2007) identi-

fied two independent latent variables. One latent variable represented 

processes that were independent of experimental manipulation with 

unstandardized factor loadings fixed to 1. The second identified latent 

variable represented processes that increased with increasing task de-

mands so that unstandardized factor loadings were fixed in a quadrati-

cally increasing way. At this point, it is important to understand that 

the shape of the course of factor loadings across task conditions depicts 

the experimental manipulation. Thus, the latent variable represents the 

processes intended to be measured by the experimental task. For ex-

ample, quadratically increasing unstandardized loadings over five lev-

els of task demands (e.g., 1, 4, 9, 16, 25) imply that the influence of this 

process would be the smallest for Condition 1, and 25 times larger for 

Condition 5. Schweizer (2007) arrived at the conclusion that impurity 

is a major problem for studies investigating the relationship between Gf 

and WMC because after disentangling processes of WMC from proc-

esses independent of experimental manipulation the obtained latent 

relationship between working memory and Gf was of only moderate 

magnitude (r = .40). In the meanwhile, further studies used fixed-links 

modeling to analyze processes underlying task performance in various 

repeated-measures designs (Ren, Schweizer, & Xu, 2013; Schweizer, 

2008; Stankov & Schweizer, 2007; Stauffer, Troche, Schweizer, & 

Rammsayer, 2014; Wagner, Rammsayer, Schweizer, & Troche, 2014). 

These studies have in common that more processes than only one 

could be identified to underlie performance measures in the respective 

cognitive tasks. In addition, the shapes of the courses of factor load-

ings identified were predominantly linearly or quadratically increasing. 

This is surprising because experimental repeated-measures designs are 

usually designed to capture a wide range of ability in a given task. Since 

in fixed-links modeling (as in traditional CFA) the variance-covariance 

matrix is used for model estimation, the influence of a process depends 

on the variance and the covariance of task conditions. In case that con-

ditions of a working memory task exceed the capacity limit of more 

and more participants, variance of these task conditions should de-

crease and, similarly, the covariance between difficult task conditions 

should decrease. Thus, we would expect increasing unstandardized 

factor loadings from easy conditions to medium-difficult conditions, 

the highest unstandardized factor loadings for medium-difficult task 

conditions, and decreasing unstandardized factor loadings for very 

difficult task conditions. Such a course of factor loadings, however, has 

not been identified yet, although this shape seems reasonable. 

Most importantly for the present study, the latent variables repre-

senting processes related and unrelated to experimental manipulation, 

respectively, were associated differentially to measures of psychomet-

ric intelligence in previous studies (Miller, Rammsayer, Schweizer, & 

Troche, 2010; Ren et al., 2013; Schweizer, 2007; Stauffer et al., 2014; 

Wagner et al., 2014). The aim of the present study was to systematically 

compare results obtained by traditional CFA with results provided by 

the fixed-links modeling approach. Therefore, in this article, we direct-

ly contrast the fixed-links modeling approach and traditional CFA by 

using parts of the data previously reported by Troche and Rammsayer 

(2009). Using a WMC task consisting of five conditions with increas-

ing demands on WMC, we derived one latent variable from the five 

task conditions by means of a traditional CFA. Furthermore, by apply-

ing the fixed-links modeling approach, we probed whether we could 

identify more than only one process underlying performance on the 

WMC task. For both measurement models (traditional CFA and fixed-

links model) we investigated the relationship between the derived 

latent variables and a measure of Gf derived from subtests of the Berlin 

Intelligence Structure (BIS) test (Jäger, Süss, & Beauducel, 1997). We 

acted on the following assumptions:

When applying traditional CFA, a latent variable WMC can 1.	

be derived from the five conditions of the WMC task, which is 

closely associated with Gf as commonly found in research on the 

relationship between WMC and Gf (Oberauer, Süss, Wilhelm, & 

Wittmann, 2008).

