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Optimal confidence bands for shape-

restricted curves
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Let Y be a stochastic process on [0, 1] satisfying dY (t) ¼ n1=2 f (t)dt þ dW (t), where n > 1 is a given

scale parameter (‘sample size’), W is standard Brownian motion and f is an unknown function.

Utilizing suitable multiscale tests, we construct confidence bands for f with guaranteed given coverage

probability, assuming that f is isotonic or convex. These confidence bands are computationally

feasible and shown to be asymptotically sharp optimal in an appropriate sense.

Keywords: adaptivity; concave; convex; isotonic; kernel estimator; local smoothness; minimax bounds;

multiscale testing

1. Introduction

Nonparametric statistical models often involve some unknown function f defined on a real

interval J . For instance, f might be the probability density of some distribution or a

regression function. Nonparametric point estimators for such a curve f are abundant. The

available methods are based on kernels, splines, local polynomials, or orthogonal series,

including wavelets; see Hart (1997) and references cited therein. In order to quantify the

precision of estimation, one often wishes to replace a point estimator with a confidence

band (‘̂‘, ûu) for f . The latter consists of two functions, ‘̂‘ ¼ ‘̂‘(�, data) and ûu ¼ ûu(�, data), on J

with values in [�1, 1] such that, hopefully, ‘̂‘ < f < ûu pointwise. More precisely, one is

aiming at a confidence band such that

Pf‘̂‘ < f < ûug > 1� Æ (1:1)

for a given level Æ 2]0, 1[, while ‘̂‘ and ûu should be as close to each other as possible.

Unfortunately, curve estimation is an ill-posed problem, and usually there are no non-

trivial bands (‘̂‘, ûu) satisfying (1.1) for arbitrary f ; see Donoho (1988). Therefore one has to

impose some additional restrictions on f . Smoothness constraints on f are one possibility,

for instance an upper bound on a certain derivative of f . Under such restrictions, (1.1) can

be achieved approximately for large sample sizes; see, for example, Bickel and Rosenblatt

(1973), Knafl et al. (1985), Hall and Titterington (1988), Härdle and Marron (1991),

Eubank and Speckman (1993), Fan and Zhang (2000), and the references cited therein.

A problem with the aforementioned methods is that smoothness constraints are hard to

justify in practical situations. More precisely, even if the underlying curve f is infinitely

often differentiable, the actual coverage probabilities of the confidence bands mentioned
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above depend on quantitative properties of certain derivatives of f which are difficult to

obtain from the data.

In many applications qualitative assumptions about f such as monotonicity, unimodality

or concavity/convexity are plausible. Growth curves in medicine are on example, for

example where f (x) is the mean body height of newborns at age x. Here isotonicity of f is

a plausible assumption. So-called Engel curves in econometrics are another example, where

f (x) is the mean expenditure on certain consumer goods of households with annual income

x. Here one expects f to be isotonic and sometimes also concave. Under such qualitative

assumptions it is possible to construct 1� Æ confidence sets for f based on certain

goodness-of-fit tests without relying on asymptotic arguments. Examples of such procedures

can be found in Davies (1995), Hengartner and Stark (1995) and Dümbgen (1998). In

particular, these papers present confidence bands (‘̂‘, ûu) for f such that

Pf‘̂‘ < f < ûug > 1� Æ whenever f 2 F : (1:2)

Here F denotes the specified class of functions. Given a suitable distance measure D(�, �) for

functions, the goal is to find a band (‘̂‘, ûu) satisfying (1.2) such that either D(ûu, ‘̂‘) or D(‘̂‘, f )

and D(ûu, f ) are as small as possible. The phrase ‘as small as possible’ can be interpreted in

the sense of optimal rates of convergence to zero as the sample size n tends to infinity. The

papers of Hengartner and Stark (1995) and Dümbgen (1998) contain such optimality results.

In the present paper we investigate the optimality of confidence bands in more detail. In

addition to optimal rates of convergence, we obtain optimal constants and discuss the

impact of local smoothness properties of f . Compared to the general confidence sets of

Dümbgen (1998), the methods developed here are more stringent and computationally

simpler. They are based on multiscale tests as developed by Dümbgen and Spokoiny (2001),

who considered tests of qualitative assumptions rather than confidence bands. For further

results on testing in nonparametric curve estimation, see Hart (1997), Fan et al. (2001), and

the references cited therein.

2. Basic setting and overview

For mathematical convenience we focus on a continuous white noise model. Suppose that

one observes a stochastic process Y on the unit interval [0, 1], where

Y (t) ¼ n1=2

ð t
0

f (x)dxþ W (t):

Here f is an unknown function in L2[0, 1], n > 1 is a given scale parameter (‘sample size’)

and W is standard Brownian motion. In this context the bounding functions ‘̂‘, ûu are defined

on [0, 1], but for notational convenience the function f is tacitly assumed to be defined on

the whole real line with values in [�1, 1]. From now on we assume that

f 2 G \ L2[0, 1],

where G denotes one of the following two function classes:
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G" :¼ fnon-decreasing functions g : R! [�1, 1]g,

Gconv :¼ fconvex functions g : R!]�1, 1]g:

The paper is organized as follows. In Section 3 we treat the case G ¼ G" and measure the

quality of a confidence band (‘̂‘, ûu) by quantities related to the Levy distance dL(‘̂‘, ûu).

Generally,

dL(g, h) :¼ inffE . 0 : g < h(� þ E)þ E and h < g(� þ E)þ E on [0, 1� E]g
for isotonic functions g, h : [0, 1]! [�1, 1]. It turns out that a confidence band which is

based on a suitable multiscale test as introduced by Dümbgen and Spokoiny (2001) is

asymptotically optimal in a strong sense. Throughout this paper asymptotic statements refer

to n!1, unless stated otherwise.

In Section 4 we treat both classes G" and Gconv simultaneously. We discuss the

construction of confidence bands (‘̂‘, ûu) satisfying (1.2) such that D(‘̂‘, f ) and D( f , ûu) are as

small as possible whenever f satisfies some additional smoothness constraints. Here

D(g, h) is a distance measure of the form

D(g, h) :¼ sup
x2[0,1]

w(x, f )(h(x)� g(x))

for some weight function w(�, f ) > 0 reflecting local smoothness properties of f . Again it

turns out that suitable multiscale procedures yield nearly optimal procedures without

additional prior information on f .

In Section 5 we present some numerical examples of the procedures in Section 4. The

proofs are deferred to Sections 6, 7 and 8. In particular, Section 7 contains a new minimax

bound for confidence rectangles in a Gaussian shift model, which may be of independent

interest.

As for the white noise model, the results of Brown and Low (1996), Nussbaum (1996)

and Grama and Nussbaum (1998) on asymptotic equivalence can be used to transfer the

lower bounds of the present paper to other models. Moreover, one can mimic the confidence

bands developed here in traditional regression models under minimal assumptions; see

Dümbgen and Johns (2003) and Dümbgen (2001).

