The stable isotopic composition of Daphnia ephippia reflects changes in $\delta^{13}C$ and $\delta^{18}O$ values of food and water

J. Schilder¹, C. Tellenbach²³, M. Möst²³, P. Spaak²³, M. van Hardenbroek¹, M. J. Wooller⁵, and O. Heiri¹

¹Institute of Plant Sciences and Oeschger Centre for Climate Change Research, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
²Department of Aquatic Ecology, Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland
³Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
⁴Geography and Environment, University of Southampton, Southampton SO17 1BJ, UK
⁵University of Alaska, School of Fisheries and Ocean Sciences, Fairbanks, AK 99775-7220, USA
⁶Alaska Stable Isotope Facility, Water and Environmental Research Center, Institute of Northern Engineering 99775, Fairbanks, AK 99775-7220, USA
⁷University of Birmingham, School of Biosciences, Environmental Genomics Group, B15 2TT Birmingham, UK

Correspondence to: J. Schilder (j.c.schilder@gmail.com)

Received: 27 October 2014 – Published in Biogeosciences Discuss.: 4 February 2015
Revised: 25 May 2015 – Accepted: 26 May 2015 – Published: 23 June 2015

Abstract. The stable isotopic composition of fossil resting eggs (ephippia) of Daphnia spp. is being used to reconstruct past environmental conditions in lake ecosystems. However, the underlying assumption that the stable isotopic composition of the ephippia reflects the stable isotopic composition of the parent Daphnia, of their diet and of the environmental water have yet to be confirmed in a controlled experimental setting. We performed experiments with Daphnia pulicaria cultures, which included a control treatment conducted at 12°C in filtered lake water and with a diet of fresh algae and three treatments in which we manipulated the stable carbon isotopic composition ($\delta^{13}C$ value) of the algae, stable oxygen isotopic composition ($\delta^{18}O$ value) of the water and the water temperature, respectively. The stable nitrogen isotopic composition ($\delta^{15}N$ value) of the algae was similar for all treatments. At 12°C, differences in algal $\delta^{13}C$ values and in $\delta^{18}O$ values of water were reflected in those of Daphnia. The differences between ephippia and Daphnia stable isotope ratios were similar in the different treatments ($\delta^{13}C$: $+0.1 \pm 0.2\%_o$ (standard deviation); $\delta^{15}N$: $-1.6 \pm 0.4\%_o$; $\delta^{18}O$: $-0.9 \pm 0.4\%_o$), indicating that changes in dietary $\delta^{13}C$ values and in $\delta^{18}O$ values of water are passed on to these fossilizing structures. A higher water temperature (20°C) resulted in lower $\delta^{13}C$ values in Daphnia and ephippia than in the other treatments with the same food source and in a minor change in the difference between $\delta^{13}C$ values of ephippia and Daphnia (to $-1.3 \pm 0.3\%_o$). This may have been due to microbial processes or increased algal respiration rates in the experimental containers, which may not affect Daphnia in natural environments. There was no significant difference in the offset between $\delta^{18}O$ and $\delta^{15}N$ values of ephippia and Daphnia between the 12 and 20°C treatments, but the $\delta^{18}O$ values of Daphnia and ephippia were on average 1.2% lower at 20°C than at 12°C. We conclude that the stable isotopic composition of Daphnia ephippia provides information on that of the parent Daphnia and of the food and water they were exposed to, with small offsets between Daphnia and ephippia relative to variations in Daphnia stable isotopic composition reported from downcore studies. However, our experiments also indicate that temperature may have a minor influence on the $\delta^{13}C$, $\delta^{15}N$ and $\delta^{18}O$ values of Daphnia body tissue and ephippia. This aspect deserves attention in further controlled experiments.

1 Introduction

The strong, positive relationships between the stable carbon isotopic composition (expressed as $\delta^{13}C$ values) of organisms and that of their diet can allow the identification of the
autotrophic sources of organic matter at the base of a food web (DeNiro and Epstein, 1978; Vander Zanden and Ras-
mussen, 1999; McCutchan et al., 2003). Likewise, stable ni-
trogen isotope ratios (expressed as δ15N values) can be used to
estimate the trophic position of consumers in food webs
(DeNiro and Epstein, 1981; Minagawa and Wada, 1984), and
stable oxygen isotope ratios (expressed as δ18O values) have
been found to reflect those of the water in the environment
that organisms live in (Hobson, 2008; Soto et al., 2013).

Approaches are continuing to be developed that apply sta-
ble isotope ratio analysis to chitinous remains of aquatic in-
vertebrates preserved in lake sediments (Heiri et al., 2012;
Leng and Henderson, 2013). For example, the δ13C values
of the fossil head capsules of benthic larvae of non-biting
midges (Chironomidae) and δ13C values of the remains of
water fleas of the genus Daphnia (Cladocera) have been
used to investigate past changes in carbon cycling and en-
ergy pathways in lake food webs (Perga, 2011; W0oller
et al., 2012; van Hardenbroek et al., 2013; Belle et al., 2014;
Frossard et al., 2014). The δ15N values of chironomid head
capsules and of Daphnia resting eggs (ephippia) have also
been examined to investigate changes in nitrogen sources in
an arctic lake (Griffiths et al., 2010). Past variations in lake
water δ18O values have been reconstructed by analyzing the
δ18O values of fossil chironomid head capsules (W0oller et al.,
2004; Verbruggen et al., 2010b), and a correspondence
has been found between δ18O values of lake water and of
chironomid head capsules and Daphnia ephippia buried in
surface sediments (Verbruggen et al., 2011).