Using the fixed-links modeling approach, we assume that two 2.	

latent variables can be identified to explain variance within and 

covariance between the five WMC task conditions. One latent 

variable represents processes involved in WMC task perform-

ance but independent of experimental manipulation so that the 

unstandardized factor loadings can be fixed to 1. The second 

latent variable represents processes varying with experimental 

manipulation (i.e., increasing demands on WMC). Consequently, 

the unstandardized factor loadings systematically vary with ex-

perimental manipulation. However, although we expect system-

atic variation across task conditions, it is difficult to predict the 

exact course of factor loadings across conditions of a given task. 

Therefore, we compare different courses for the latent variable 

representing WMC. In line with previous studies, we probe lin-

early and quadratically increasing functions to represent WMC 

(as reported by Schweizer, 2007, 2008; Stauffer et al., 2014). As 

the applied WMC task put heavy demands on WMC in the most 

difficult task conditions, it is possible that these excessive task de-

mands result in reduced variance of conditions and, consequently, 

in reduced covariance between conditions. This should induce a 

flattening or even a decline of the function so that we also probe a 

logarithmic as well as a reversed u-shaped function with increas-

ing factor loadings in the first conditions and decreasing factor 

loadings for the most difficult conditions.

After having identified a latent variable representing a purified 3.	

measure of WMC, we expect a positive functional relationship 

between WMC and Gf. We assume, however, that this correlation 

is significantly smaller than the correlation obtained by relating 

the WMC measure from the traditional CFA to Gf. Even more 

important, if an additional latent variable can be identified rep-

resenting processes unrelated to experimental manipulation, this 

latent variable should be related to Gf. It is this relationship that 

should lead to an overestimation of the WMC-Gf relationship 

when the underlying processes are not disentangled.
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Method

Participants
Participants were 100 male and 100 female volunteers ranging in age 

from 18 to 30 years (Mage = 22.2, SDage = 3.3 years). To cover a large 

range of individual levels of psychometric intelligence, participants 

with different educational backgrounds were recruited. Ninety-three 

participants were university students, 89 participants were vocational 

school students and apprentices, and 18 participants were working in-

dividuals of different professions. All participants were informed about 

the study protocol and gave their written informed consent.

Measurement of reasoning 
Subtests of the BIS test (Jäger et al., 1997) were administered to obtain a 

measurement of reasoning. The BIS test is a paper–pencil test based on 

Jäger’s (1984) BIS model of intelligence. According to the BIS model, 

cognitive abilities can be classified along two modalities: the content of 

a given task and the mental operation required to solve the task. Three 

contents (verbal, numerical, and figural) and four operations (reason-

ing, speed, memory, and creativity) are differentiated. From tasks with 

different contents but requiring the same operation (e.g., verbal, fig-

ural and numerical reasoning tasks) the respective operation-related 

intelligence can be inferred (e.g., reasoning). Analogously, from tasks 

with the same content but requiring different operations (e.g., a verbal 

speed, a verbal reasoning, a verbal memory and a verbal creativity task) 

an index for the respective content-related intelligence can be derived 

(e.g., verbal intelligence). Furthermore, on a more abstract level, Jäger 

(1984) assumes a general factor of psychometric intelligence as an in-

tegral of all human abilities. More details about the BIS model can be 

found in Jäger et al. (1997) or in Bucik and Neubauer (1996).

Subtests of the BIS test were administered to the participants in 

small groups of 2 to 5 participants each. For the present study, six rea-

soning subtests from the BIS test (Jäger et al., 1997) were chosen with 

two subtests for each content (figural, numerical, verbal). We decided 

to use reasoning subtests only because of the close association between 

reasoning and Gf (Süss et al., 2002) which has been of particular inter-

est in previous research on the relationship between WMC and intelli-

gence. The figural reasoning tests required recognition of figural analo-

gies (Reasoning F1) and completion of a progressing string of figures 

(Reasoning F2). The numerical reasoning tests comprised continuation 

of number series (Reasoning N1) and estimation of mathematical solu-

tions (Reasoning N2). In the verbal reasoning tests, semantic relations 

should be recognized (Reasoning V1) and semantic relations between 

words should be judged (Reasoning V2). Performance scores of all 

six subtests were z standardized. Normalized scores of the two verbal, 

numerical, and figural reasoning subtests were averaged to obtain three 

reasoning scores (one verbal, one numerical, and one figural score). By 

using CFA, these three reasoning scores allowed us to build one latent 

variable Reasoning (see Jäger et al., 1997 for further information). 

