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Abstract
Studies from a wide diversity of taxa have shown a negative relationship between genetic

compatibility and the divergence time of hybridizing genomes. Theory predicts the main

breakdown of fitness to happen after the F1 hybrid generation, when heterosis subsides

and recessive allelic (Dobzhansky-Muller) incompatibilities are increasingly unmasked. We

measured the fitness of F2 hybrids of African haplochromine cichlid fish bred from species

pairs spanning several thousand to several million years divergence time. F2 hybrids con-

sistently showed the lowest viability compared to F1 hybrids and non-hybrid crosses

(crosses within the grandparental species), in agreement with hybrid breakdown. Especially

the short- and long-term survival (2 weeks to 6 months) of F2 hybrids was significantly re-

duced. Overall, F2 hybrids showed a fitness reduction of 21% compared to F1 hybrids, and

a reduction of 43% compared to the grandparental, non-hybrid crosses. We further ob-

served a decrease of F2 hybrid viability with the genetic distance between grandparental lin-

eages, suggesting an important role for negative epistatic interactions in cichlid fish

postzygotic isolation. The estimated time window for successful production of F2 hybrids re-

sulting from our data is consistent with the estimated divergence time between the multiple

ancestral lineages that presumably hybridized in three major adaptive radiations of African

cichlids.

Introduction
The loss of genetic compatibility is one of the causes of reproductive isolation in classical mod-
els of speciation [1]. Hybridization between divergent populations or species is thought to re-
sult in hybrid offspring with decreased fitness, and different genetic models for the
accumulation of such incompatibilities have been proposed. The Dobzhansky-Muller (D-M)
model is the most widely accepted. In the D-Mmodel, alleles with neutral or beneficial effects
in one population reduce offspring fitness when recombined in a hybrid genome with alleles
originating at different loci in a different population [2–4]. These negative epistatic interactions
can cause hybrid sterility and reproductive isolation [1, 5, 6].

Genetic incompatibilities are expected to accumulate the longer two taxa diverge indepen-
dently from each other. This process, which typically extends over hundreds of thousands to
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millions of years, can be simulated by producing hybrid offspring from species pairs that have
evolved in isolation from one another for varying amounts of time. The positive relationship
between incompatibility and divergence time has been confirmed experimentally in many dif-
ferent taxa [7–13] and with theoretical models [14–16]. One aspect of the incompatibility-di-
vergence time relationship is that incompatibilities are predicted to increase faster than linearly
with divergence time, the so-called ‘snowball effect’ [15]. Two recent studies confirmed experi-
mentally that the number of genes causing inviability increases quadratically (or faster) with
their relative divergence times [17, 18].

The main breakdown of hybrid fitness should only be observed after the F1 generation,
when recessive D-M factors are increasingly expressed [19, 20]. However, many studies on the
relationship between post-mating isolation and time since divergence have used F1 generation
hybrids only (e.g. [7, 8, 10, 12, 17, 18]). Assessment of this relationship in higher generation hy-
brids, especially in animals, is less frequent (but see [11, 21, 22–25]). The intertidal copepod
Tigriopus californicus is well-studied in this respect. Hybrids of divergent populations show in-
creased fitness with increasing genetic/geographic distance in F1 hybrids, whereas in F2 hy-
brids the opposite is observed. Fitness decreased significantly with increasing genetic/
geographic distance consistent with the D-M model [21]. Then again, a more recent study on
the same system demonstrated that consequences of interpopulation hybridization were sur-
prisingly benign for higher generation hybrids [24]. In other cases, negative fitness effects in F2
hybrids were entirely absent, e.g. in farmed x wild salmon hybrids [22], or in hybrids between
wild Arabidopsis populations [26]. These mixed results demonstrate the importance to investi-
gate beyond the F1 when assessing the long-term fitness consequences of hybridization. An al-
ternative approach to studying hybrid break down in the F2 is to investigate recessive alleles
involved in their inviability or sterility (e.g. 6, [27–29]).