Daphnia can occur in high abundances and often dominate
the zooplankton community in lakes (Lampert, 2011). Being
first-order consumers of algae, bacteria and detritus (Geller
and Müller, 1981; Gophen and Geller, 1984; Kamjunke et al.,
1999; Lampert, 2011), they form an important link between
primary production and the higher orders of the pelagic food
web. This makes Daphnia particularly suited for ecological
investigations of freshwater ecosystems and food webs using
stable isotopes. While Daphnia usually reproduce partheno-
genetically, they may also reproduce sexually. Environ-
mental cues such as food availability, photoperiod and population
density (Kleiven et al., 1992; Cáceres and Tessier, 2004) may
trigger sexual reproduction, upon which eggs are formed en-
closed by rigid sheaths (ephippia). The chitinous ephippia
are found abundantly in a wide range of lake sediment types
and remain well preserved in sediments hundreds to thou-
sands of years old (Szeroczyńska and Sarama-Korjonen,
2007). Since the chemical composition of chitinous inverte-
brate remains stays largely unchanged even in fossils more
than 10 000 years old (Miller et al., 1993; Verbruggen et al.,
2010a), they are believed to retain their isotopic composi-
tion after deposition (Heiri et al., 2012). Therefore, ephip-
pia may provide material for reconstructing the past stable
isotopic composition of Daphnia in lakes and, consequently,
for investigating past conditions in aquatic food webs (e.g.,
W0oller et al., 2012; van Hardenbroek et al., 2013, 2014;
Schilder et al., 2015).

The use of δ13C and δ15N values of organisms to infer
likely organic carbon and nitrogen sources relies heav-
ily on assumptions regarding the difference between δ13C
and δ15N values of organisms and their diet (Δ13C, Δ15N).
There is a need for more controlled laboratory studies inves-
tigating Δ13C and Δ15N (Martínez del Rio et al., 2009)
as well as the relationships between the δ18O values of or-
ganisms and those of environmental water (Rubenstein and
Hobson, 2004). Δ13C, which is generally assumed to be be-
tween 0 and +1 ‰ for a range of animals, including inverte-
brates (DeNiro and Epstein, 1978; McCutchan et al., 2003),
has been studied for chironomids under controlled labora-
tory conditions (Goedkoop et al., 2006; Wang et al., 2009;
Heiri et al., 2012; Frossard et al., 2013) and ranges from
−0.8 to +1.2 ‰. For Daphnia magna, Δ13C values range
from +1.7 to +3.1 ‰ (Power et al., 2003). Δ15N, which is
usually assumed to be between +3 and +4 ‰ (DeNiro and
Epstein, 1981; Minagawa and Wada, 1984) ranges from −1.5
to +3.4 ‰ for chironomids (Goedkoop et al., 2006; Wang et al.,
2009; Heiri et al., 2012) and from +1 to +6 ‰ for Daph-
nia (Adams and Sterner, 2000; Power et al., 2003; Matthews
and Mazumder, 2008). In terms of oxygen, the δ18O values
of lacustrine invertebrates are strongly and positively related to
the δ18O values of local precipitation and the water in which
the invertebrates live (Wang et al., 2009; Nielson and Bowen,
2010; Verbruggen et al., 2011; van Hardenbroek et al., 2012;
Soto et al., 2013), although laboratory studies have shown
that the oxygen isotopic composition of the diet can also af-
fect invertebrate δ18O values (Wang et al., 2009; Nielson and
Bowen, 2010).

There can be distinct offsets in isotopic composition be-
tween whole-body tissue and chitinous structures of inverte-
brates. Culturing experiments comparing cephalopod soft
tissue and their chitinous mouthparts have shown that their
chitinous structures can have δ15N values 3 to 4 ‰ lower
than soft body tissue (Hobson and Cherel, 2006). Heiri et
al. (2012) reported that offsets of up to 2 ‰ between
chironomid body tissue and chitinous head capsule δ13C and
δ15N values are possible. For Daphnia, field studies sug-
ject that (non-ephippial) exoskeleton parts can have 0.8 ‰
lower δ13C and 7.9 ‰ lower δ15N values than whole Daph-
nia (Perga, 2010), while no clear differences in δ13C and
δ15N values between Daphnia and ephippia have been re-
ported in the only available study which examined this offset
for Daphnia and free ephippia collected in a vertical net trawl
in Lake Geneva, Switzerland (Perga, 2011). For vertebrates,
differences in stable C and N isotopic composition between
tissue types have been related to differences in contents of
specific compounds (e.g., relative abundance of lipids, carbo-
hydrates and protein or of different amino acids; e.g., DeNiro
and Epstein, 1978; Pinnegar and Polunin, 1999). Differences
in biochemical composition also provide a potential expla-
nation for the observed differences in δ13C and δ15N values.
between the whole-body tissue and chitinous structures of aquatic invertebrates. For oxygen and hydrogen, studies examining the offsets between the stable isotopic composition of the whole-body tissue of lacustrine invertebrates and their chitinous structures are still lacking.

