Updating the
CODE GNSS Orbit Model

R. Dach1, D. Arnold1, L. Prange1,
G. Beutler1, S. Schaer2, A. Jäggi1

1 Astronomical Institute, University of Bern, Switzerland
2 Swiss Federal Office of Topographie, swisstopo

EUREF 2015 Symposium
03.–05. June 2015, Leipzig, Germany
Overview

Solar Radiation Pressure for GNSS Satellites

Impact on the Reference Frame Parameters

Impact on the GNSS Orbits

Bernese GNSS Software, Version 5.2
Observing the satellite from the Sun
Conclusions

- The solar panels are pointing to the Sun and causing only a constant perturbation in D–direction.
Conclusions

- The solar panels are pointing to the Sun and causing only a constant perturbation in D–direction.

- If the Sun is perpendicular to the orbital plane no periodic solar radiation pressure perturbations are expected.
Conclusions

• The solar panels are pointing to the Sun and causing only a constant perturbation in D–direction.

• If the Sun is perpendicular to the orbital plane no periodic solar radiation pressure perturbations are expected.

• If the Sun is located in the orbital plane a once–per–revolution signal is expected in the X–direction and a twice–per–revolution signal in the D–direction.
Conclusions

• The solar panels are pointing to the Sun and causing only a constant perturbation in D–direction.

• If the Sun is perpendicular to the orbital plane no periodic solar radiation pressure perturbations are expected.

• If the Sun is located in the orbital plane a once–per–revolution signal is expected in the X–direction and a twice–per–revolution signal in the D–direction.

• These periodic signals are the more pronounced the more the satellite body deviates from a sphere (less for a cube – GPS – than a cylinder – GLONASS)
Solar radiation pressure from models

Accelerations derived for GPS (Block IIA) satellites from a boxwing\(^1\) and Rock-S\(^2\) model

\[D \text{ component} \]

\[X \text{ component} \]

Computed for \(\beta = 10^\circ \) \(\beta = 45^\circ \) \(\beta = 78^\circ \)

\(^1\)as proposed by Carlos Rodriguez–Solano based on Fliegel et al. (1992)

\(^2\)Fliegel et al. (1992)
Solar radiation pressure from models

Accelerations derived for GPS (Block IIA) satellites from a boxwing1 and Rock-S2 model

\begin{align*}
D \text{ component} & \quad X \text{ component} \\
\begin{array}{c}
\text{Accelerations in D (nm/s}^2) \\
\text{time (rev periods)}
\end{array} & \quad \begin{array}{c}
\text{Accelerations in X (nm/s}^2) \\
\text{time (rev periods)}
\end{array}
\end{align*}

Computed for
\begin{align*}
\beta &= 10^\circ \\
\beta &= 45^\circ \\
\beta &= 78^\circ
\end{align*}

1as proposed by Carlos Rodriguez–Solano based on Fliegel et al. (1992)
2Fliegel et al. (1992)
Solar radiation pressure from models

Conclusions

- A Sun–fixed argument for the periodic terms is necessary to obtain interpretable series of these parameters:

\[\Delta u = u_{sat} - u_{Sun} \]

- Solar radiation pressure for satellites flying according to the previously mentioned models can be represented by:

\[D = D_0 + D_2 \cos(2\Delta u) + D_4 \cos(4\Delta u) + \ldots \]

\[Y = (Y_0) \]

\[X = X_1 \cos(1\Delta u) + X_3 \cos(3\Delta u) + \ldots \]

\(Y_0 \neq 0 \) if the satellite is flying “missaligned” with a \(Y \)-bias (e.g., GPS, except for Block IIF).
The new empirical CODE orbit model

The old empirical CODE orbit model:

\[
\begin{align*}
D &= D_0 \\
Y &= Y_0 \\
X &= X_0 + X_{1,c} \cos(1 u_{sat}) + X_{1,s} \sin(1 u_{sat})
\end{align*}
\]
The new empirical CODE orbit model:

\[D = D_0 \]

\[Y = Y_0 \]

\[X = X_0 + X_{1,c} \cos(1\Delta u) + X_{1,s} \sin(1\Delta u) \]

with \[\Delta u = u_{sat} - u_{Sun} \]

- changing the angular argument: \(u_{sat} \) to \(\Delta u \)
The new empirical CODE orbit model:

\[D = D_0 + D_{2,c} \cos(2\Delta u) + D_{2,s} \sin(2\Delta u) \]
\[+ D_{4,c} \cos(4\Delta u) + B_{4,s} \sin(4\Delta u) \]
\[Y = Y_0 \]
\[X = X_0 + X_{1,c} \cos(1\Delta u) + X_{1,s} \sin(1\Delta u) \]

with \(\Delta u = u_{sat} - u_{Sun} \)