WMC task
To measure WMC, a computer-based adaptation of Oberauer’s (1993) 

figural dot span task was used. This task has been shown to be a valid 

measure of WMC (e.g., Süss et al., 2002). 

Apparatus and Stimuli

Visual stimuli were white dots with a diameter of 2.2 cm presented 

within a 10 × 10 grid on a 19’ computer monitor (ViewSonic VX924). 

The grid consisted of white lines against a black background and had 

a size of 26.5 × 26.5 cm (see Figure 1). Participants’ responses were 

registered by an optical computer mouse.

Procedure

About one week after the intelligence testing session, participants 

were reinvited for the experimental session in which they were sepa-

rately tested in a sound attenuated room. The WMC task consisted of 

five conditions with three trials each resulting in a total of 15 trials. 

The five conditions differed from each other in the number of dots 

presented during a trial with two dots in the first and six dots in the 

fifth condition. A trial started with the presentation of the grid. On 

each trial, two to six white dots were presented successively in different 

cells of the grid for one second each. The interstimulus interval (ISI) 

between the dots was 500 ms. Participants’ task was to memorize the 

spatial positions of the dots. After presentation of the dots, participants 

had to answer whether the array of the dots would have been horizon-

tally or vertically symmetrical if all dots were visible concurrently. 

Participants sat 40 cm away from the computer monitor, and gave 

their answers by clicking with the computer mouse in one of two des-

ignated response areas presented in the middle of the grid. After that, 

they were asked to click on the cells in which the dots had been pre-

sented. Feedback was provided after each trial. For each participant, the 

five task conditions were given in the same order so that the amount of 

information to be stored continually increased. As dependent variable, 

hit rate of correctly reproduced dot positions in each task condition 

was determined. 

Figure 1.

Example for a vertically symmetrical dot pattern of condition 
three.

http://www.ac-psych.org


Advances in Cognitive Psychologyresearch Article

http://www.ac-psych.org2015 • volume 11(1) • 3-137

Statistical Analyses
CFA was computed using Mplus software 7.11 (Muthén & Muthén, 