To date, no controlled experiments investigating the offset between $\delta^{13}C$, $\delta^{15}N$ and $\delta^{18}O$ values of whole-body tissue and ephippia have been published for *Daphnia*. Similarly, no laboratory experiments have been performed examining the relationship between $\delta^{18}O$ values of environmental water and *Daphnia* or their ephippia. Quantifying these offsets and relationships is essential for the further development of palaeoecological approaches based on stable isotope analyses of *Daphnia* remnants and for interpreting results from the fossil record.

We present results from an experiment developed to examine the relationships between the $\delta^{13}C$ values of diet and the $\delta^{18}O$ values of environmental water, on the one hand, and the $\delta^{13}C$ and $\delta^{18}O$ values of *Daphnia*, on the other. The experiment was specifically designed to examine whether offsets in $\delta^{13}C$, $\delta^{15}N$ and $\delta^{18}O$ values exist between *Daphnia* and their ephippia. Furthermore, we investigated whether the stable isotopic compositions of *Daphnia* and their ephippia are influenced by temperature by performing the experiment at two different temperatures.

2 Methods

2.1 *Daphnia* cultivation

Three ex-ephippial *Daphnia pulicaria* clones (LC PUL 53, 99 and 101; Möst, 2013) from Lower Lake Constance (Switzerland) that showed extensive ephippia production in 99 and 101; Möst, 2013) from Lower Lake Constance (Switzerland) that showed extensive ephippia production were selected for the experiment. For each clone, 20 neonate *Daphnia* (< 48 h old) were grown in 2.5 L batch cultures prior to the experiment. From these batch cultures, seven to eight second to third clutch neonates (< 48 h old) were transferred to 180 mL jars, containing 160 mL of filtered lake water (natural abundance or labeled water, according to treatment conditions described below). The lake water was filtered with 0.45 µm glass fiber filters (Sartorius Stedim AG, Switzerland). Initially, *Daphnia* were fed three times per week with fresh algae, concentrated to an equivalent of 1 mg C L$^{-1}$. After day 21 of the experiment, the amount of food was doubled because the number of *Daphnia* in most jars exceeded 30 individuals. Experimental water was exchanged once per week and ephippia (if present) were retained in the cultures. Due to potentially higher productivity and evaporation, the water was exchanged twice per week in Treatment 4 (20°C).

2.2 Food and water sources in the experiment

Three weeks before the experiment, two 1 L chemostats were started simultaneously to produce the algae (*Acutodesmus obliquus*, Turpin) to be used as food for *Daphnia* in the experiment. The algae were cultivated in a “WC”-medium (Guillard, 1975). For one of the chemostats, 45% of the sodium bicarbonate in the medium (5.67 of 12.6 mg L$^{-1}$) was replaced by sodium bicarbonate containing 99.9% 12C (Sigma Aldrich, USA), lowering the $\delta^{13}C$ values of the algae from this chemostat by, on average, 1.8 ± 1.2‰ (one standard deviation (1 SD)) (see results). Once per week, the chemostat-grown algae were harvested, centrifuged (5000 rpm) to remove residual medium, stored at 9°C in the dark and used to feed the *Daphnia* during the following week. Seven days before the start of the experiment, 250 L of lake water were collected from Greifensee (Switzerland) (pH 8.0, TP 0.04 mg L$^{-1}$, TN 1.6 mg L$^{-1}$; data provided by the Cantonal Bureau for Waste, Water, Energy and Air (AWEL, Zürich; www.awel.zh.ch)). This water was stored in the dark at 12°C for the duration of the experiment. Of this water, 50 L were stored in a separate container, and 0.9 mL of water containing 97% ^{18}O (Sigma Aldrich, USA) were added to increase the $\delta^{18}O$ value of the water by 5.6‰ relative to the unlabeled water (see results). Before exchanging the water in Treatment 4, the water was allowed to equilibrate with the ambient laboratory air temperature (20°C).

2.3 Experimental design

The experiment consisted of four cultivation treatments: a control treatment in which *Daphnia* were cultivated in untreated, filtered lake water at 12°C on a diet of fresh chemostat-grown algae (Treatment 1), and treatments with conditions identical to Treatment 1, with the exception of the algae in Treatment 2, which had 1.8 ± 1.2 (1 SD) ‰ lower $\delta^{13}C$ values. The culturing water in Treatment 3 had $\delta^{18}O$ values that were 5.6‰ higher than in the other treatments and Treatment 4 had a temperature (20°C) that was higher than the other treatments.

Each treatment consisted of 30 glass jars, which were sterilized using an autoclave. Prior to the experiment, each glass jar was assigned to one of three replicate groups (A, B, C). The neonate *Daphnia* were evenly distributed in the jars to ensure that every experimental replicate group contained 10 jars, with 3 to 4 jars per clone. All the jars for a given treatment were held in one large tray, and the jars within each treatment were evenly distributed within the trays. The trays were held in the dark in temperature-controlled incubators.