3. Optimality for isotonic functions in terms of Lévy-type
distances

In this section we consider the class G". For isotonic functions g, h : [0, 1]! [�1, 1]

and E . 0, let

DE(g, h) :¼ inffº > 0 : g < h(� þ E)þ º and h < g(� þ E)þ º on [0, 1� E]g:
Then the Lévy distance dL(g, h) is the infimum of all E . 0 such that DE(g, h) < E. We use

these functionals DE(�, �) in order to quantify differences between isotonic functions. Figure 1

depicts one such function g, and the shaded areas represent the set of all functions h with

D0:05(g, h) < 0:1 (Figure 1(a)) and D0:05(g, h) < 0:025 (Figure 1(b)).
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The following theorem provides lower bounds for DE(‘̂‘, ûu), 0 , E < 1. Throughout this

paper the dependence of probabilities, expectations and distributions on the functional

parameter f is sometimes indicated by a subscript f .

Theorem 3.1. There exists a universal function b on ]0, 1] with limE#0 b(E) ¼ 0 such that

sup
f 2G"\L2[0,1]

Pf ‘̂‘ < f < ûu and DE(‘̂‘, ûu) ,
(8 log(e=E))1=2 � b(E)

(nE)1=2

� �
< b(E)

for any confidence band (‘̂‘, ûu) and arbitrary E 2]0, 1].

Theorem 3.1 entails a lower bound for dL(‘̂‘, ûu). For let E ¼ En :¼ c(log(n)=n)1=3 � �n�1=3

with any fixed c, � . 0. Then one can show that, for sufficiently large n,

(8 log(e=E))1=2 � b(E)
(nE)1=2

¼ 8

3c

� �1=2
log n

n

� �1=3

þo(n�1=3) > E,

provided that c equals (8=3)1=3 � 1:387.

Corollary 3.2. For each n > 1, there exists a universal constant 	n such that 	n ! 0 and

sup
f 2G"\L2[0,1]

Pf ‘̂‘ < f < ûu and dL(‘̂‘, ûu) ,
8

3

� �1=3
log n

n

� �1=3

�	nn
�1=3

( )
< 	n
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Figure 1. Two D0:05(�, �)-neighbourhoods of some function g.
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for any confidence band (‘̂‘, ûu). h

It is possible to get close to these lower bounds for DE(‘̂‘, ûu) simultaneously for all

E 2]0, 1] as long as (1.2) is satisfied. For let kÆ be a real number such that

P
jW (t)� W (s)j

(t � s)1=2
< ˆ(t � s)þ kÆ for 0 < s , t < 1

� �
< Æ,

where

ˆ(u) :¼ (2 log(e=u))1=2 for 0 , u < 1:

The existence of such a critical value kÆ follows from Dümbgen and Spokoiny (2001,

Theorem 2.1). With the local averages

F f (s, t) :¼
1

t � s

ð t
s

f (x)dx

of f and their natural estimators

F̂F(s, t) :¼ Y (t)� Y (s)

n1=2(t � s)
,

it follows that

Pf





F̂F(s, t)� Ff (s, t)





 < ˆ(t � s)þ kÆ
(n(t � s))1=2

for 0 < s , t < 1

� �
> 1� Æ:

But for 0 < s , t < 1,

f (s) < F f (s, t) < f (t) whenever f 2 G":

This implies the first assertion of the following theorem.

Theorem 3.3. With the critical value kÆ above, let

‘̂‘(x) :¼ sup
0<s, t<x

F̂F(s, t)� ˆ(t � s)þ kÆffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n(t � s)
p

� �
,

ûu(x) :¼ inf
x<s, t<1

F̂F(s, t)þ ˆ(t � s)þ kÆffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n(t � s)
p

� �
:

This defines a confidence band (‘̂‘, ûu) for f satisfying (1.2) with F ¼ G" \ L2[0, 1]. Moreover,

provided that ‘̂‘ < ûu,

DE(‘̂‘, ûu) <
(8 log(e=E))1=2 þ 2kÆ

(nE)1=2
for 0 , E < 1,

dL(‘̂‘, ûu) <
8

3

� �1=3
log n

n

� �1=3

þ o(n�1=3):
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Proof. The preceding upper bound for DE(‘̂‘, ûu) follows from the fact that, for any

x 2 [0, 1� E],

ûu(x)� ‘̂‘(xþ E) < F̂F(x, xþ E)þ ˆ(E)þ kÆ
(nE)1=2

� �
� F̂F(x, xþ E)� ˆ(E)þ kÆ

(nE)1=2

� �

¼ 2ˆ(E)þ 2kÆ
(nE)1=2

¼ (8 log(e=E))1=2 þ 2kÆ
(nE)1=2

:

Letting E ¼ En ¼ (8=3)1=3( log(n)=n)1=3 yields the upper bound for dL(‘̂‘, ûu). h

4. Bands for potentially smooth functions

A possible criticism of the preceding results is the fact that the minimax bounds are

attained at special step functions. On the other hand, one often expects the underlying curve

f to be smooth in some vague sense. Therefore, we now aim for confidence bands

satisfying (1.2) with F ¼ G \ L2[0, 1], which are as small as possible whenever f satisfies

some additional smoothness conditions. As before, G stands for G" or Gconv.

In what follows let hg, hi :¼
Ð1
�1 g(x)h(x)dx and kgk :¼ hg, gi1=2 for measurable

functions g, h on the real line such that these integrals are defined. The confidence bands

presented here can be described either in terms of kernel estimators for f or in terms of

tests. Both viewpoints have their own merits.

4.1. Kernel estimators for f

Let ł be some kernel function in L2(R). For technical reasons we make the following

assumption on ł.

Assumption 4.1. The kernel function ł satisfies the following three regularity conditions: ł
has bounded total variation; ł is supported by [�a, b], where a, b > 0; and h1, łi . 0.

For any bandwidth h . 0 and location parameter t 2 R, let

łh, t(x) :¼ ł
x� t

h

� 	
:

Then hg, łh, ti ¼ hhg(t þ h�), łi and kłh, tk ¼ h1=2kłk. A kernel estimator for f (t) with

kernel function ł and bandwidth h is given by

f̂f h(t) :¼ łY (h, t)

n1=2hh1, łi ,
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where

łY (h, t) :¼
ð1

0

łh, t(x)dY (x):

From now on suppose that ah < t < 1� bh. Then łh, t is supported by [0, 1] and one may

write

E f̂f h(t) ¼ h f , ł t,hi
hh1, łi ¼

h f (t þ h�), łi
h1, łi ,

var( f̂f h(t)) ¼
hkł t,hk2i
nh2h1, łi2 ¼

kłk2

nhh1, łi2 :

The random fluctuations of these kernel estimators can be bounded uniformly in h . 0. For

that purpose we define the multiscale statistic

T (�ł) :¼ sup
h.0

sup
t2[ah,1�bh]

�łW (h, t)

h1=2kłk � ˆ((aþ b)h)

� �

¼ sup
h.0

sup
t2[ah,1�bh]

� f̂f h(t)� E f̂f h(t)

var( f̂f h(t))1=2
� ˆ((aþ b)h)

 !
,

similarly as in Dümbgen and Spokoiny (2001). It follows from Theorem 2.1 in the latter

paper that 0 < T (�ł) ,1 almost surely. In particular, j f̂f h(t)� E f̂f h(t)j <
(nh)�1=2 log(e=h)1=2Op(1), uniformly in h . 0 and ah < t < 1� bh.