- changing the angular argument: \(u_{sat} \) to \(\Delta u \)
- adding periodic terms in the \(D \) component
Impact on the Geocenter Estimates

Spectra from geocenter estimates: Z component

Period (days)

Geocenter coordinates Z-component (mm)

Period (days)

0 50 100 150 200 250 300 350 400

0 5 10 15 20

X1 / -- / -- X1 / D2 / -- X1 / D2 / D4 -- / D2 / --
Impact on the Earth Rotation Parameters

Spectra from ERP solution: Polar motion – X

Differences w.r.t. IERS C04 series (related to ITRF2008) has been analysed.
Impact on the Earth Rotation Parameters

Spectra from ERP solution: length of day

Differences w.r.t. IERS C04 series, release ITRF2008 has been analysed.
CODE MGEX solution includes now

- GPS
- GLONASS
- Galileo
- BeiDou
- QZSS

Solution characteristics:

- overall about 70 satellites
- consistent five system solution for orbit and clocks
- reprocessed series with the new ECOM since 2014
- since 2015: post-processing with two weeks delay

ftp://cddis.gsfc.nasa.gov/gnss/products/mgex

solution ID: com
Impact of new ECOM on Galileo orbits

SLR Residuals

Significant reduction of size and dependency of SLR residuals on the elevation of the Sun above the orbital plane
Impact of new ECOM on Galileo clock corrections

Linear fit of satellite clocks

Significant reduction of magnitude and dependency on the elevation of the Sun above the orbital plane
Impact of new ECOM on Galileo clock corrections

Satellite clock corrections

Day 100 of year 2014 – large beta-angle
no improvement (variation in clock signal about ±0.15 ns)
Impact of new ECOM on Galileo clock corrections

Satellite clock corrections

Day 180 of year 2014 – large beta-angle
Periodic signal was significantly reduced (± 0.75 ns \rightarrow ± 0.15 ns)
Impact of new ECOM on QZSS clock corrections

Linear fit of satellite clocks

- $|\beta| > 20$ degree
 - very good performance of satellite clock (up to 0.1 ns)

- $|\beta| < 20$ degree
 - unmodelled normal attitude are directly mapped into satellite clock estimates
Impact of new ECOM on GLONASS orbits

SLR Residuals

Reduction of SLR residuals when the Sun near to the orbital plane (for most of the satellites)
Impact of new ECOM on GLONASS orbits

SLR Residuals

SLR residuals [cm]

Day of year 2014

. . . there are also examples for a degradation
Representation of CODE orbit solution from Jan. 10, 2013 by ORBGEN:

<table>
<thead>
<tr>
<th>SAT</th>
<th>#POS</th>
<th>RMS (m)</th>
<th>QUADRATIC MEAN OF O-C (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>TOTAL</td>
</tr>
<tr>
<td>1</td>
<td>96</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>2</td>
<td>96</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td>96</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>4</td>
<td>96</td>
<td>0.001</td>
<td>0.000</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>....</td>
<td>..</td>
</tr>
<tr>
<td>32</td>
<td>96</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>101</td>
<td>96</td>
<td>0.001</td>
<td>0.003</td>
</tr>
<tr>
<td>102</td>
<td>96</td>
<td>0.001</td>
<td>0.002</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>....</td>
<td>..</td>
</tr>
<tr>
<td>109</td>
<td>96</td>
<td>0.001</td>
<td>0.002</td>
</tr>
<tr>
<td>110</td>
<td>96</td>
<td>0.001</td>
<td>0.002</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>....</td>
<td>..</td>
</tr>
<tr>
<td>123</td>
<td>96</td>
<td>0.001</td>
<td>0.007</td>
</tr>
<tr>
<td>124</td>
<td>96</td>
<td>0.001</td>
<td>0.002</td>
</tr>
</tbody>
</table>

ORBGEN is adjusting all nine radiation pressure parameters (classical orbit model DYX) and stochastic pulses at noon fully consistently with the orbit model at CODE at that time.
Representation of CODE orbit solution from Jan. 10, 2014 by ORBGEN:

<table>
<thead>
<tr>
<th>SAT</th>
<th>#POS</th>
<th>RMS (M)</th>
<th>QUADRATIC MEAN OF O-C (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>RADIAL</td>
</tr>
<tr>
<td>1</td>
<td>96</td>
<td>0.001</td>
<td>0.002</td>
</tr>
<tr>
<td>2</td>
<td>96</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>3</td>
<td>96</td>
<td>0.003</td>
<td>0.003</td>
</tr>
<tr>
<td>4</td>
<td>96</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>.......</td>
<td>.......</td>
</tr>
<tr>
<td>32</td>
<td>96</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>101</td>
<td>96</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>102</td>
<td>96</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>.......</td>
<td>.......</td>
</tr>
<tr>
<td>109</td>
<td>96</td>
<td>0.002</td>
<td>0.007</td>
</tr>
<tr>
<td>110</td>
<td>96</td>
<td>0.002</td>
<td>0.005</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>.......</td>
<td>.......</td>
</tr>
<tr>
<td>123</td>
<td>96</td>
<td>0.002</td>
<td>0.011</td>
</tr>
<tr>
<td>124</td>
<td>96</td>
<td>0.001</td>
<td>0.006</td>
</tr>
</tbody>
</table>

ORBGEN is adjusting all nine radiation pressure parameters (classical orbit model DYX, mainly compensating the missing albedo and antenna thrust model) and stochastic pulses at noon.
Representation of CODE orbit solution from Jan. 10, 2015 by ORBGEN:

<table>
<thead>
<tr>
<th>SAT</th>
<th>POS</th>
<th>RMS (m)</th>
<th>QUADRATIC MEAN OF O-C (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>TOTAL</td>
</tr>
<tr>
<td>1</td>
<td>96</td>
<td>0.004</td>
<td>0.004</td>
</tr>
<tr>
<td>2</td>
<td>96</td>
<td>0.012</td>
<td>0.011</td>
</tr>
<tr>
<td>3</td>
<td>96</td>
<td>0.003</td>
<td>0.003</td>
</tr>
<tr>
<td>4</td>
<td>96</td>
<td>0.009</td>
<td>0.008</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>32</td>
<td>96</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>101</td>
<td>96</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>102</td>
<td>96</td>
<td>0.003</td>
<td>0.003</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>109</td>
<td>96</td>
<td>0.012</td>
<td>0.012</td>
</tr>
<tr>
<td>110</td>
<td>96</td>
<td>0.014</td>
<td>0.013</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>123</td>
<td>96</td>
<td>0.008</td>
<td>0.008</td>
</tr>
<tr>
<td>124</td>
<td>96</td>
<td>0.008</td>
<td>0.008</td>
</tr>
</tbody>
</table>

ORBGEN is adjusting all **nine radiation pressure parameters** (orbit model D2X from B049 from January 09, 2015) and **stochastic pulses at noon**: missing albedo and antenna thrust model is insufficiently compensated.
Representation of CODE orbit solution from Jan. 10, 2015 by ORBGEN:

<table>
<thead>
<tr>
<th>SAT</th>
<th>#POS</th>
<th>RMS (M)</th>
<th>QUADRATIC MEAN OF O-C (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>TOTAL</td>
</tr>
<tr>
<td>1</td>
<td>96</td>
<td>0.002</td>
<td>0.003</td>
</tr>
<tr>
<td>2</td>
<td>96</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>3</td>
<td>96</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>4</td>
<td>96</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>....</td>
<td>......</td>
</tr>
<tr>
<td>32</td>
<td>96</td>
<td>0.001</td>
<td>0.000</td>
</tr>
<tr>
<td>101</td>
<td>96</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>102</td>
<td>96</td>
<td>0.001</td>
<td>0.002</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>....</td>
<td>......</td>
</tr>
<tr>
<td>109</td>
<td>96</td>
<td>0.002</td>
<td>0.004</td>
</tr>
<tr>
<td>110</td>
<td>96</td>
<td>0.002</td>
<td>0.004</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>....</td>
<td>......</td>
</tr>
<tr>
<td>123</td>
<td>96</td>
<td>0.002</td>
<td>0.015</td>
</tr>
<tr>
<td>124</td>
<td>96</td>
<td>0.002</td>
<td>0.007</td>
</tr>
</tbody>
</table>

ORBGEN is adjusting all nine radiation pressure parameters (orbit model D2X from B049 from January 09, 2015) and stochastic pulses every two hours to compensate the missing albedo and antenna thrust model.
THANK YOU for your attention

Publications of the satellite geodesy research group:
http://www.bernese.unibe.ch/publist