Although cichlid fish are one of the best-studied model systems for speciation, data from F2
hybrids on the incompatibility-divergence time relationship are, as yet, missing. Here, we ex-
plore the fitness of second generation hybrids of African haplochromine cichlids bred from
species pairs with increasing genetic differentiation, spanning several thousand to 2.7/3.8/7.4
million years (MY) divergence time (estimates based on the lower bound of an internally cali-
brated, linear clock using the age of Lake Malawi [30], and two relaxed non-linear molecular
clocks using the cichlid fossil record and the break up of Gondwanaland [31])

This study continues a previous experiment on F1 hybrids [12], which we interbred to pro-
duce F2 hybrids, allowing us to compare the inviability rates found in the F1 and F2 generation.
We measured hybrid viability at four different life stages from the zygote to early sexual matu-
rity. We expected 1) lower fitness of F2 hybrids compared to both the F1 hybrids and non-hy-
brid crosses (within parental lineages), and 2) increasing F2 hybrid inviability with divergence
time between grandparental lineages. We found both predictions confirmed, which is in agree-
ment with hybrid breakdown in the F2 generation.

Methods

Hybrid crosses
Crosses involved seven different cichlid fish species in different pairwise combinations, bred
from laboratory populations. F2 hybrids were produced from a total of 14 F1 hybrid families
representing seven different cross types (Table 1). The F1 families were the viable and fertile
hybrid offspring generated in an earlier study on first generation hybrid fitness [12]. F1 hybrids
of six different crosses reached adulthood and reproduced, representing five different genetic
distances (Table 1). Only for one cross (M. estherae x A. calliptera), both sexually reciprocal F1
hybrid crosses were available (i.e.M. estheraemales crossed with A. calliptera females, andM.
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estherae females crossed with A. callipteramales) to produce F2 offspring. For all other crosses,
sexually reciprocal matings could not be obtained (probably due to courtship-related behav-
iours). Fish were maintained at the Eawag Center for Ecology, Evolution and Biogeochemistry
Kastanienbaum, Switzerland. For breeding, fish were kept in 100x40x40 cm. All aquaria were
part of a large water recirculation system, in which water chemistry, temperature, light condi-
tions, and feeding regime were kept constant over the entire duration of the experiment, in-
cluding the rearing of grandparental, F1 and F2 crosses. Dry food was provided daily and twice
a week fish were fed with a blend of shrimps, peas and Spirulina powder. The light regime in
the aquaria was 12L:12D and water temperature was kept at 24–26 °C. Stones and plastic pipes
were provided for males to become territorial and to motivate courtship. Offspring from non-
hybrid (grandparental) crosses were generated and raised contemporaneously with F1 hybrids,
but because F2 hybrids were generated from F1 hybrids, F2 data were taken at a later time
point. However, any variation in fitness between these groups should be due to differences in
their pedigree because rearing conditions were kept identical.

All animal work conducted here adhered to the relevant national and international guide-
lines. The Veterinary Office of the Canton of Lucerne (Switzerland) granted permission to con-
duct this research (permit number LU04/07). The amount and time of handling of the fish
was kept to a minimum to ameliorate suffering and distress. No animal was sacrificed for this
study.

Measuring post-mating isolation
Four different components of post-mating isolation were measured. All were previously mea-
sured in the F1 hybrid generation of the same cross types, i.e. involving the same two parental
species [12]: fertilization failure, hatching failure and survival failure after 14 and 180 days post
hatching. Five days after a spawning had occurred the mouthbrooding female was taken out of
the experimental tank and eggs were carefully removed from her mouth. Fertilized (yellow-or-
ange) and unfertilized eggs (white) were counted and divided by the total number of eggs pro-
duced (1—fertilized eggs/total number of eggs). All fertilized eggs were then placed into an egg
incubator (for details see [12]) and kept there until day 14. Clutches in the incubator were
checked daily and the number of hatched and surviving fry was counted to calculate hatching
failure (1—number of hatched fry/number of fertilized eggs) and survival failure after 14 days
(1—number of survivors at day 14/number of hatched fry). Dead eggs and larvae were removed
daily. On day 15, fry were transferred to small Aquaria (20x40x20 cm). At the age of 30 days,
fish were moved to bigger tanks (50x40x30 cm), where they were grown until day 180. On day
180, the survivors of a clutch were counted and 180-day survival failure was calculated (1—
number of individuals at day 180/number of survivors at day 30). Additionally, we calculated a
cumulative measure of survival from egg to day 180 (1—number of survivors at day 180/num-
ber of eggs).