2012). Because data were not normally distributed, we used the 

Satorra-Bentler robust maximum likelihood estimation method 

(Satorra & Bentler, 1994). This estimation method is suited for not 

normally distributed data because it has been shown to be a more ro-

bust estimator than simple maximum likelihood estimation (Finney 

& DiStefano, 2006; Kline, 2011). Model fits were evaluated by means 

of the chi-square (χ2) value. The χ2 value indicates the similarity be-

tween the covariance matrix implied by the researcher’s model and 

the sample covariance matrix. A significant χ2 value (p < .05) denotes 

that the discrepancy between implied model structure and empirical 

data cannot be ascribed to sampling error alone and, thus, designates 

a poor model fit. As in every other test statistic, the statistical power 

not to reject the alternative hypothesis, although it is true, is a positive 

function of sample size. That is, the larger the sample size, the higher 

the probability of accepting the alternative hypothesis. When applying 

CFA, this poses a problem, because rejecting the null hypothesis (p < 

.05) indicates model misspecification. To circumvent this problem, we 

additionally used approximate fit indices. In simulation studies, ap-

proximate fit indices have been shown to be less affected by sample 

size than the χ2 value (Cheung & Rensvold, 2002; Meade, Johnson, & 

Braddy, 2008). The following fit indices were applied: Comparative Fit 

Index (CFI; Bentler, 1990), Root Mean Square Error of Approximation 

(RMSEA; Steiger, 1989), and the Standardized Root Mean Square 

Residual (SRMR; Bentler, 1995). Hu and Bentler (1999) regard CFI ≥ 

.95 and SRMR ≤ .08 as a good model fit. Also an RMSEA ≤ .05 indicates 

a good model fit (Browne & Cudeck, 1993). For model comparison, we 

used the Akaike Information Criterion (AIC; Akaike, 1987) and the 

CFI. When comparing two models, a model is better than the other 

one when its AIC is lower (indicating higher parsimony) and its CFI is 

more than .01 larger compared to that of the other model (Cheung & 

Rensvold, 2002). More detailed information on the applied fit indices 

is provided by Hu and Bentler, and Schermelleh-Engel, Moosbrugger 

and Müller (2003).

In a first step, we estimated the relationship between WMC and 

Gf using traditional CFA. That is, we derived a first latent variable 

“Gf” from the three aggregates of verbal, numerical, and figural BIS-

Reasoning subtests and a second latent variable from the hit rates in the 

five conditions of the WMC task. The obtained regression coefficient 

between the two latent variables served as a reference value for the co-

efficients obtained by the fixed-links modeling approach.

In a second step, we decomposed the variance of the WMC task 

into independent processes represented by two latent variables. The 

first latent variable was assumed to represent processes that were not 

affected by increasing task demands and, thus, did not vary between 

the experimental conditions. Therefore, unstandardized factor load-

ings for all five task conditions were fixed to 1. The second latent vari-

able was assumed to represent WMC-related processes that varied as 

a function of task demands and, consequently, factor loadings were 

fixed according to a systematic variation. More specifically, we tested 

whether this variation might be best described by the assumption of 

linear, quadratic or logarithmic increase across task conditions, or even 

by a reversed u-shaped course with an increase from the easy to the 

medium-difficult conditions and a decrease from the medium-difficult 

to the very difficult conditions. After having identified the best meas-

urement model by means of fixed-links modeling, the relationship was 

computed between Gf and the latent variables representing processes 

related and unrelated to the present WMC manipulation, respectively.

Results

Descriptive statistics of scores on the six BIS subtests and performance 

measures of the WMC task are given in Table 1. Pearson correlations 

among intelligence scores and performance measures can be seen from 

Table 2. An additional analysis yielded good internal consistency for 

both BIS-Reasoning (α = .79) and the WMC task (α = .82).

Traditional CFA
Significant positive correlations among the five conditions of the WMC 

task were indicative of a latent variable underlying task performance. 

Therefore, in a first step, we conducted traditional CFA according to 

the congeneric measurement model (Jöreskog, 1971) for WMC. The 

congeneric model of measurement represents the most popular way to 

describe the empirical data by a single factor. Loadings of the utilized 

indicators were freely estimated. This Model 1, presented in Figure 2, 

yielded a good model fit with a non-significant Satorra-Bentler cor-

rected (SB) χ2 value and good approximate fit indices (see Table 3). 

Table 1. 

Descriptive Statistics of Scores on the BIS Subtests 
and Performance Measures of the WMC Task 

BIS-Reasoning Subtests

M SD Min Max

Figural 1 3.41 1.59 0 8

Figural 2 2.57 1.71 0 6

Numerical 1 4.03 2.43 0 9

Numerical 2 3.73 2.07 0 7

Verbal 1 3.01 1.91 0 8

Verbal 2 4.96 2.03 0 9

WMC task

Condition 1 .88 .18 .17 1.00

Condition 2 .77 .21 .22 1.00

Condition 3 .77 .19 .17 1.00

Condition 4 .61 .23 .13 1.00

Condition 5 .54 .20 .00 1.00

Note. N = 200.
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We derived a latent variable BIS-Reasoning from the three reason-

ing scores and regressed this latent variable on WMC as measured in 

Model 1 (see Figure 3). The fit of this model was good with a non-

significant SB χ2 value and good approximate fit indices [SB χ2(19) = 

18.82, p = .47, CFI = 1.000, RMSEA = .00, SRMR = .03, AIC = -19.18]. 