It is well known that kernel estimators are biased in general. But our shape restrictions

may be used to construct two kernel estimators whose bias is always non-positive or non-

negative, respectively. Specifically, let ł(‘) and ł(u) be two kernel functions satisfying

Assumption 4.1 with respective supports [�a(‘), b(‘)] and [�a(u), b(u)]. In addition, suppose

that

hg, ł(‘)i < g(0)h1, ł(‘)i for all g 2 G \ L2[�a(‘), b(‘)], (4:1)

hg, ł(u)i > g(0)h1, ł(u)i for all g 2 G \ L2[�a(u), b(u)]: (4:2)

These inequalities imply that the corresponding kernel estimators satisfy the inequalities

E f̂f
(‘)
h (t) < f (t) < E f̂f (u)

h
(t), and the definition of T (�ł) yields that

f (t) > f̂f
(‘)
h (t)� kł

(‘)k(ˆ(d(‘)h)þ T (ł(‘)))

h1, ł(‘)i(nh)1=2
, (4:3)

f (t) < f̂f
(u)
h (t)þ kł

(u)(ˆ(d(u)h)þ T (�ł(u)))

h1, ł(u)i(nh)1=2
: (4:4)

Here d(z) :¼ a(z) þ b(z). Now let kÆ be the 1� Æ quantile of the combined statistic

Confidence bands for shape-restricted curves 429



T� :¼ max(T (ł(‘)), T (�ł(u))), that is, the smallest real number such that

PfT� < kÆg > 1� Æ. Then

‘̂‘(t) :¼ sup
h.0: t2[a(‘) h,1�b(‘) h]

f̂f
(‘)
h (t)� kł

(‘)k(ˆ(d(‘)h)þ kÆ)

h1, ł(‘)i(nh)1=2

� �
,

ûu(t) :¼ inf
h.0: t2[a(u) h,1�b(u) h]

f̂f
(u)
h (t)þ kł

(u)k(ˆ(d(u)h)þ kÆ)

h1, ł(u)i(nh)1=2

� �

defines a confidence band (‘̂‘, ûu) for f satisfying (1.2).

Equality holds in (1.2) if G ¼ G" and f is constant, or if G ¼ Gconv and f is linear,

provided that kÆ . 0. For then it follows from (4.1) and (4.2) with g(x) ¼ �1 or g(x) ¼ �x
that the kernel estimators are unbiased. Thus ‘̂‘ < f < ûu is equivalent to T� . kÆ.

Moreover, using general theory for Gaussian measures on Banach spaces, one can show that

the distribution of T� is continuous on ]0, 1[.

Sufficient conditions for requirements (4.1) and (4.2) in general are provided by Lemma

8.1 below. The confidence band presented in Section 3 is a special case of the one derived

here, if we define ł(‘)(x) :¼ 1fx2[�1,0]g and ł(u)(x) :¼ 1fx2[0,1]g and apply postprocessing as

described below.

4.2. Postprocessing of confidence bands

Any confidence band (‘̂‘, ûu) for f can be enhanced if we replace ‘̂‘(x) and ûu(x) with

^̂̂‘(x) :¼ inf fg(x) : g 2 G, ‘̂‘ < g < ûug and ^̂uûuu(x) :¼ supfg(x) : g 2 G, ‘̂‘ < g < ûug,

respectively. Here we tacitly assume that the set fg 2 G : ‘̂‘ < g < ûug is non-empty.

If G ¼ G" one can easily show that

^̂
‘‘̂‘‘(x) ¼ sup

t2[0,x]

‘̂‘(t) and ^̂uûuu(x) ¼ inf
s2[x,1]

ûu(s):

Note also that
^̂
‘‘̂‘‘ and ^̂uûuu are isotonic, whereas the raw functions ‘̂‘ and ûu need not be.

If G ¼ Gconv the modified upper bound ^̂uûuu is the greatest convex minorant of ûu and can be

computed (in discrete models) by means of the pool-adjacent-violators algorithm (cf.

Robertson et al. 1988). The modified lower bound
^̂
‘‘̂‘‘(x) can be shown to be

^̂̂‘(x) ¼ max sup
0<s, t<x

^̂uûuu(s)þ ‘̂‘(t)� ^̂uûuu(s)

t � s
(x� s)

 !
, sup
x<s, t<1

^̂uûuu(t)�
^̂uûuu(t)� ‘̂‘(s)

t � s
(t � x)

 !( )
:

This improved bound
^̂
‘‘̂‘‘ is not a convex function, though more regular than the raw function ‘̂‘.

Figure 2 depicts some hypothetical confidence band (‘̂‘, ûu) for a function f 2 Gconv and its

improvement (
^̂̂‘, ^̂uûuu).
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4.3. Adaptivity in terms of rates

Whenever we construct a band following the recipe above we end up with a confidence

band adapting to the unknown smoothness of f in terms of rates of convergence. For

	, L . 0, the Hölder smoothness class H	,L is defined as follows. If 0 , 	 < 1, let

H	,L :¼ fg : jg(x)� g(y)j < Ljx� yj	 for all x, yg:

If 1 , 	 < 2, let

H	,L :¼ fg 2 C1 : g9 2 H	�1,Lg:

Theorem 4.1. Suppose that f 2 G \H	,L, where either G ¼ G" and 	 < 1, or G ¼ Gconv and

1 < 	 < 2. Let (‘̂‘, ûu) be the confidence band for f based on test functions ł(‘), ł(u) as

described previously. Then there exists a constant ˜, depending only on (	, L) and

(ł(‘), ł(u)), such that

sup
t2[E n,1�En]

(ûu(t)� ‘̂‘(t)) < ˜rn 1þ kÆ þ T (ł(u))þ T (�ł(‘))

log(en)1=2

� �
,

where En :¼ r1=	
n and

rn :¼
log(en)

n

� �	=(2	þ1)

:

Using the same arguments as Khas’minskii (1978), one can show that, for any

0 < r , s < 1,

Figure 2. Improvement (̂̂̂‘, ^̂uûuu) of a band (‘̂‘, ûu) if G ¼ Gconv.
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inf
f 2G\H	,L

Pf sup
t2[r,s]

(ûu(t)� ‘̂‘(t)) < ˜rn

( )
! 0,

provided that ˜ . 0 is sufficiently small. Thus our confidence bands adapt to the unknown

smoothness of f .