Average inviability of homospecific, F1 hybrid and F2 hybrid crosses was calculated by first
averaging across replicated F2 clutches bred from the same F1 family, then averaging across
replicated F2 families of the same cross type, and then across the different cross types within
homospecifics, F1 hybrids and F2 hybrids (for sample sizes see Table 1). F2 inviability per ge-
netic distance was calculated by averaging across cross types of that genetic distance. To com-
pare the inviability of homospecific crosses with the inviability of F1 and F2 hybrids, ANOVA
and Student’s t-tests were used after testing if the data fulfill normality assumptions. The alpha
critical p-value was adjusted to 0.0033 after Bonferroni correction for multiple testing. Linear
regressions were used to test whether genetic distance predicts inviability in F2 hybrids. All
analyses were carried out in JMP 10 [32].
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Calculating genetic distances and divergence times
Genetic distances between species are uncorrected p-distances based on D-loop sequences
from NCBI GenBank (http://ncbi.nlm.nih.gov/genbank) and were extracted from Stelkens
et al. [12], where calculations of genetic distances and divergence times is described in detail
(see also Table 1 and S1 Table).

Results
In total, 42 F1 hybrid families, 52 F2 hybrid families, and 23 non-hybrid families were used to
compare fitness (Table 1). The F1 data used here, taken from Stelkens et al [12], includes 3644
eggs (of which 2788 fertilized), 2208 hatchlings, 1219 14-day old fish, and 858 180-day old fish.
The F2 data generated here includes 1560 eggs (of which 1368 fertilized), 902 hatchlings, 567
14-day old fish, and 467 180-day old fish. The homospecific data contains 930 eggs (of which
909 fertilized), 887 hatchlings, 836 14-day old fish, and 557 180-day old fish.

Genetic distances between species ranged from 0.007 to 0.055 and divergence times from
several thousand to 2.7/3.8/7.4 million years, depending on the molecular clock (order: lower
estimate of the internally calibrated clock / calibration based on fossil records / calibration
based on Gondwana break up). Details on all crosses, genetic distances and corresponding di-
vergence times, as well as the number of available F1 families to produce F2, and the number of
F1 and F2 hybrid families for the estimation of post-mating isolation components, can be
found in Table 1.

Do hybrids suffer from reduced fitness?
Homospecific, F1 and F2 hybrid crosses showed significant differences in hatching rate (F2,20 =
5.34, p = 0.015), 14-day survival (F2,20 = 12.02, p = 0.001), 180-day survival (F2,20 = 5.82,
p = 0.011) and cumulative fitness (F2,16 = 6.73, p = 0.009). Only fertilization rate was not signif-
icantly different between groups (F2,20 = 3.12, p = 0.069). F2 hybrids consistently showed the
highest inviability in all components of fitness, except for fertilization rate (Fig 1).

Pairwise posthoc comparisons showed that, on average, 14-day survival was significantly re-
duced in F2 hybrids compared to F1 hybrids (after Bonferroni correction; Table 2). Although
considerably lower, F2 hatching rates, 180-day survival, and cumulative fitness did not signifi-
cantly differ from F1 rates. Compared to homospecific (non-hybrid) crosses, F2 hybrids
showed significantly reduced 14-day survival, and lower cumulative fitness. F1 hybrids general-
ly showed lower viability, but F1 and homospecific crosses did not significantly differ in any
fitness component.

Does genetic distance between species reduced fitness in F2 hybrids?
Inviability of F2 hybrids increased with genetic distance between the grandparental popula-
tions (Fig 2). 14-day inviability (R2 = 0.67, p = 0.046) and cumulative inviability (R2 = 0.77,
p = 0.022) increased significantly with genetic distance. For hatching (R2 = 0.58, p = 0.079) and
180-day inviability (R2 = 0.64, p = 0.057) the relationship was strong but non-significant. Fer-
tilization failure was not predicted by genetic distance (R2 = 0.21, p = 0.356).