The experiment was designed to assess the following: (a) the effect of a change in algal $\delta^{13}C$ values on those of *Daphnia* and their ephippia (Treatment 2); (b) the effect of a change in environmental water $\delta^{18}O$ values on those of *Daphnia* and their ephippia (Treatment 3); (c) the effect of a difference in temperature (i.e., 12 and 20°C) on the $\delta^{13}C$, $\delta^{15}N$ and $\delta^{18}O$ values of *Daphnia* and their ephippia (Treatment 4); and (d) the offset between *Daphnia* and ephippia in terms of their $\delta^{13}C$, $\delta^{15}N$ and $\delta^{18}O$ values (Treatments 1–4). Statistical analyses were performed with the PAST software.
package, version 1.97 (Hammer et al., 2001), except for tests used to compare the algae from both chemostats. To account for repeated measures, linear mixed effects models (LMEs) were applied, fitting a random intercept for each probing date with the lme function in the nlme package in the R statistical package (R Core team, 2013). Significance was analyzed using an F test. A Bonferroni correction was applied to the multiple (six) comparisons of the stable isotopic composition of Daphnia between the treatments (Tukey post hoc tests).

2.4 Sample collection

After the weekly harvest, a small portion of algae from each chemostat was rinsed with deionized water and centrifuged five times to remove the culturing medium. The concentrated algae were freeze-dried and a small aliquot (150 to 200 µg) was loaded into tin cups (6 × 4 mm, Lüdi Swiss, Switzerland) to measure the δ^{13}C, δ^{15}N and δ^{18}O values of the algae (δ^{13}C_{algae}, δ^{15}N_{algae} and δ^{18}O_{algae}). In each treatment, one jar was assigned to monitoring variation in δ^{18}O values of the water (δ^{18}O_{water}). Once per week, before discarding the water, 12 mL were transferred to a 12 mL glass vial with no head space (Labco, UK) and stored in the dark at 7 °C. Every second sample was analyzed for δ^{18}O_{water} values. Every third week a sample of the water in the storage barrels was collected, stored and measured for δ^{18}O_{water} values.

The experiment was terminated after 62 days. He and Wang (2006) have demonstrated that the Daphnia carbon turnover rate is 11 to 36 % per day, which suggests that after 62 days our Daphnia likely had achieved isotopic equilibrium with the experimental diet and water. Daphnia and ephippia were harvested and pooled according to treatment (1–4) and replicate group (A, B, C). Adult Daphnia were hand-picked from a Bogorov sorting tray (Gannon, 1971) with fine forceps under a binocular and freeze-dried, after with they were loaded into tin cups (6 × 4 mm, Lüdi Swiss, Switzerland; ~10 to 12 individuals per measurement) for analysis of δ^{13}C_{Daphnia}, δ^{15}N_{Daphnia} and δ^{18}O_{Daphnia} values. For each treatment replicate group, three samples were prepared and measured, resulting in 36 measurements for each chemical element. Ephippia were collected and treated in 10 % KOH for 2 h to remove any algal matter and egg yolk. Replicate measurements (three each for C, N and O) of ephippia not treated with KOH were prepared to assess any influence of this treatment on the isotopic compositions of ephippia. The ephippia were loaded into pre-weighed tin cups (6 × 4 mm, Lüdi Swiss, Switzerland): ~10 to 15 for δ^{13}C_{ephippia} and δ^{15}N_{ephippia} analysis and 15 to 20 for δ^{18}O_{ephippia} analysis. Three samples were prepared and measured for each treatment replicate group, except for Treatment 4, which yielded only sufficient numbers of ephippia to measure once per treatment replicate group.

2.5 Assessing the source of oxygen in Daphnia

Following Wang et al. (2009), our experimental setup was used to approximate the proportional contribution of oxygen in the Daphnia stemming from the environmental water relative to that from the diet, using the following equation:

\[
p = \frac{(\delta^{18}O_{Daphnia(A)} - \delta^{18}O_{Daphnia(B)})}{(\delta^{18}O_{water(A)} - \delta^{18}O_{water(B)})},
\]

where \(p\) is the proportion of oxygen in Daphnia stemming from the water, \(\delta^{18}O_{Daphnia(A)}\) and \(\delta^{18}O_{Daphnia(B)}\) would be the \(\delta^{18}O\) values of Daphnia and the water if Daphnia were cultivated in non-manipulated, filtered lake water, and \(\delta^{18}O_{Daphnia(B)}\) and \(\delta^{18}O_{water(B)}\) would be the \(\delta^{18}O\) values of Daphnia and the water if Daphnia were cultivated in the 18O-enriched, filtered lake water.