Using the traditional CFA for the measurement model of WMC, there 

was a strong association between WMC and BIS-Reasoning (β = .65, 

p < .001).

Fixed-links modeling
Next, we used a fixed-links modeling approach to analyze our data. 

We examined whether two independent latent variables might explain 

variance and covariance of hit rates in the five WMC task conditions. 

The first latent variable represented processes not varying with experi-

mental manipulation (e.g., sensory acuity or general speed of informa-

tion processing). The second latent variable represented processes that 

vary systematically with task condition (i.e., WMC load). For reasons 

Table 2. 

Correlations Among Different Measures of Reasoning and Hit Rate on Experimental Conditions of the WMC Task 

BIS-Reasoning WMC task

Numerical Verbal Condition 1 Condition 2 Condition 3 Condition 4 Condition 5

BIS-Reasoning

Figural .58*** .40*** .36*** .28*** .41*** .43*** .34***

Numerical .42*** .27*** .28*** .40*** .40*** .32***

Verbal .17* .15* .27*** .21** .15*

WMC task

Condition 1 .38*** .52*** .39*** .42***

Condition 2 .56*** .45*** .42***

Condition 3 .55*** .49***

Condition 4 .53***

Note. N = 200, *p < .05, **p < .01, ***p < .001 (two-tailed).

Table 3. 

Fit Statistics for the Congeneric (Model 1) and the Fixed-Links Models (Models 2 to 5)

Represented processes SB χ2 df P CFI RMSEA SRMR AIC

Model 1 Congeneric 7.5 5 .19 .992 .05 .02 -2.5

Model 2 Constant + Linear 14.07 8 .08 .980 .06 .05 -1.93

Model 3 Constant + Quadratic* 15.16 8 .06 .977 .07 .06 -0.84

Model 4 Constant + Logarithmic 12.84 8 .12 .984 .06 .05 -3.16

Model 5 Constant + iu-shaped 8.6 8 .38 .998 .02 .03 -7.4

Note. Constant: constant processes, Linear: linearly increasing processes, Quadratic: quadratically increasing processes, Logarithmic: logarithmic processes, iu-
shaped: inverted u-shaped processes, SB χ2: Satorra-Bentler corrected χ2 value, CFI: comparative fit index, RMSEA: root mean square error of approximation, SRMR: 
standardized root mean square residual, AIC: Akaike information criterion.
* The variance of the dynamic latent variable did not reach statistical significance.

Figure 2.

Congeneric model of measurement of WMC with standardized 
(unstandardized) factor loadings (Model 1). 
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of brevity, we refer to the latent variable with constant factor loadings 

across the five task conditions as “constant latent variable” and to the 

latent variable with factor loadings systematically varying with task 

conditions as “dynamic latent variable”. In Model 2, the constant latent 

variable had its unstandardized factor loadings of all five task condi-

tions fixed to 1. The dynamic latent variable, however, had increasing 

factor loadings across the five task conditions. As task difficulty of the 

WMC task increased linearly across the five conditions, we tested a 

linearly increasing function (i.e., .1, .2, .3, .4, .5). The two latent vari-

ables were set to be independent of each other. Model 2 had a good 

model fit with a non significant SB χ2 value and good approximate fit 

indices (see Table 3). The variance was .0157 (z = 5.49, p < .001) for the 

constant latent variable and .0353 (z = 2.06, p < .05) for the dynamic 

latent variable representing the experimental manipulation of WMC 

demands.

