The brown hare (Lepus europaeus) as a novel intermediate host for Echinococcus multilocularis in Europe.

---Manuscript Draft---

<table>
<thead>
<tr>
<th>Manuscript Number:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Title:</td>
<td>The brown hare (Lepus europaeus) as a novel intermediate host for Echinococcus multilocularis in Europe.</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Short Communication</td>
</tr>
<tr>
<td>Funding Information:</td>
<td>Swiss National Science Foundation (31003A_141039/1)</td>
</tr>
</tbody>
</table>

**Abstract:**

A typical multivesiculated metacestode tissue has been found in the liver of a European brown hare (Lepus europaeus) originating from a northern area of Switzerland. In this study, the causative species was identified as Echinococcus multilocularis by appropriate histological and molecular analyses and corresponding DNA sequencing. This is the first confirmation of larval E. multilocularis from hares in Central Europe. The metacestode tissue contained protoscolices, suggesting that the hare may contribute to the transmission of E. multilocularis in Switzerland.

**Corresponding Author:**

Bruno Gottstein  
University of Berne  
Bern, Switzerland

**First Author:**

Valérie Chaignat

**Order of Authors:**

Valérie Chaignat  
Patrick Boujon  
Caroline F Frey  
Brigitte Hentrich  
Norbert Müller  
Bruno Gottstein

**Suggested Reviewers:**

Maria del Mar Siles Lucas  
mmar.siles@irnasa.csic.es  
Expert in echinococcosis

Franck Boue  
Franck.BOUE@anses.fr  
Expert in animal alveolar echinococcosis

Gerald Umhang  
Gerald.UMHANG@anses.fr  
Expert in animal echinococcosis

Thomas Romig  
thomas.romig@uni-hohenheim.de  
Expert in animal alveolar echinococcosis
Short Communication

Valérie Chaignat • Patrick Boujon • Caroline F. Frey • Brigitte Hentrich • Norbert Müller • Bruno Gottstein

The brown hare (*Lepus europaeus*) as a novel intermediate host for *Echinococcus multilocularis* in Europe

Valérie Chaignat • Patrick Boujon
Institut Galli-Valerio, Service de la consommation et des affaires vétérinaires, Lausanne, Switzerland

Caroline F. Frey • Brigitte Hentrich • Norbert Müller • Bruno Gottstein
Institut of Parasitology, Vetsuisse Faculty
University of Bern, Bern, Switzerland
e-mail: bruno.gottstein@vetsuisse.unibe.ch

**Key words** *Echinococcus multilocularis* • alveolar echinococcosis • hare • diagnosis • PCR
Abstract

A typical multivesiculated metacestode tissue has been found in the liver of a European brown hare (*Lepus europaeus*) originating from a northern area of Switzerland. In this study, the causative species was identified as *Echinococcus multilocularis* by appropriate histological and molecular analyses and corresponding DNA sequencing. This is the first confirmation of larval *E. multilocularis* from hares in Central Europe. The metacestode tissue contained protoscolices, suggesting that the hare may contribute to the transmission of *E. multilocularis* in Switzerland.
*Echinococcus multilocularis* is a cestode parasite for which foxes (*Vulpes* spp.) serve as the principal definitive host, which intestinally harbors the adult egg-producing tapeworms. Rodents serve as main intermediate hosts and become infected upon peroral ingestion of parasite eggs. Subsequently, an oncosphere is released, which migrates to the liver, and there develops into a metacestode that - upon production of protoscolices - reaches infectivity for definitive hosts within a few weeks to a few months. Conversely to definitive hosts that do not develop clinical signs, intermediate hosts usually develop disease called alveolar echinococcosis (AE). The main intermediate host species for *E. multilocularis* are voles (e.g. *Microtus*, *Arvicola* and *Myodes* spp.), but some other small mammals are affected as well (Conraths and Deplazes, 2015). The range of accidental “intermediate” hosts presenting AE has continuously increased within the past two decades, including e.g. dogs (Deplazes and Eckert, 2001), primates (Rehmann et al., 2005) and beavers (Janovsky et al., 2002). In other susceptible host species like pigs and wild boars, the *E. multilocularis* metacestode dies-out and calcifies before reaching fertility (Deplazes et al., 2005), thus pigs do not contribute to the maintenance of the life cycle of *E. multilocularis*. With the exception of the Tibetan hare *Lepus oiiostolus* (Xiao et al., 2004), Leporidae including rabbits and hares have mostly been regarded as unsuitable intermediate hosts for *E. multilocularis* (Ohbayashi et al., 1971). Conversely, fertile larval *E. granulosus* infections have been demonstrated in the European brown hare in Argentina (Schantz and Lord, 1972; Thakur and Eddi, 1982), so that this animal species appears to be part of the *E. granulosus* life cycle on the South American continent. Nevertheless, a few older documents already mention the hare to be potentially infected with *E. multilocularis*, but without solid etiological proof. These documentations originate from Russia by Bessonov (1998) and from Germany (Kötsche and Gottschalk, 1990).