2.6 Stable isotope mass spectrometry

The δ^{13}C and δ^{15}N values of the algae, Daphnia and ephippia were measured on a Costech ESC 4010 elemental analyzer interfaced via a ThermoConflo III with a Thermo Delta V isotope ratio mass spectrometer (IRMS) at the Alaska Stable Isotope Facility (ASIF) at the University of Alaska, Fairbanks. The analytical precisions for δ^{13}C and δ^{15}N values are expressed as 1 SD from the mean based on the results from multiple (\(n = 13\)) analyses of a laboratory standard (peptone) and were ±0.2 ‰ and ±0.1 ‰, respectively. The δ^{18}O values of the water samples were measured on an online pyrolysis thermochemical reactor elemental analyzer (TCEA) (Finnigan ThermoQuest) coupled to a continuous flow (Conflo III) IRMS (Finnigan MAT Delta V) at the ASIF. Analytical precision is expressed as 1 SD from the mean based on the results from multiple (\(n = 3\)) analyses of a laboratory standard (doubly labeled water; ±0.3 ‰). The δ^{18}O values of the algae, Daphnia and ephippia were measured using the same techniques and instruments as used for the water samples. Analytical precision based on replicate (\(n = 12\)) laboratory standard measurements (benzoic acid, Fisher Scientific, Lot No 947459) was ±0.4 ‰. Stable isotopic compositions are expressed in standard delta (δ) notation in ‰ relative to V-PDB (Vienna Pee Dee Belemnite) for δ^{13}C values, AIR for δ^{15}N values and V-SMOW (Vienna Standard Mean Ocean Water) for δ^{18}O values.

3 Results

3.1 Food and water

The δ^{13}C_{algae} values from both chemostats showed some variation with time (Fig. 1). On all sampling dates except the first, the algae cultured on 13C-depleted medium had lower δ^{13}C_{algae} values than the standard algae (Fig. 1). As a consequence, the mean δ^{13}C_{algae} value for the culture grown using 13C-depleted medium (~20.6 ± 1.84 ‰)
was 1.8 ± 1.2‰ (n = 9) lower than the mean δ¹³C value of the standard algae (−18.8 ± 2.4‰), and this difference was statistically significant (LME, F(1, 8) = 18.04, p < 0.005). There was no statistically significant difference between the algae cultures in terms of δ¹⁵N values (standard algae 2.5 ± 0.3‰, δ¹³C-depleted algae 2.2 ± 0.3‰; F(1, 8) = 4.58, p > 0.05), δ¹⁸O values (standard algae 13.4 ± 1.0‰, δ¹³C-depleted algae 14.6 ± 1.1‰; F(1, 7) = 5.43, p > 0.05) or atomic C:N ratios (standard algae 6.4 ± 1.3, δ¹³C-depleted algae 6.5 ± 1.3; F(1, 8) = 0.18, p > 0.05) (Fig. 1).

The addition of ¹⁸O-enriched water led to an increase in δ¹⁸Owater values in the storage barrels by 5.6‰ (δ¹⁸O value of −3.4 ± 0.1‰, n = 3) relative to the non-labeled water (δ¹⁸O value of −9.0 ± 0.1‰, n = 3) (Fig. 2). The δ¹⁸Owater values from the experimental jars in Treatment 1, 2 and 4 were not significantly different (one-way ANOVA, F(2, 2) = 30.1, p > 0.05) between the three treatments throughout the experiment, and the mean was −8.2 ± 0.5‰ (n = 11). Water from experimental jars from Treatment 3 had a mean δ¹⁸Owater value of −3.3 ± 0.6‰ (n = 4). The mean δ¹⁸Owater values in the storage barrels and the mean δ¹⁸Owater values in the experimental jars after 1 week were used to approximate the baseline δ¹⁸Owater values during cultivation for resolving Eq. (1) by taking the mean of the two values. This resulted in estimates of −8.6‰ for the cultures in non-manipulated lake water at 12°C (Treatment 1 and 2) and −3.4‰ for the cultures in Treatment 3 with ¹⁸O-enriched water.

3.2 Daphnia stable isotope ratios

Mean stable isotope values for *Daphnia* are based on 9 measurements (three measurements for each of the three replicates per treatment). The mean δ¹³C value in Treatment 2 (where *Daphnia* were offered δ¹³C-depleted algae) was lower (−20.2 ± 0.1‰) than in Treatment 1 (−18.7 ± 0.1‰) and 3 (−17.9 ± 0.1‰) (Fig. 3). For treatments at 12°C (1–3), the mean δ¹³C value was 0.5 ± 0.3‰ higher than the mean δ¹³C value that *Daphnia* were cultured on. The mean δ¹³C value in Treatment 4 (20°C; −19.0 ± 0.1‰) was 0.2 ± 0.1‰ lower than the mean δ¹³C value. The results from all treatments in terms of δ¹³C values were significantly different from each other (one-way ANOVA and Tukey post hoc test; Table 1).

Mean δ¹⁵N values at 12°C were 5.5 ± 0.1‰ (Treatment 1), 5.7 ± 0.1‰ (Treatment 2) and 6.2 ± 0.1‰ (Treatment 3), and they were 3.4 ± 0.3‰ higher than the mean δ¹⁵N value (Fig. 3). At 20°C (Treatment 4), the mean δ¹⁵N value (6.5 ± 0.2‰) was 4.0 ± 0.2‰ higher than the mean δ¹⁵N value. All treatments, except for Treatments 1 and 2 and Treatments 3 and 4, were signif-
Table 1. Results of the tests for statistical differences between the four (1–4) treatments (one-way ANOVA) and between pairs of treatments (Tukey test) for $\delta^{13}C_{\text{Daphnia}}$, $\delta^{15}N_{\text{Daphnia}}$ and $\delta^{18}O_{\text{Daphnia}}$ values. The results of the Tukey test are presented below the F and p values for the one-way ANOVA, showing Q values (lower left part of matrix) and p values after Bonferroni correction (upper right).