Because identifying a model with a good fit does not necessarily 

imply that the model is true (MacCallum & Austin, 2000), we tested 

alternative models to see if there are models fitting the data even bet-

ter. More specifically, we tested functions of factor loadings which have 

been suggested in previous work (cf., Schweizer, 2007). In Model 3, 

we replaced the linearly increasing function of factor loadings of the 

dynamic latent variable by factor loadings following a quadratic func-

tion (i.e., .01, .04, .09, .16, .25). Model 3, consisting of a constant latent 

variable and a quadratically increasing latent variable showed a similar 

model fit to Model 2 with a non-significant SB χ2 value and good ap-

proximate fit indices (see Table 3). The variance was .0172 (z = 6.98, p < 

.001) for the constant latent variable and .1306 (z = 1.74, p = .08) for the 

dynamic latent variable representing the experimental manipulation of 

WMC demands. Because the variance of the dynamic latent variable 

did not reach statistical significance, this latent variable does not reflect 

a psychologically meaningful process. Consequently, despite its good 

model fit, this model was rejected and discarded.

In Model 4, we replaced the unstandardized factor loadings of 

the dynamic latent variable of Model 2 by factor loadings following 

a logarithmic function (i.e., .30, .48, .60, .70, .78). The assumption of a 

logarithmic function was based on the consideration that, in real-life 

situations, a linearly increasing process appears rather implausible. A 

linearly increasing function would imply an ever-increasing influence 

of the latent variable with increasing task demands. From a practical 

standpoint and in due consideration of the performance data obtained 

in the present experiment, this seems rather unlikely. In Conditions 

4 and 5 of our WMC task, where participants had to memorize five 

and six dots, respectively, task demands were so high that partici-

pants reached their WMC limit as indicated by the hit rate of these 

experimental conditions (see Table 1). Model 4, consisting of a con-

stant latent variable and a logarithmically increasing dynamic latent 

variable showed a good fit with a non significant SB χ2 value (see Table 

3). Model 4 had the lower AIC value than Model 2 indicating a better 

model fit for the former model. Variances were .0132 (z = 3.74, p < 

.001) for the constant latent variable and .0176 (z = 2.34, p < .05) for the 

dynamic latent variable. 

In Model 5, we took the assumption of people reaching their WMC 

limit a step further. More specifically, we replaced the unstandardized 

factor loadings of the dynamic latent variable of Model 4 by factor load-

ings following an inverted u-shaped function (i.e., .36, .80, .99, .94, .64). 

This series of factor loadings unfolds when the x-values of -8, -4.5, -1, 

2.5, and 6 are used with the function f(x) = (-x2 + 100)/100. Choosing 

this function allowed us to use unstandardized factor loadings rang-

ing between 0 and 1 following an inverted u-shaped function. This 

function implies that participants not only reached their WMC limit 

Figure 3.

The relationship between BIS-Reasoning and WMC as derived from a traditional CFA. All coefficients are standardized. 
***p < .001 (two-tailed). 
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but also exceeded it. The excessive demands on processes required to 

solve the WMC task in the most difficult conditions potentially led to a 

decrease of variance because more and more individuals failed to solve 

the task. This effect is described by a decrease of unstandardized factor 

loadings from the third to the fifth condition. Model 5 is presented in 

Figure 4 and yielded a good model fit with a non-significant SB χ2 value 

and good approximate fit indices (see Table 3).

The variance was .0120 (z = 3.80, p < .001) for the latent variable 

representing constant processes of information processing and .0121 

(z = 3.17, p < .01) for the dynamic latent variable representing experi-

mentally induced WMC-specific processes. Besides the good model fit, 

Model 5 yielded a better fit and was more parsimonious than Models 

1, 2, and 4, as indicated by a higher CFI and a smaller AIC value (see 

Table 3). To test whether the series of factor loadings of Model 5 was 

robust, we randomly assigned each participant into one of four groups. 

Then, in a next step, we tested Model 5 four times leaving out each 

group once. Neither of the four χ2 tests reached statistical significance 

(all ps > .35). Based on these findings, we inferred that the obtained in-

verted u-shaped function was robust and did not capitalize on chance. 