4.4. Testing hypotheses about f (t)

In order to find suitable kernel functions ł(‘), ł(u) we proceed similarly to Dümbgen and

Spokoiny (2001, Section 3.2). That is to say, for the time being we consider tests of the null

hypothesis

F0 :¼ f f 2 G \ L2[0, 1] : f (t) < r � �g
versus the alternative hypothesis

FA :¼ f f 2 G \ Hk,L : f (t) > rg:
Here t 2 [0, 1], r 2 R and L, � . 0 are arbitrary fixed numbers, while

(G, k) ¼ (G", 1) or (G, k) ¼ (Gconv, 2): (4:5)

Note that F0 and FA are closed, convex subsets of L2[0, 1]. Suppose that there are functions

f 0 2 F0 and fA 2 FA such thatð1

0

( f 0 � fA)(x)2 dx ¼ min
g02F0, gA2FA

ð1

0

(g0 � gA)(x)2 dx:

Then optimal tests of F0 versus FA are based on the linear test statistic
Ð 1

0
( fA � f 0)dY ,

where critical values have to be computed under the assumption f ¼ f 0. The problem of

finding such functions f 0, fA is treated in Section 8. Here we state our conclusion. Let

ł(‘)(x) :¼ 1fx2[�1,0]g(1þ x) if G ¼ G",
1fx2[�2,2]g(1� 3jxj=2þ x2=2) if G ¼ Gconv:

�
(4:6)

Then the functions

fA(s) :¼ r þ L(s� t) if G ¼ G"
r þ L(s� t)2=2 if G ¼ Gconv

�
(4:7)

and

f 0 :¼ fA � �ł(‘)
h, t, with h :¼ (�=L)1=k ,

solve our minimzation problem, provided that a(‘)h < t < 1� b(‘)h. Thus the optimal linear

test statistic may be written as
Ð 1

0
łh, t dY ¼ łY (h, t). Elementary considerations show that

the inequality

f̂f
(‘)
h (t)� kł

(‘)k(ˆ(d(‘)h)þ kÆ)

h1, ł(‘)i(nh)1=2
< r0
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is equivalent to

łY (h, t) < n1=2hr0h1, ł(‘)i þ h1=2kł(‘)k(ˆ(d(‘)h)þ kÆ)

¼ E f0
(łY (h, t))þ var(łY (h, t))1=2(ˆ(d(‘)h)þ kÆ):

Thus our lower confidence bound ‘̂‘ may be interpreted as a multiple test of all null

hypotheses f f 2 G : f (t) < r0g with t 2 [0, 1] and r0 2 R.

Analogous considerations yield a candidate for ł(u). Let

F0 :¼ f f 2 G \ L2[0, 1] : f (t) > r þ �g

and

FA :¼ f f 2 G \ Hk,L : f (t) < rg:

Then the function fA in (4.8) and

f 0 :¼ fA þ �ł(u)
h, t with h :¼ (�=L)1=k

form a least favourable pair ( f0, fA) in F0 3 FA, where

ł(u)(x) :¼
1fx2[0,1]g(1� x) if G ¼ G",
1fx2[�21=2,21=2]g(1� x2=2) if G ¼ Gconv:

�
(4:8)

Figures 3 and 4 depict the functions ł(‘) in (4.6) and ł(u) in (4.8).

4.5. Optimal constants and local adaptivity

We will now show that our multiscale confidence band (‘̂‘, ûu), if constructed with the kernel

functions in (4.6) and (4.8), is locally adaptive in a certain sense. Specifically, we consider
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Figure 3. Kernel functions (a) ł(‘), (b) ł(u) for G".
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an arbitrary fixed function f 0 2 G \ C k with (G, k) as specified in (4.5). We analyse

quantities such as

k(ûu� f 0)wkþr,s and k( f 0 � ‘̂‘)wkþr,s,

where w is some positive weight function on the unit interval and

kgkþr,s :¼ sup
t2[r,s]

g(t):

The function w should reflect local smoothness properties of f 0 in an appropriate way. The

following theorem demonstrates that the kth derivative of f 0, denoted by =k f 0, plays a

crucial role.

Theorem 4.2. For arbitrary fixed numbers 0 < r , s < 1, let

L :¼ max
t2[r,s]

=k f 0(t):

Then, for any ª 2]0, 1[,

inf
(‘̂‘,ûu)

Pf0
fk f � ‘̂‘kþr,s > ª˜(‘)L1=(2kþ1)rng > 1� Æþ o(1),

inf
(‘̂‘,ûu)

Pf0
fkûu� f kþr,s > ª˜(u)L1=(2kþ1)rng > 1� Æþ o(1),

where both infima are taken over all confidence bands (‘̂‘, ûu) satisfying (1.2), and
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Figure 4. Kernel functions (a) ł(‘), (b) ł(u) for Gconv.
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˜(z) :¼ k þ 1

2

� �
kł(z)k2

� ��k=(2kþ1)

,

rn :¼
log(en)

n

� �k=(2kþ1)

:

If G ¼ G", the critical constants are ˜(‘) ¼ ˜(u) ¼ 21=3 � 1:260. If G ¼ Gconv,

˜(‘) ¼ (3=4)2=5 � 0:891 and ˜(u) ¼ 32=5=1281=5 � 0:588:

This indicates that bounding a convex function from below is more difficult than finding an

upper bound.

In view of Theorem 4.2, we introduce, for arbitrary fixed E . 0, the weight function

wE :¼ (max(=k f 0, E))�1=(2kþ1)

reflecting the local smoothness of f 0. The next theorem shows that our particular confidence

band (‘̂‘, ûu) attains the lower bounds of Theorem 4.2 pointwise. Suprema such as

k( f 0 � ‘̂‘)wEkþr,s and k(ûu� f 0)wEkþr,s attain their respective lower bounds ˜(‘), ˜(u) up to a

multiplicative factor 2k=(kþ1=2) þ o p(1).

Theorem 4.3. Let (‘̂‘, ûu) be the confidence band based on the kernel functions in (4.6) and

(4.8). If f ¼ f 0, then for arbitrary E . 0 and any t 2]0, 1[,

( f 0 � ‘̂‘)(t)wE(t) < (˜(‘) þ o p(1))rn,

(ûu� f 0)(t)wE(t) < (˜(u) þ o p(1))rn:

Moreover,

k( f 0 � ‘̂‘)wEkþE,1�E < (2k=(kþ1=2)˜(‘) þ o p(1))rn,

k(ûu� f 0)wEkþE,1�E < (2k=(kþ1=2)˜(u) þ o p(1))rn:

If we used kernel functions differing from (4.7) and (4.9), then pointwise optimality would be

lost, and the constants for the supremum distances would get worse.

5. Simulations and numerical examples

In this section we demonstrate the performance of the procedures in Section 4. We replace

the continuous white noise model with a discrete one. Suppose that one observes a random

vector ~YY 2 Rn with components

Yi ¼ f (xi)þ Ei, (5:1)

where xi :¼ (i� 1=2)=n, and the random errors Ei are independent with Gaussian distribution

N (0, � 2). Our kernel functions ł(‘) and ł(u) are rescaled as follows:
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ł(‘)(x) :¼
1fx2[�1,0]g(1þ x) if G ¼ G",
1fx2[�1,1]g(1� 3jxj þ 2x2) if G ¼ Gconv,

(

ł(u)(x) :¼
1fx2[0,1]g(1� x) if G ¼ G",
1fx2[�1,1]g(1� x2) if G ¼ Gconv:

(

Note that now a(‘), a(u), b(‘), b(u) 2 f0, 1g. For convenience we compute kernel estimators and

confidence bounds for f only on the grid T n :¼ f1=n, 2=n, . . . , 1� 1=ng, while the

bandwidth parameter h is restricted to

Hn :¼
f1=n, 2=n, . . . , 1g if G ¼ G",
f1=n, 2=n, . . . , bn=2c=ng if G ¼ Gconv:

�

Let ł stand for ł(‘) or ł(u) with support [�a, b]. Then for h 2 Hn and t 2 T n with

ah < t < 1� bh, we define

ł~YY (h, t) :¼
Xn
i¼1

ł
xi � t

h

� 	
Yi ¼

Xbnh
j¼1�anh

ł
j� 1=2

nh

� �
Yntþ j

and

f̂f h(t) :¼
ł~YY (h, t)

Snh

,

where Sd stands for
Pd

j¼1�dł(( j� 1=2)=d). The standard deviation of f̂f h(t) equals

� h :¼ � R
1=2
nh =Snh, where Rd :¼

Pd
j¼1�dł(( j� 1=2)=d)2. Tedious but elementary calculations

show that if G ¼ G",

Sd ¼
d

2
and Rd ¼

d

3
� 1

12d
:

If G ¼ Gconv,

S
(‘)
d ¼

d

3
� 1

3d
and R

(‘)
d ¼

4d

15
� 1

2d
þ 7

30d3
,

S
(u)
d ¼

4d

3
þ 1

6d
and R

(u)
d ¼

16d

15
þ 7

120d3
:

Note that here S
(‘)
1 ¼ 0 ¼ ł(‘)~YY (1=n, �), whence the bandwidth 1=n is excluded from any

computation involving ł(‘).

As for the bias of these kernel estimators, one can deduce from Lemma 8.1 that

E f̂f
(‘)
h (t) < f (t) and E f̂f

(u)
h (t) > f (t) whenever f 2 G. Here is a discrete version of our

multiscale test statistic: T�n :¼ max(Tn(ł(‘)), Tn(�ł(u))), where

Tn(�ł) :¼ max
h2Hn

max
t2T n\[ah,1�bh]

(�� �1R
�1=2
nh ł~EE(h, t)� ˆ((aþ b)h))

with ~EE :¼ (Ei)ni¼1. Let kÆ,n be the 1� Æ quantile of T�n . Then
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‘̂‘(t) :¼ max
h2Hn: t2[a(‘) h,1�b(‘) h]

( f̂f
(‘)
h (t)� � (‘)

h (ˆ(d(‘)h)þ kÆ,n)),

ûu(t) :¼ min
h2Hn: t2[a(u) h,1�b(u) h]

( f̂f
(u)
h (t)þ � (u)

h (ˆ(d(u)h)þ kÆ,n)),

defines a confidence band for f such that

Pf‘̂‘ < f < ûu on T ng > 1� Æ whenever f 2 G:
Equality holds if G ¼ G" and f is constant, or if G ¼ Gconv and f is linear. If the noise

variance � 2 is unknown, it may be estimated as described in Dümbgen and Spokoiny (2001).

Then, under moderate regularity assumptions on f , our confidence bands have asymptotic

coverage probability at least 1� Æ as n tends to infinity.

For various values of n we estimated several quantiles kÆ,n in 9999 Monte Carlo

simulations; see Table 1. One can easily show that the critical value kÆ,n converges to the

corresponding quantile kÆ for the continuous white noise model as n!1. Software for

the computation of critical values as well as confidence bands may be obtained from http://

www.cx.unibe.ch/�duembgen/software.html.

Figure 5 shows a simulated data vector ~YY with n ¼ 500 components together with the

corresponding 95% confidence band (‘̂‘, ûu) after postprocessing, where f is assumed to be

isotonic. The latter function is depicted as well. Note that the band is comparatively narrow

in the middle of ]0, 1
3

[, on which f is constant. On ]1=3, 1] the width ûu� ‘̂‘ tends to

increase, as does = f . These findings are in accordance with Theorem 4.3.

An analogous plot for a convex function f can be seen in Figure 6. Note that the

deviation f � ‘̂‘ is mostly greater than ûu� f , as predicted by Theorem 4.3.

6. Proofs

Proof of Theorem 3.1. In order to prove lower bounds we construct unfavourable subfamilies

of G" similarly to Khas’minskii (1978). For a given integer m . 0, we define I1 :¼ [0, 1=m]

Table 1. Some critical values for the discrete white noise model

G" Gconv

n k0:5,n k0:1,n k0:05,n k0:5,n k0:1,n k0:05,n

100 0.330 1.092 1.349 0.350 1.053 1.283

200 0.433 1.146 1.392 0.430 1.121 1.342

300 0.475 1.169 1.416 0.470 1.126 1.342

400 0.507 1.204 1.446 0.489 1.128 1.340

500 0.526 1.222 1.450 0.512 1.143 1.358

700 0.570 1.252 1.492 0.536 1.162 1.380

1000 0.585 1.250 1.483 0.552 1.178 1.393
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and I j :¼]( j� 1)=m, j=m] for 1 , j < m. Then we define step functions g and h� for

� 2 Rm via

g(t) :¼ 2 j� 1 and h�(t) :¼ � j, for t 2 I j, 1 < j < m:

For any � . 0 and � 2 [��, �]m the function �g þ h� is isotonic on [0, 1]. Now we restrict

our attention to the parametric submodel F0 ¼ f�g þ h� : � 2 [��, �]mg of G" \ L2[0, 1].

Any confidence band (‘̂‘, ûu) for f ¼ �g þ h� defines a confidence set S ¼ S1 3 S2

3 � � � 3 Sm for � via

S j :¼ sup
t2 I j

‘̂‘(t)� �(2 j� 1), inf
t2 I j

ûu(t)� �(2 j� 1)

" #
:

Here ‘̂‘ < f < ûu if and only if � 2 S. Moreover,

DE(‘̂‘, ûu) > max
j¼1,...,m

length(S j) for 1=(mþ 1) < E , 1=m:

However,

Figure 5. Data ~YY and 95% confidence band for f 2 G".
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log
dP� gþh�

dP� g
(Y ) ¼ n1=2

ð1

0

h� d ~YY � n

ð1

0

h�(t)2 dt=2

¼
Xm
j¼1

((n=m)1=2� j X j � (n=m)�2
j=2)

¼ log
dN ((n=m)1=2�, I)

dN (0, I)
(X ),

where ~YY (t) :¼ Y (t)� n1=2
Ð t

0
�g(s)ds and X :¼ (X j)

m
j¼1 with components

X j :¼ m1=2( ~YY ( j=m)� ~YY (( j� 1)=m)):

If f ¼ �g these random variables are independent and standard normal. Consequently, X is a

sufficient statistic for the parametric submodel F0 with distribution N m((n=m)1=2�, I) if

f ¼ �g þ h�. In particular, the conditional distribution of S given X does not depend on �.