<table>
<thead>
<tr>
<th></th>
<th>$Daphnia^{13}C$ values</th>
<th></th>
<th>$Daphnia^{15}N$ values</th>
<th></th>
<th>$Daphnia^{18}O$ values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$F_{(2,3)}$</td>
<td>303.8 $p < 1 \times 10^{-8}$</td>
<td></td>
<td>$F_{(2,3)}$</td>
<td>52.1 $p < 1 \times 10^{-5}$</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td><0.002</td>
<td><0.002</td>
<td><0.05</td>
<td>1</td>
<td>>0.9</td>
</tr>
<tr>
<td>2</td>
<td>28.16</td>
<td><0.002</td>
<td><0.002</td>
<td>2</td>
<td>1.686</td>
</tr>
<tr>
<td>3</td>
<td>13.62</td>
<td>41.78</td>
<td><0.002</td>
<td>3</td>
<td>10.16</td>
</tr>
</tbody>
</table>

Significantly different from each other with regard to $\delta^{15}N_{\text{Daphnia}}$ values (one-way ANOVA and Tukey post hoc test; Table 1).

Treatments 1 and 2 were both performed at 12°C and with similar water in terms of $\delta^{18}O$ values. The mean $\delta^{18}O_{\text{Daphnia}}$ values in these treatments were 11.7 ± 0.1‰ and 11.0 ± 0.2‰ (Fig. 3). In Treatment 3, where the mean $\delta^{18}O_{\text{water}}$ value was 5.2‰ higher than in the other treatments, the mean $\delta^{18}O_{\text{Daphnia}}$ Value was 14.6 ± 0.3‰, which was 2.9 and 3.6‰ higher than in Treatment 1 and 2, respectively. In Treatment 4, with $\delta^{18}O_{\text{water}}$ as in Treatment 1 and 2 but run at a higher temperature (20°C), the mean $\delta^{18}O_{\text{Daphnia}}$ value (10.2 ± 0.2‰) was 1.5 and 0.8‰ lower than in Treatment 1 and 2, respectively. A significant difference in $\delta^{18}O_{\text{Daphnia}}$ values was found between all treatments, except for Treatments 1 and 2 and Treatments 2 and 4 (one-way ANOVA and Tukey post hoc test; Table 1).

3.3 Ephippia stable isotope ratios

In all treatments ephippia production started between day 27 and day 34 of the experiment. Until day 48 of the experiment, ephippia production was low (on average 1 to 1.5 ephippia per jar per week), after which production increased to 4.5 to 6 ephippia per jar per week in Treatments 1, 2 and 3, whereas production in Treatment 4 remained low. Across the replicate treatments (A–C), the production of ephippia was similar with, on average, 12 to 13 ephippia per jar at the end of the experiment. The majority of the ephippia were produced by clone LC PUL 99 (55%), whereas LC PUL 101 and 53 were responsible for 23 and 22% of the ephippia production, respectively.

The measurements that we performed on untreated ephippia did not reveal a detectable effect of the KOH treatment on the $\delta^{13}C_{\text{ephippia}}$, $\delta^{15}N_{\text{ephippia}}$ and $\delta^{18}O_{\text{ephippia}}$ values (t tests: $\delta^{13}C_{t} = 0.41, p > 0.05; \delta^{15}N_{t} = 2.20, p > 0.05; \delta^{18}O_{t} = 0.03, p > 0.05$). The mean $\delta^{13}C_{\text{ephippia}}$ value was, on average, 0.2 ± 0.8‰ lower than the mean $\delta^{13}C_{\text{Daphnia}}$ value, but this difference was not statistically significant (t test: $t = 0.83, p > 0.05$; Fig. 4). However, this value was strongly affected by the results from Treatment 4 (20°C), which yielded unexpected values that will be discussed below. In the three treatments at 12°C, $\delta^{13}C_{\text{ephippia}}$ values were, on average, 0.2 ± 0.4‰ higher than $\delta^{13}C_{\text{Daphnia}}$, although this difference was again not significant (paired t test: $t = 1.50, p > 0.05$). Over all four treatments, $\delta^{15}N_{\text{ephippia}}$ values were, on average, 1.6 ± 0.4‰ lower than $\delta^{15}N_{\text{Daphnia}}$ values (paired t test: $t = 14.01, p < 5 \times 10^{-8}$), and $\delta^{18}O_{\text{ephippia}}$ values were, on average, 0.9 ± 0.4‰ lower than $\delta^{18}O_{\text{Daphnia}}$ values (paired t test: $t = 5.58, p < 5 \times 10^{-5}$).