Discussion
Many studies have investigated the accumulation of genetic incompatibilities in first generation
hybrids [7–10, 12, 17, 18, 33, 34]. Generally, these studies report a positive relationship between
post-mating incompatibility and genetic distance between the parental species, confirming the-
ory [14, 15]. Assessments of this relationship in higher generation hybrids are less frequent
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although considerable fitness differences between F1 and F2 hybrids are to be expected because
of negative epistatic effects [14]. Although cichlid fish are a model system for many speciation-
related questions, data on the fitness of F2 hybrids as a function of grandparental genetic dis-
tance is lacking. Here we use African cichlid fish to compare the inviability rates of F2 hybrids
with rates found in F1 crosses and the corresponding grandparental-type crosses. We also test

Fig 1. Average inviability of homospecific, F1 and F2 hybrid crosses. Five different measures of post-mating failure rates (in %) in homospecific, F1 and
F2 interspecific hybrid crosses. Bars show inviability averaged across replicated F2 families of the same cross type, and then across the different cross types
within homospecifics, F1 hybrids and F2 hybrids. Error bars are standard deviations. Numbers under bars represent the number of families entering analysis.
Significant pairwise posthoc comparisons (after Bonferroni correction) are indicated by brackets with asterisks.

doi:10.1371/journal.pone.0127207.g001

Table 2. Results (two-tailed p-values) of Student’s t-tests comparing five components of fitness be-
tween homospecific, non-hybrid crosses, F1 hybrid crosses, and F2 hybrid crosses.

Fitness component homospecific v. F1 homospecific vs. F2 F1 vs. F2

fertilization 0.073 0.561 0.027

hatching 0.12 0.004 0.164

14-day survival 0.982 0.001 0.001

180-day survival 0.53 0.014 0.006

cumulative 0.099 0.003 0.106

Italics indicate significant comparisons after Bonferroni correction.

doi:10.1371/journal.pone.0127207.t002
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whether genetic distance between parental populations predicts an increase in inviability in
F2 hybrids.

F2 hybrids consistently showed the lowest viability across all components of fitness (except
for fertilization rate). Using a cumulative fitness measure that encompasses all life stages from
fertilization to survival to 6 months, F2 hybrids showed a fitness loss of ca. 21% compared to
the average fitness of the F1, and a fitness loss of even 43% compared to the grandparental
crosses. Especially the short- and long-term survival (2 weeks to 6 months) of post-hatchling
F2 hybrids was reduced compared to the survival of F1 and parental crosses. F1 hybrids on the
other hand did not suffer from a significant decrease in fitness compared to their parents
(though this may not be surprising since we could only use F1 crosses viable enough to produce
F2 offspring). Interestingly neither F1 nor F2 hybrids suffered from fertilization failure. In fact,
fertilization success in the F2 was significantly higher than fertilization success in F1, indicating
that the cell-physiological formation of zygotes does not represent a barrier to gene flow be-
tween the species studied here.

Our results are consistent with theory on hybrid breakdown in the F2. Incompatible alleles
at different loci, inherited from the parental species, may not be harmful in the heterozygous
condition, i.e. in the F1, but can be deleterious when homozygous, a condition, which should
be more frequent in higher generation hybrids [3, 19, 20]. In addition, allele segregation can
break up beneficial gene combinations in the second generation [35]. With increasing diver-
gence time, and therefore increasing genetic distance, such genetic incompatibilities accumu-
late as a by-product of the fixation of novel mutations that arose after populations separated,
causing postzygotic reproductive isolation. Although not significant for every fitness compo-
nent that we measured, our data are consistent with this prediction. We found post-hatching
mortality rates (from hatching to 14 days) and cumulative F2 inviability (from eggs to 180
days) to increase with the genetic distance between the grandparental populations, suggesting
an important role for recessive D-M-incompatibilities in cichlid fish postzygotic isolation. We
note that the shape of the relationship we found is not representative of the number of loci in-
volved in the inviability phenotype, but rather of the magnitude of postzygotic isolation [15].
In fact, two recent efforts testing the snowball theory for the rate of evolution of hybrid