Figure 6. Data ~YY and 95% confidence band for f 2 Gconv.
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Hence, letting � ¼ (n=m)�1=2cm with cm :¼ (2 log m)1=2, it follows from Theorem 7.1(b)

below that, for 1=(mþ 1) < E , 1=m,

sup
f 2G"\L2[0,1]

Pf ‘̂‘ < f < ûu and DE(‘̂‘, ûu) < 2
cm � bm

(n=m)1=2

� �

< max
�2[��,�]m

P� � 2 S and max
j¼1,...,m

length(Sj) < 2
cm � bm

(n=m)1=2

� �
< bm,

where b1, b2, b3, . . . are universal positive numbers such that limm!1 bm ¼ 0. This entails

the assertion of Theorem 3.1 with log(1=E) in place of log(e=E) and

b(E) :¼ (2 log(1=E))1=2 � (mE)1=2(cm � bm) for 1=(mþ 1) < E , 1=m:

Finally, note that log(e=E)1=2 ¼ log(1=E)1=2 þ o(1) as E # 0. h

Proof of Theorem 4.1. Instead of an upper bound for ûu� ‘̂‘ we prove an upper bound for

ûu� f , because analogous arguments apply to f � ‘̂‘. In what follows let ł ¼ ł(u) with

support [�a, b]. For t 2 [0, 1] and h . 0 with ah < t < 1� bh,

ûu(t)� f (t) < f̂f h(t)� f (t)þ kłk(ˆ((aþ b)h)þ kÆ)

h1, łi(nh)1=2

¼ h f (t þ h�)� f (t), łi
h1, łi þ łW (h, t)

n1=2hh1, łi þ
kłk(ˆ((aþ b)h)þ kÆ)

h1, łi(nh)1=2

<
h f (t þ h�)� f (t), łi

h1, łi þ kłk(2ˆ((aþ b)h)þ kÆ þ T (ł))

h1, łi(nh)1=2
: (6:1)

For any function g 2 H	,L,

jg(x)� g(0)j < Ljxj	 if 	 < 1,

jg(x)� g(0)� g9(0)xj < Ljxj	 if 1 , 	 < 2:

Since f (t þ h�) 2 H	,Lh	 if f 2 H	,L, this implies that

h f (t þ h�)� f (t), łi
h1, łi <

Lh	
ðb
�a
jxj	jł(x)jdx

h1, łi < ˜h	:

Here and subsequently ˜ denotes a generic constant depending only on (	, L) and ł. Its

value may vary from one line to another. If t 2 [En, 1� En] and h ¼ En=max(a, b), the right-

hand side of (6.1) is not greater than

˜E	n þ
˜(log(en)1=2 þ kÆ þ T (ł))

(nEn)1=2
¼ ˜rn 1þ kÆ þ T (ł)

log(en)1=2

� �
:

h
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Proof of Theorem 4.2. We prove only the lower bound for f 0 � ‘̂‘, because ûu� f0 can be

treated analogously. It suffices to consider the case L . 0 and to show that for any fixed

number ª 2]0, 1[,

Pf 0
fk f 0 � ‘̂‘kþr,s > ª˜(‘)L1=(2kþ1)rng > 1� Æþ o(1)

for arbitrary confidence bands (‘̂‘, ûu) ¼ (‘̂‘n, ûun) satisfying (1.2). Without loss of generality

one may assume that

=k f 0 > L on [r, s]:

Otherwise one could increase ª and decrease L without changing ªL1=(2kþ1), and replace

[r, s] with some non-degenerate subinterval. Let ł stand for ł(‘) with support [�a, b]. For

0 , h < (s� r)=(aþ b) and positive integers j < m :¼ b(s� r)=((aþ b)hc, let

t j :¼ sþ ahþ ( j� 1)(aþ b)h and f j :¼ f 0 � Lhkłh, t j
:

It follows from Lemma 8.4 that these functions f j belong to G \ L2[0, 1]. Thus (1.2) implies

that the event

A :¼ f‘̂‘ < f j for some j < mg

satisfies the inequality Pf j(A) > 1� Æ for all j < m. Since k f 0 � f jkþr,s > �, this entails the

inequality

Pf0
fk f 0 � ‘̂‘ � ch131þr,s > Lhkg > Pf0

(A) > 1� Æ�min
j<m

(Pf j (A)� Pf0
(A)):

Now let h :¼ (crn)
1=k so that Lhk ¼ Lcrn, where c . 0 is some number to be specified later.

For sufficiently large n, this bandwidth h is smaller than (s� r)=(aþ b). Then

log
dPf j

dPf0

(Y ) ¼ n1=2hkþ1=2LkłkXj � nh2kþ1L2kłk2=2,

where X j :¼ h�1=2kłk�1
Ð 1

0
łh, t j d ~YY and ~YY (t) :¼ Y (t)� n1=2

Ð t
0
f 0(x)dx. Thus X :¼ (X j)

m
j¼1

is a sufficient statistic for the restricted model f f 0, f 1, f 2, . . . , f mg, where L f0
(X ) is a

standard normal distribution on Rm. Thus it follows from Theorem 7.1(a) and a standard

sufficiency argument that

lim
n!1

min
1< j<m

(Pf j (A)� Pf0
(A)) ¼ 0 if lim

n!1

nh2kþ1L2kłk2

2 log m
, 1:

Since log m ¼ (1þ o(1))log(n)=(2k þ 1), the limit on the right-hand side is equal to

c(2kþ1)=k L2kłk2(k þ 1=2) and smaller than 1 if c ¼ ª˜(‘)L�2k=(2kþ1). In that case, the lower

bound Lhk ¼ Lcrn for k f 0 � ‘̂‘kþr,s equals ª˜(‘)L1=(2kþ1)rn as desired. h

Proof of Theorem 4.3. Again we restrict our attention to f0 � ‘̂‘ and let ł :¼ ł(‘) with

support [�a, b]. For any fixed E . 0 and arbitrary t 2 [0, 1], let ht . 0 and

Lt :¼ max
s2[ t�ah t , tþbh t]\[0,1]

max(=k f 0(s), E):
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If aht < t < 1� bht the inequality ( f 0 � ‘̂‘)(t) > Lt h
k
t implies that

f̂f h t
(t)� kłk(ˆ((aþ b)ht)þ kÆ)

(nht)1=2h1, łi < f 0(t)� Lt h
k
t :

Since f ¼ f 0, this can be rewritten as

łW (ht, t)

h
1=2
t kłk

< � (nht)
1=2

kłk h f 0(t þ ht�)� f 0(t)þ Lt h
k
t , łi þ ˆ((aþ b)ht)þ kÆ

< �n1=2Lt h
kþ1=2
t kłk þ ˆ((aþ b)ht)þ kÆ,

where the latter inequality follows from Lemma 8.4(c). Specifically, let

ht :¼ cwE(t)
2r1=k

n

for some positive constant c to be specified later. By continuity of =k f 0, the weight function

wE is bounded away from zero and infinity. Hence ht ! 0 and Lt max(=k f 0(t), E)�1 ! 1,

uniformly in t 2 [0, 1]. In particular,

ˆ((aþ b)ht) < (k þ 1=2)�1=2 log(en)1=2 for n > n0,

n1=2Lt h
kþ1=2
t kłk > ckþ1=2kłk log(en)1=2,

Lt h
k
t < wE(t)

�1ck(1þ bn)rn,

where n0 and bn are positive numbers depending only on f 0, E and c such that bn ! 0.

Consequently, for n > n0,

aht < t < 1� bht and ( f 0 � ‘̂‘)(t)wE(t) > ck(1þ bn)rn

imply that

łW (ht, t)

h
1=2
t kłk

< �(ckþ1=2kłk � (k þ 1=2)�1=2)log(en)1=2 þ kÆ: (6:2)

Whenever c . (˜(‘))1=k, the right-hand side of inequality (6.2) tends to minus infinity, while

the random variable on the left-hand side has mean zero and variance one. Since the limit

of ck(1þ bn) can be arbitrarily close to ˜(‘), these considerations show that

( f 0 � ‘̂‘)(t)wE(t) < (˜(‘) þ o p(1))rn for any fixed t 2]0, 1[.