As Model 5 described the data better compared to Models 2 and 

4, we assumed that the WMC-related processes of this task are best 

represented by the latent variable with factor loadings showing an in-

verted u-shaped function across task conditions. Proceeding from this 

assumption, we probed how this measure of WMC, provided by the 

fixed-links modelling approach, is related to BIS-Reasoning. For this 

purpose, we regressed the BIS-Reasoning factor derived from the three 

reasoning scores on the constant and dynamic latent variables of Model 

5. The structural part of this model is depicted in Figure 5. Its model fit 

was good with a non-significant SB χ2 value and good approximate fit 

indices [SB χ2(21) = 20.27, p = .50, CFI = 1.000, RMSEA = .00, SRMR 

= .04, AIC = -21.73]. The regression coefficients of BIS-Reasoning on 

the dynamic as well as the constant latent variable were β = .48 (p < .01) 

and β = .45 (p < .01), respectively.

At first sight, the outcome of the present study suggests that a puri-

fied measure of WMC load, as obtained by fixed-links modelling, is 

less strongly related to BIS-Reasoning (β = .48, p < .01) than the impure 

measure obtained with traditional CFA (β = .65, p < .001; see Figure 3). 

To examine whether these two coefficients were significantly different 

from each other, we constrained the parameter between BIS-Reasoning 

and WMC obtained with fixed-links modeling to β = .68, as obtained 

with traditional CFA. A Wald test indicated no statistically significant 

difference [χ2 (1) = 3.00, p = .08] between the constrained model and 

the unconstrained model. This result indicates that fixing the param-

eter β = .48 to β = .68 does not impair the model fit although WMC, as 

depicted by traditional CFA, shared 42.25% of variance with Reasoning 

but only 23.04% when measured by fixed-links modeling. 

Most importantly, however, the latent variable representing proc-

esses independent of experimental manipulation was also substantially 

related to BIS-Reasoning (β = .45, p < .01) with 20.25% of common 

variance. Thus, virtually the same portion of variance of approximately 

43% in BIS-Reasoning was explained by the two latent variables de-

rived by means of the fixed-links modelling approach, on the one hand, 

and by the WMC latent variable obtained by traditional CFA, on the 

other one. However, it is the fixed-links modeling approach which 

shows that a significant portion of this variance is not explained by 

the present WMC load manipulation but by processes unrelated to this 

manipulation.

Discussion

Significant positive correlations among task conditions usually give rise 

to the assumption that one latent variable underlies task performance. 

There are numerous processes, however, contributing to performance 

not specific to the cognitive function under investigation (e.g., general 

sensory acuity or encoding processes in a WMC task). This impurity 

of measures can lead to false conclusions when estimating the relation-

ship between two latent constructs. The fixed-links modeling approach 

offers a feasible way of decomposing variance in a repeated-measures 

design into functionally independent components. After decomposing 

function-specific processes from subsidiary processes, purified meas-

ures prevent drawing invalid conclusions from latent relationships. 

We systematically compared results obtained by traditional CFA with 

Figure 4.

Fixed-links model of measurement of WMC (Model 5) with 
standardized (unstandardized) factor loadings.

Figure 5.

The relationship between BIS-Reasoning and two latent 
variables derived from the WMC task by means of fixed-
links modeling (Model 5). The dynamic latent variable rep-
resents WMC-specific processes. Regression coefficients 
between latent variables are standardized coefficients. 
**p < .01 (two-tailed) 
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results provided by the fixed-links modeling approach. We assumed 

that after deriving two latent variables (as opposed to traditional CFA, 

where only one latent variable would be extracted) out of a WMC 

task, the relationship between a latent variable representing WMC 

specific processes and Gf should be less pronounced compared to the 

relationship between Gf and WMC as a latent variable obtained with 

traditional CFA. Our results partly confirmed our assumption as the 

fixed-links model described the empirical data better and more parsi-

moniously than traditional CFA. 