4 Discussion

Statistically significant differences were found between nearly all treatments for all investigated Daphnia stable isotope ratios, even in cases where we expected no differences based on the manipulations. For example, Treatment 1 and 3 were identical in terms of $\delta^{13}C$ values of the food source and temperature and only differed in the $\delta^{18}O$ values of the water, and Treatment 1, 2 and 3 were identical in terms of $\delta^{15}N$ values of the food source and temperature. However, the unexpected differences between these treatments were generally small and of the same order of magnitude as the analytical precisions associated with each element (Fig. 3). They may represent the inherent variability associated with stable isotope ratios in organisms (Schimmelmann, 2011). Alternatively, since the stable isotope ratios of the algae showed some variability over the course of the experiment (Fig. 1), a slight difference in timing in the buildup of biomass may have led to small differences in Daphnia stable isotope ratios. In previous experiments, $\delta^{13}C_{\text{Daphnia}}$ and $\delta^{15}N_{\text{Daphnia}}$ values have been found to differ as much as 1‰ between identical treatments (Power et al., 2003). The differences in Daphnia stable isotope ratios were much larger when comparing treatments with manipulated $\delta^{13}C_{\text{algae}}$ and $\delta^{18}O_{\text{water}}$ values to those with non-manipulated algae and water.

4.1 The food experiment: changing $\delta^{13}C_{\text{algae}}$

Offering Daphnia algae with, on average, 1.8‰ lower $\delta^{13}C_{\text{algae}}$ values resulted in 1.5 to 2.1‰ lower $\delta^{13}C_{\text{Daphnia}}$ values. Since the $\delta^{13}C_{\text{algae}}$ values were variable over time, we cannot reconstruct the exact $\delta^{13}C$ value of the carbon that
Figure 3. δ¹³C, δ¹⁵N and δ¹⁸O values of Daphnia body tissue (left, open circles) and ephippia (right, closed circles) for Treatment 1 (control), 2 (¹³C-depleted algae), 3 (¹⁸O-enriched water) and 4 (elevated temperature). Each data point represents one of the treatment replicate groups and consists of three measurements, of which the standard deviation is indicated by the error bars (only one measurement per replicate treatment group was available for ephippia in Treatment 4). The black horizontal lines in the δ¹³C and δ¹⁵N plots represent the average value of the algae used in that treatment.

Daphnia in our different treatments assimilated, and therefore we cannot calculate a precise estimate of Δ¹³C. Based on the mean δ¹³C_value over the duration of the experiment, however, Δ¹³C between Daphnia and algae is estimated to be +0.5 ± 0.3‰ at 12°C. This is in agreement with commonly found Δ¹³C values of 0 to +1‰ for a range of animals, including invertebrates (DeNiro and Epstein, 1978; McCutchan et al., 2003). D. magna has been reported to have a Δ¹³C value of +1.7‰ at 12°C on a diet of aquarium food (Power et al., 2003). However, in this study a lipid correction was applied to infer δ¹³C values based on C : N ratios following a model by McConnaughey and McRoy (1979). This leads to relatively higher δ¹³C values, and the procedure has been criticized, since it potentially provides biased estimates when comparing isotopic ratios of different organisms and tissues (Mintenbeck et al., 2008). Power et al. (2003) did not report the C: N of the food and Daphnia, so we cannot back-calculate the δ¹³C values they measured prior to lipid correction.

δ¹³C_epi values also reflected the difference in δ¹³Calg values between the treatments. At 12°C, they were not significantly different from the δ¹³C_Daphnia values (although they were consistently lower at 20°C; see below). This is in line with the findings by Perga (2011), who found that the δ¹³C value of ephippia collected in the field was slightly, but not significantly, higher than the δ¹³C value of Daphnia collected in the same net trawls. This suggests that δ¹³C_epi values are a reliable indicator of changes in δ¹³C_Daphnia values, and consequently of variations in δ¹³C values of Daphnia diet: at 12°C, δ¹³C_epi was 0.7 ± 0.2‰ higher than the mean δ¹³Calg. The absence of a clear offset in δ¹³C values between whole Daphnia and Daphnia ephippia at 12°C is in contrast to the difference found between whole Daphnia and Daphnia exoskeletons (0.8‰; Perga, 2010) and between chironomid body tissue and chironomid head capsules (∼1‰; Heiri et al., 2012; Frossard et al., 2013).
4.2 δ^{15}N values of Daphnia and ephippia

At 12°C, the observed Δ^{15}N was $+3.4 \pm 0.3 \%_e$, which agrees well with Δ^{15}N values referred to in the literature (+3 to +4%e; DeNiro and Epstein, 1981; Minagawa and Wada, 1984). A range of Δ^{15}N values for Daphnia have been reported. D. pulicaria reared on a diet of frozen algae pellets had a Δ^{15}N of $+1.4 \%_e$ (Matthews and Mazumder, 2008). This is lower than the Δ^{15}N we found. According to Matthews and Mazumder (2008), the low Δ^{15}N they observed may be explained by the observation that a diet consisting of detritus (dead algae) is associated with considerably ($\sim 2.5 \%_e$) lower Δ^{15}N values than one consisting of living plant matter (Vanderklift and Ponsard, 2003). Our observed Δ^{15}N for D. pulicaria is within the range of reported D. magna Δ^{15}N values (+1 to +6%e; Adams and Sterner, 2000; Power et al., 2003).