The European brown hare (*Lepus europaeus*) is an important game species in Europe. It originates from the steppe grasslands of Eurasia and exhibits a relatively high intra- and inter-population genetic diversity of the MHC class II DRB locus (Koutsogiannouli et al., 2014). In Switzerland, a study had been carried out to elucidate the importance of different causes of mortality, which could explain the downward trend of the hare populations in this country (Haerer et al., 2001). Infectious diseases led to death in 15% of the animals, and cases of pasteurellosis, brucellosis, psudotuberculosis, tularaemia, listeriosis and toxoplasmosis were diagnosed. AE has so far never been documented upon pathological / necropsy examinations and...
molecular identification of the parasite in dead hares. In the frame of regular hunting, a hare, was shot on 24.10.2014 close to the city of Ste-Croix in the Jura region of Switzerland (exact coordinates N46°50'25'', E6°32'15''). Due to the unusual presentation of the liver (suspicion of abscess), it was presented for inspection to the gamekeeper. This organ was submitted for further pathological examinations to the Institut Galli-Valerio in Lausanne, Switzerland. The liver was patho-histologically examined upon HE and PAS-staining of tissue sections (4 µm), and multicystic lesions were detected as shown in Fig. 1A and 1B. The pathologically altered liver tissue consisted of numerous small vesicles with well-developed germinal and PAS-positive thin laminated layers, and most vesicles also contained mature proscolices and calcareous corpuscles, overall presenting the features of larval E. multilocularis. As cystic metacestodes of other Echinococcus species may exhibit some superficial similarities especially in unsuitable or aberrant hosts (Vogel, 1957), a molecular analysis of this case was undertaken. Genomic DNA was isolated from the formalin-fixed paraffin-embedded hepatic lesion according to Müller et al. (2003). PCR was carried out as previously reported (Diebold Berger et al., 1997). The amplified sequences (GeneBank accession no.: submission pending) were completely identical with those published for E. multilocularis (Dinkel et al., 1998). These molecular findings confirmed that the hare was infected with larval E. multilocularis.

(Discussion)

In Switzerland, the transmission dynamics of E. multilocularis depends primarily upon the ecosystem of red foxes (Vulpes vulpes) and small mammal intermediate hosts such as Arvicola terrestris and Microtus arvalis (Hegglin et al., 2015; Guerra et al., 2014). Red foxes are high prevalence hosts of E. multilocularis in Switzerland (Lewis et al., 2014), resulting in a high environmental contamination rate with E. multilocularis eggs. As a consequence, larval infections have been increasingly found in "exotic" animal species, for example in beavers, pigs, dogs and zoo primates (Scharf et al., 2004; Rehmann et al., 2005; Deplazes and Eckert, 2001; Janovsky et al., 2002). Most of these accidentally infected host animals cannot directly contribute to the maintenance of the life cycle, as either the metacestodes do not mature to fertility such as found in pigs, or the accidental hosts do not take part in the dietary spectrum of foxes.

To our knowledge, this is the first report of E. multilocularis in the brown hare in Central Europe. Our histological observations showed that the infected hare possessed morphologically fully
developed and mature protoscolices, suggesting that this animal species could act as a competent intermediate host and thus contribute to the transmission of *E. multilocularis*. Confirmation of this could be achieved after dietary analysis of foxes, such as done to assess the Southern European border of *E. multilocularis* (Guerra et al., 2014). The importance of hares as prey species for the red fox in Central Europe has already been documented in multiple studies (Knauer et al., 2010; Zellweger-Fischer et al., 2011; Schmidt et al., 2004). Now the challenge will be to regularly assess any liver lesions detected in hares, as to determine the prevalence of *E. multilocularis* infection in this wildlife animal species. We do not know if in previous times *E. multilocularis*-induced liver lesions were seen, but were either not histologically investigated, or not at all investigated. Finally, it may be noted that in hares, within a differential diagnosis of macroscopically visible hepatic disorders, other parasites may be the cause of liver lesions, such as *Eimeria stiedai* and *Dicrocoelium dendriticum*, both affecting the biliary system of the liver, and *Fasciola hepatica*, affecting both liver parenchym and the bile ducts.

**Acknowledgements** The authors thank Mr Alain Seletto, gamekeeper circ. IV and Mr Daniel Gaille, hunter, for submitting the liver of the hare. The work has been supported by the Swiss National Science Foundation (research grant no. 31003A_141039/1).
References


Figure 1: Histological presentation of the fertile parasitic lesions recovered from the hare’s liver. A: HE-stained section (x200), arrow no. 1 shows the germinal layer and no. 2 an intravesicular protoscolex; B: PAS-stained section (x200), arrow no. 3 pointing at a protoscolex with a few internal hooks, arrow no. 4 shows the PAS-positive laminated layer. Bar is 100 µm.