The dynamic latent variable reflects the experimental manipula-

tion of an increasing number of dots to be stored and processed in 

working memory. From this perspective, the dynamic latent variable 

represents WMC load – that is, the amount of information to be stored 

and processed (Daneman & Carpenter, 1980). However, also alterna-

tive views of WMC, such as the maintenance of arbitrary bindings (cf. 

Oberauer et al., 2007), can explain the nature of the dynamic latent 

variable. Previous studies identified quadratically increasing functions 

to depict WMC demands (e.g., Schweizer, 2007). In the present study, 

the dynamic latent variable, however, had factor loadings following an 

inverted u-shaped function. The fact that the factor loadings decreased 

from the third to the fifth condition might be explained by the increas-

ing level of task difficulty and the corresponding decrease in variance. 

Based on these considerations, it appears reasonable to assume that, in 

the present study, at least some levels of task difficulty were higher than 

those applied in the previous studies. Nevertheless, our analyses con-

firmed that the results by Schweizer (2007) obtained with the Exchange 

Test (Schweizer, 1996) can be generalized to other WMC tasks. The 

exact course of factor loadings across conditions, however, seems to 

be rather task specific. Despite our focus on WMC-specific processes 

constituting the core of the dynamic latent variable, this variable is best 

understood as a bundle of processes systematically varying with task 

manipulation. For example, a recent study by Van der Lubbe, Bundt 

and Abrahamse (2014) suggested a strong functional overlap between 

working memory and spatial attention. Thus, the dynamic latent vari-

able comprises different processes involved in WMC, such as memory 

load or aspects of executive and spatial attention (Kane & Engle, 2002; 

Silk, Bellgrove, Wrafter, Mattingley, & Cunnington, 2010). However, 

these assumed processes cannot be unambiguously disentangled as 

long as they vary with experimental manipulation. Future work has to 

address this important issue.

Of particular interest for the present purpose was our finding that 

a second latent variable, representing processes unrelated to WMC 

load manipulation, was identified and shared a substantial portion 

of variance with Gf. This constant latent variable reflects processes 

independent of WMC manipulation but related to Gf. Again, similar 

to the interpretation of the dynamic latent variable, the constant latent 

variable comprises a bundle of processes rather than just one particu-

lar process. These “constant” processes include, for example, general 

(i.e., task-independent) speed of information processing (Stauffer et 

al., 2014) or basal aspects of sensory acuity (Troche, Wagner, Voelke, 

Roebers, & Rammsayer, 2014). In addition, also a participant’s current 

mental or physical state, such as subjective alertness or fatigue, or the 

individual level of motivation to perform, represent task-independent, 

constant processes. It should be noted though that the constant latent 

variable and the dynamic latent variable contributed about equally to 

Gf. This finding implicates that both these latent variables are of equal 

importance when predicting Gf.

In contrast to our initial expectations, however, a purified measure 

of WMC load manipulation (the dynamic latent variable) obtained by 

fixed-links modeling did not show a significantly weaker relation to 

Gf than an impure measure obtained with traditional CFA (this ab-

sence of statistical significance may be attributable to a lack of power). 

Nevertheless, our results underline that WMC tasks contain variance 

unrelated to WMC specific functioning but systematically related to 

Gf. This might lead to an overestimation of the relationship between 

WMC specific processes and Gf when different sources of variance 

underlying WMC task performance are not disentangled. 

Taken together, the present study documented that impurity may 

cause a major problem when investigating correlates of psychometric 

intelligence or, more specifically, Gf. Furthermore, the fixed-links mod-

eling approach proved to be a useful methodological tool in cognitive 

psychology for a more valid investigation of the functional relationship 

between specific constructs than traditional CFA.

Footnotes
1 Exceptions are the bifactor model (Schweizer, Altmeyer, Reiss, & 

Schreiner, 2010) and multitrait-multimethod models (Eid, Lischetzke, 

& Nussbeck, 2005) where also more latent variables than only one are 

extracted from the same set of manifest variables. For these models, 

however, factor loadings are not fixed in accordance with theoretical 

expectations, as it is the case with fixed-links modeling.
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