If n is sufficiently large, then aht < t < 1� bht and

łW (ht, t)

h
1=2
t kłk

> �T (�ł)� ˆ((aþ b)ht)

for all t 2 [E, 1� E]. Consequently,

sup
t2[E,1�E]

( f 0 � ‘̂‘)(t(wE(t) > ck(1þ bn)

implies that
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T (�ł) > n1=2Lt h
kþ1=2
t kłk � 2ˆ((aþ b)ht)� kÆ

> (ckþ1=2kłk � 2(k þ 1=2)�1=2Þlog(en)1=2 � kÆ: (6:3)

Whenever c . 21=(kþ1=2)(˜(‘))1=k, the right-hand side of inequality (6.3) tends to infinity.

Since the limit of ck(1þ bn) can be arbitrarily close to 2k=(kþ1=2)˜(‘), these considerations

reveal that k( f 0 � ‘̂‘)wEkþE,1�E is not greater than (2k=(kþ1=2)˜(‘) þ o p(1))rn. h

7. Some decision theory

Let X ¼ (X i)
m
i¼1 be a random vector with distribution N m(Ł, I). In what follows we

consider tests � : Rm ! [0, 1] and confidence sets

S ¼ S1 3 S2 3 � � � 3 Sm

for Ł with random intervals S j � R. The conditional distribution of S, given X , does not

depend on Ł. The possibility of randomized confidence sets S, that is, confidence sets not just

being a function of X , has to be included for technical reasons. Unless specified otherwise,

asymptotic statements in this section refer to m!1.

Theorem 7.1. Let cm :¼ (2 log m)1=2. There are universal positive numbers bm with bm ! 0

such that the following two inequalities are satisfied:

(a) For arbitrary tests �,

min
j¼1,...,m

E(cm � bm)e j�(X )� E0�(X ) < bm,

where e1, e2, . . . , em denotes the standard basis of Rm.

(b) For arbitrary confidence sets S as above,

min
Ł2[�cm,cm]m

PŁfŁ 2 S and max
j¼1,...,m

length(Sj) , 2(cm � bm)g < bm:

Proof of Theorem 7.1. Part (a) is classical and can be proved by a Bayesian argument; see,

for instance, Ingster (1993a; 1993b; 1993c) or Dümbgen and Spokoiny (2001).

In order to prove part (b) we also consider a Bayesian model. Let Ł have independent

components each of which is uniformly distributed on the three-point set Km :¼
f�km, 0, kmg, where km :¼ cm � bm with constants bm 2 [0, cm] to be specified later on.

Let L(X jŁ) ¼ N m(Ł, I). Let P(�), E(�) denote probabilities and expectations in this

Bayesian context, whereas PŁ(�), EŁ(�) are used in case of a fixed parameter Ł. For any

confidence set S,
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min
Ł2[�cm,cm]m

PŁ Ł 2 S and max
j¼1,Ò:,m

length(Sj) , 2km

( )

< P Ł 2 S and max
j¼1,Ò:,m

length(Sj) , 2km

( )
< PfŁ 2 ~SSg,

where

~SS :¼
S if max

j¼1,...,m
length(Sj) , 2km,

f0g 3 � � � 3 f0g otherwise:

8<
:

The conditional distribution of Ł given (X , S) is also a product of m probability measures.

For any 
 2 Km
m,

P(Ł ¼ 
jX , S) ¼
Ym
i¼1

g(
ijXi) with g(zjx) :¼ exp(�(x� z)2=2)X
y2Km

exp(�(x� y)2=2)
:

Since each factor ~SS j of ~SS contains at most two points from Km,

PfŁ 2 ~SSg ¼ EP(Ł 2 ~SSjX , S)

< E max

2K m

m

P(Łi 6¼ 
i for i ¼ 1, . . . , mjX , S)

¼ E
Ym
i¼1

1� min
z2Km

g(zjXi)

� �
¼ 1� E min

z2Km

g(zjX1)

� �m

< 1� 3�1 E min
z2Km

exp(�(X 1 � z)2=2)

� �m

:

The latter expectation can be bounded from below as follows:

3�1 E min
z2Km

exp(�(X 1 � z)2=2)

> 3�1PfjX 1j < bm=2gexp(�(km þ bm=2)2=2)

> 3�1PfjŁ1j ¼ 0, jX1j < bm=2gexp(�(cm � bm=2)2=2)

¼ 9�1(2�)�1=2(bm þ O(b2
m))exp(cmbm=2� b2

m=8)m�1:

If bm :¼ 1fm.1gc
�1=2
m ¼ o(1) the latter bound is easily seen to be amm

�1 with am ¼
am(bm)!1. Thus

PfŁ 2 ~SSg < (1� amm
�1)m ! 0:
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Finally, one may replace bm with maxfbm, (1� amm
�1)mg. This yields the assertion of

part (b). h

8. Related optimization problems

As in Section 4, let (G, k) be either (G", 1) or (Gconv, 2). In view of future applications to

other regression models we extend our framework slightly and consider hg, hi :¼
Ð
gh d�,

kgk :¼ hg, gi1=2, for some measure � on the real line such that �(C) ,1 for bounded

intervals C � R.

Let ł be some bounded function on the real line with ł(x) ¼ 0 for x 62 [�a, b] and

h1, łi > 0, where a, b > 0. The next lemma provides sufficient conditions for one of the

following two requirements:

hg, łi < g(0)h1, łi whenever g 2 G, 1[�a,b] g 2 L1(�), (8:1)

hg, łi > g(0)h1, łi whenever g 2 G, 1[�a,b] g 2 L1(�): (8:2)

Lemma 8.1. Let G ¼ G" and ł > 0. Then b ¼ 0 entails condition (8.1), while a ¼ 0 implies

condition (8.2).

Let G ¼ Gconv and
Ð1
�1 xł(x)�(dx) ¼ 0. Condition (8.2) is satisfied if ł > 0. On the other

hand, condition (8.1) is a consequence of the following two requirements:Ð
x�ł(x)�(dx) ¼ 0 and

ł
> 0 on [c, d],

< 0 on Rn[c, d],

�

for some numbers c , 0 , d, where �([�a, c]), �([d, b]) . 0. (Here yþ :¼ max(y, 0) and

y� :¼ max(�y, 0).)