Fig 2. F2 hybrid inviability as a function of genetic distance. Accumulation of fertilization, hatching, 14-day survival, 180-day survival and cumulative
failure rates as a function of genetic distance (uncorrected p-distances calculated from D-loop sequences) in F2 hybrids. Error bars are standard deviations.
Regression lines indicate significant relationships.

doi:10.1371/journal.pone.0127207.g002
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incompatibilities show that the number of genes causing inviability increases quadratically (or
faster) with lineage divergence times in Drosophila [17] and Solanum [18].

An important limitation of our study with respect to estimating reproductive isolation is
that we do not have data on F1 (or F2) hybrid sterility, which could considerably contribute to
hybrid breakdown. We acknowledge a further caveat in our study: species divergence times
were estimated with a single mitochondrial region (D-loop). Given our knowledge of the ease
with which mitochondrial genomes can introgress, it is possible that our estimates of genetic
distance underestimate the original splitting between the sympatric species pairs, which would
make the increase of incompatibility with divergence less steep. Another source for inaccuracy
is the phylogentic dependence of the species pairs used (five out of seven crosses include the
same species). Correcting for phylogenetic relatedness did not change the conclusions on the
increase of incompatibility with divergence time in F1 hybrids of the same crosses (see Fig 2 in
Stelkens et al. [12]), but we caution against an overinterpretation of the shape of the relation-
ship here.

Our study was not designed to identify the genetic basis of reproductive isolation, but a spe-
cific deformation indicates a possible cause for hybrid failure. The deformation was already ob-
served by Stelkens et al. [12] in F1 hybrids and is characterized by a deformed blood vessel
connection between the hatchling and the yolk sac. It develops before the free-swimming stage,
i.e. within the first 2 weeks post hatching, when most of the losses in our experiment occurred.
The deformation looks similar to the heartstringsmutation described for zebrafish which has
been shown to be caused by a single recessive mutation [36].Heartstrings has also been ob-
served in sunfish hybrids and has been suggested as a candidate for a Dobzhansky–Muller
incompatibility locus in vertebrates [37].

Implications for cichlid fish evolution
There is growing evidence that interspecific hybridization is an important force in evolution,
potentially being a source of genetic variation and evolutionary novelty [38, 39]. Molecular
phylogenetic studies suggested that hybridization may have played important roles in rapid
adaptive radiations, including those of cichlid fish in African lakes [40]. The radiations of Lake
Victoria [41], Lake Malawi [42, 43], and Lake paleo-Makgadikgadi [44] were suggested to have
been seeded by hybridizing lineages with divergence times of 3 to 7 MY. Yet, experimental tests
of the feasibility of hybridization between such lineages had not been carried out beyond the
F1. Here, we successfully produced fully viable F2 hybrid offspring from species that began to
diverge up to 2.7/3.8/7.4 million years ago. A large fraction of the hybrids reached maturity,
but we also found significant mortality, indicating segregation of strong incompatibilities in
our experimental hybrid families. This suggests that naturally occurring hybrid populations of
these and similar cichlid lineages are likely experiencing strong incompatibility selection [45,
46]. Future work should identify the signatures of such selection in the genomic composition
of adaptive radiations. In the natural context, however, hybrids might primarily backcross to
parental genotypes rather than breed with other hybrids. Thus, advanced generation hybrid fit-
ness might not be as severely reduced as indicated here, which would mitigate the severity of
F2 breakdown, and help explain the extent of hybridization observed in cichlid fish radiations.

Supporting Information
S1 Table. Species used for crosses with Genbank accession numbers. Genbank accession
numbers of D-loop sequences used to calculate genetic distances. If no sequences were available
for certain species, sequences of closely related species (in brackets) belonging to the same
clades characterized by incomplete mitochondrial DNA sorting were used. Data extracted
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