Natural Variation in Maize Aphid Resistance Is Associated with 2,4-Dihydroxy-7-Methoxy-1,4-Benzoxazin-3-One Glucoside Methyltransferase Activity

Meihls, L. N.; Handrick, V.; Glauser, G.; Barbier, H.; Kaur, H.; Haribal, M. M.; Lipka, A. E.; Gershenzon, J.; Buckler, E. S.; Erb, Matthias; Kollner, T. G.; Jander, G. (2013). Natural Variation in Maize Aphid Resistance Is Associated with 2,4-Dihydroxy-7-Methoxy-1,4-Benzoxazin-3-One Glucoside Methyltransferase Activity. The Plant Cell, 25(6), pp. 2341-2355. American Society of Plant Biologists 10.1105/tpc.113.112409

[img] Text
2341.full.pdf - Published Version
Restricted to registered users only
Available under License Publisher holds Copyright.

Download (1MB) | Request a copy

Plants differ greatly in their susceptibility to insect herbivory, suggesting both local adaptation and resistance tradeoffs. We used maize (Zea mays) recombinant inbred lines to map a quantitative trait locus (QTL) for the maize leaf aphid (Rhopalosiphum maidis) susceptibility to maize Chromosome 1. Phytochemical analysis revealed that the same locus was also associated with high levels of 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one glucoside (HDMBOA-Glc) and low levels of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one glucoside (DIMBOA-Glc). In vitro enzyme assays with candidate genes from the region of the QTL identified three O-methyltransferases (Bx10a-c) that convert DIMBOA-Glc to HDMBOA-Glc. Variation in HDMBOA-Glc production was attributed to a natural CACTA family transposon insertion that inactivates Bx10c in maize lines with low HDMBOA-Glc accumulation. When tested with a population of 26 diverse maize inbred lines, R. maidis produced more progeny on those with high HDMBOA-Glc and low DIMBOA-Glc. Although HDMBOA-Glc was more toxic to R. maidis than DIMBOA-Glc in vitro, BX10c activity and the resulting decline of DIMBOA-Glc upon methylation to HDMBOA-Glc were associated with reduced callose deposition as an aphid defense response in vivo. Thus, a natural transposon insertion appears to mediate an ecologically relevant trade-off between the direct toxicity and defense-inducing properties of maize benzoxazinoids.

Item Type:

Journal Article (Original Article)

Division/Institute:

08 Faculty of Science > Department of Biology > Institute of Plant Sciences (IPS) > Biotic Interactions
08 Faculty of Science > Department of Biology > Institute of Plant Sciences (IPS)

UniBE Contributor:

Erb, Matthias

Subjects:

500 Science > 580 Plants (Botany)

ISSN:

1040-4651

Publisher:

American Society of Plant Biologists

Language:

English

Submitter:

Peter Alfred von Ballmoos-Haas

Date Deposited:

10 Jul 2015 15:45

Last Modified:

31 Mar 2017 11:39

Publisher DOI:

10.1105/tpc.113.112409

BORIS DOI:

10.7892/boris.70182

URI:

https://boris.unibe.ch/id/eprint/70182

Actions (login required)

Edit item Edit item
Provide Feedback