With Lemma 8.1 at hand one can solve two mimimization problems leading to the

special kernels in (4.6) and (4.8). In both cases we consider two disjoint convex sets G0,

GA � G and construct functions G0 2 G0, GA 2 GA such that

kG0 � GAk ¼ min
g02G0, gA2GA

kg0 � gAk: (8:3)

Theorem 8.2. Let G0 :¼ fg 2 G : g(0) < �1g and GA :¼ fg 2 G \ Hk,1 : g(0) > 0g. If

G ¼ G" let GA(x) :¼ x and

G0(x) :¼ �1 if x 2 [�1, 0],

GA(x) otherwise:

�

If G ¼ Gconv let GA(x) :¼ x2=2 and

G0(x) :¼ �1þ (a=2þ 1=a)x� þ (b=2þ 1=b)xþ if x 2 [�a, b],

GA(x) otherwise,

�
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where a, b > 21=2 are chosen such that
Ð
x�(GA � G0)(x)�(dx) ¼ 0. Then equation (8.3)

holds in both cases. More precisely, the function ł :¼ GA � G0 satisfies the inequalities

h1, łi > kłk2, (8.1) and

hg, łi > kłk2 � h1, łi whenever g 2 Hk,1, g(0) > 0: (8:4)

If � is Lebesgue measure, ł ¼ GA � G0 coincides with the function ł(‘) in (4.6), where

a ¼ b ¼ 2.

Theorem 8.3. Let G0 :¼ fg 2 G : g(0) > 1g, GA :¼ fg 2 G \ Hk,1 : g(0) < 0g, and define

GA as in Theorem 8.2. If G ¼ G" let

G0(x) :¼ 0 if x 2 [0, 1],

GA(x) otherwise:

�

If G ¼ Gconv suppose that �(]�1, 0[), �(]0, 1[) . 0 and let

G0(x) :¼ 1þ cx if x 2 [�a, b],

GA(x) otherwise,

�

where a :¼ �cþ (c2 þ 2)1=2, b :¼ cþ (c2 þ 2)1=2, and c is chosen such thatÐ
x(G0 � GA)(x)�(dx) ¼ 0. Then equation (8.3) is satisfied in both cases. More precisely,

the function ł :¼ G0 � GA satisfies the inequalities h1, łi > kłk2, (8.2) and

hg, łi < h1, łi � kłk2 whenever g 2 Hk,1, g(0) > 0: (8:5)

If � is Lebesgue measure, ł ¼ G0 � GA coincides with the function ł(u) in (4.8), where

c ¼ 0 and a ¼ b ¼ 21=2.

The following lemma summarizes essential properties of the optimal kernels ł(‘) and

ł(u).

Lemma 8.4. Let ł(‘) and ł(u) be the kernel functions in (4.6) and (4.8), and let h, L . 0 and

t 2 R.

(a) If G ¼ G", then h1, ł(‘)i ¼ h1, ł(u)i ¼ 1
2

and kł(‘)k2 ¼ kł(u)k2 ¼ 1
3
. If f : R! R

satisfies f (y)� f (x) > L(y� x) for all x , y, then

f � Lh�1ł(‘)
h, t, f þ Lh�1ł(u)

h, t 2 G":

(b) If G ¼ Gconv, then h1, ł(‘)i ¼ 2
3
, kł(‘)k2 ¼ 8

15
, h1, ł(u)i ¼ 22:5=3 and kł(u)k2 ¼

24:5=15. Let f : R! R be absolutely continuous with derivative f 9 such that

f 9(y)� f 9(x) > L(y� x) for all x , y. Then

f � Lh�2ł(‘)
h, t, f þ Lh�2ł(u)

h, t 2 Gconv:

(c) In general, for any function f 2 Hk,L,
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h f (t þ h�)� r þ Lhk , ł(‘)i > Lhkkł(‘)k2 if f (t) > r,

h f (t þ h�)� r � Lhk , ł(u)i < �Lhkkł(u)k2 if f (t) < r:

Proof of Lemma 8.1. The assertions for G ¼ G" are a simple consequence of g < g(0) on

]�1, 0] and g > g(0) on [0, 1[.

Now let G ¼ Gconv. If ł > 0 and
Ð
xł(x)�(dx) ¼ 0, then condition (8.2) follows from

Jensen’s inequality applied to the probability measure P(dx) ¼ h1, łi�1ł(x)�(dx).

On the other hand, suppose that ł > 0 on [c, d] and ł < 0 on Rn[c, d], where

c , 0 , d and �([�a, c]), �([d, b]) . 0. For g 2 Gconv with 1[�a,b] g 2 L1(�), both g(c)

and g(d) have to be finite, and we define

~gg(x) :¼ g(x)� d�1(g(d)� g(0))x if x > 0,

c�1(g(c)� g(0))x if x < 0:

�

By convexity of g, this auxiliary function ~gg satisfies ~gg < g(0) on [c, d] and ~gg > g(0) on

Rn[c, d]. Thus h ~gg, łi < g(0)h1, łi. If, in addition,
Ð
x�ł(x)�(dx) ¼ 0, then hg, łi

¼ h ~gg, łi. h

Proof of Theorem 8.2. One can easily deduce from Lemma 8.1 that the function

ł ¼ GA � G0 satisfies inequality (8.1). But GA is an extremal point of GA in the sense that

GA � g 2 G for any g 2 Hk,1:

For let x , y. If G ¼ G", then

(GA � g)(y)� (GA � g)(x) ¼ y� x� (g(y)� g(x)) > y� x� jy� xj ¼ 0,

whence GA � g is non-decreasing. In case of G ¼ Gconv the same argument applies to the first

derivative of GA � g. Together with (8.1), this implies that

hg, łi ¼ hGA, łi � hGA � g, łi

> hGA, łi � (GA � g)(0)h1, łi

¼ hGA, łi þ g(0)h1, łi

¼ kłk2 þ hG0, łi þ g(0)h1, łi

¼ kłk2 þ (g(0)� 1)h1, łi: (8:6)

Equation (8.6) follows from hG0, łi ¼ h�1, łi, which is easily verified. The special case

g ¼ 0 yields the inequality h1, łi > kłk2. Then inequality (8.4) becomes obvious.

It remains to be shown that in case of G ¼ Gconv there exist numbers a, b > 21=2 such

that ł ¼ ł(�, a, b) satisfies
Ð
x�ł(x)�(dx) ¼ 0. In fact, for any fixed x the number

ł(x, a, b) < 1 can be shown to be continuous and decreasing in a and b. To be precise,

ł(0, a, b) ¼ 1 and lima!1 ł(x, a, �) ¼ limb!1 ł(y, �, b) ¼ �1 for x , 0 , y. Hence, the

assertion is a consequence of monotone convergence. h
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Proof of Theorem 8.3. This proof is analogous to the proof of Theorem 8.2 and thus

omitted. h

Proof of Lemma 8.4. The calculations of h1, łi and kłk2 are elementary and thus omitted.

Elementary calculations show that g :¼ �Lh�kł(‘)
t,h as well as g :¼ Lh�kł(u) satisfy

g(y)� g(x)

g9(y)� g9(x)

�
> �L(y� x) if G ¼ G",

Gconv,

�

where g9(x) denotes any number between the right- and left-sided derivative of g at x. Thus

f þ g belongs to G, whenever f satisfies the inequalities stated in parts (a) and (b).

As for part (c), for f 2 Hk,L and t 2 R, h, c . 0, the function cf (t þ h�) belongs to

Hk,cLhk . If we take c :¼ (Lhk)�1, inequality (8.4) implies that

h f (t þ h�)� r þ Lhk , ł(‘)i ¼ Lhkhc( f (t þ h�)� f (t))þ 1, ł(‘)i

> Lhkkł(‘)k2:

One can deduce the lower bound for h f (t þ h�)� r � Lhk , ł(u)i analogously. h
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