δ^{15}Nephippia values were lower (1.6 $\pm 0.4 \%_e$) than δ^{15}N Daphnia values. In contrast, Perga (2011) found δ^{15}Nephippia values to be slightly, but not significantly, lower than δ^{15}N Daphnia values in the field. Together with the results of Perga (2011), our data provide an indication that δ^{15}Nephippia values are indicative of δ^{15}N values of Daphnia and their diet, with only relatively minor offsets between food, Daphnia and ephippia. For chironomids, differences of similar magnitude between whole-body δ^{15}N values and head capsule δ^{15}N values (~1 to $+1 \%_e$) were observed over a large range of δ^{15}N values (2.5 to 15%e; Heiri et al., 2012). Therefore, it seems likely that differences between Daphnia and ephippia δ^{15}N values may also be similar across this δ^{15}N range.

4.3 The water experiment: changing δ^{18}Owater values

δ^{18}Owater values were 5.2%e higher in Treatment 3 than in Treatment 1 and 2, and the mean δ^{18}ODaphnia values in Treatment 3 were 2.9%e higher than in Treatment 1 and 3.6%e higher than in Treatment 2. This implies that, as expected, differences in δ^{18}ODaphnia values reflect differences in δ^{18}Owater, yet that, as in other invertebrates, only part of the oxygen incorporated by the Daphnia originated from the water. Wang et al. (2009) reported that 69% of the oxygen in chironomid larvae stemmed from the water in their environment. Soto et al. (2013) estimated that 84% of the oxygen in protein isolated from chironomids came from the water in their environment, and Nielson and Bowen (2010) reported that 69% of the oxygen in chitin from brine shrimp came from water in their environment. Based on Eq. (1), we estimate that in our experiment 56 to 69% of the oxygen in Daphnia came from the water, based on Treatment 1 and 2, respectively. These estimates are similar to the values reported by Wang et al. (2009) and Nielson and Bowen (2010). δ^{18}Oephippia values closely reflected differences in δ^{18}ODaphnia: they were, on average, $0.9 \pm 0.4 \%_e$ lower than δ^{18}ODaphnia values. This suggests that δ^{18}Oephippia may be used as an indicator of δ^{18}ODaphnia, which in turn can be expected to be related to lake water δ^{18}O values. This is in agreement with the correlation between surface sediment δ^{18}Oephippia values and lake water δ^{18}O values found in a field survey of a number of European lakes (Verbruggen et al., 2011).

4.4 The temperature experiment

Power et al. (2003) reported an increase of 0.1%e in Δ^{13}C values for D. magna with a temperature increase from 12 to 20°C (and +1.4%e when temperature increased from 12 to 26°C). Therefore, we expected Δ^{13}C values for Daphnia in Treatment 4 (20°C) to be similar to or slightly higher than in the other treatments (12°C). Δ^{13}C values were clearly lower, however, in Treatment 4 (−0.2 ± 0.1%e) than in the other treatments (0.0 ± 0.3%e). While we cannot exclude a negative relation between temperature and Δ^{13}C values for Daphnia, we choose to treat this result with caution due to the discrepancy with the positive Δ^{13}C values reported in other studies (DeNiro and Epstein, 1978; McCutchan et al., 2003; Power et al., 2003). A higher lipid content of Daphnia may potentially lead to lower δ^{13}C Daphnia values (McCutchan et al., 2003). However, the C : N ratios of Daphnia in Treatment 4 were slightly lower (but not significantly different; t test: $t = 1.18 \ pm 0.05$) than those of Daphnia in Treatment 1, which does not agree with a higher lipid content in Daphnia from Treatment 4 (Smyntek et al., 2007). Alternatively, 13C depletion of algal biomass during dark respiration may have affected the δ^{13}C algae in Treatment 4 disproportionately due to the higher temperature. Degens et al. (1968) found that δ^{13}C values of the alga Dunaliella tertiolecta were 4%e lower after 3 days in darkness. The rate of respiration by algae depends on temperature and can be 2 to 4 times higher at 20°C than at 12°C (e.g., Vona et al., 2004). Microbial activity in the experimental jars could have been affected by temperature and could have also influenced our results. Additionally, if Daphnia in Treatment 4 had a different timing of growth compared to Treatment 1, as might be expected, they may have been assimilating carbon from algae with different δ^{13}C algae values during the main phase of their growth compared to the other treatments, since δ^{13}C algae values were relatively low in the beginning and at the end of the experiment (Fig. 1). δ^{13}Cephippia values were also lower in Treatment 4, and 1.3 $\pm 0.3 \%_e$ lower than δ^{13}C Daphnia values. For the same reasons as outlined above, it remains unclear whether this observation is the consequence of a fundamental change in the offset between δ^{13}C Daphnia and δ^{13}C ephippia with temperature or whether it is affected by variations in δ^{13}C algae and algal respiration rates or differences in Daphnia growth rates between our treatments. Controlled experiments over a range of temperature values analyzing not only δ^{13}C Daphnia and δ^{13}C ephippia values, but also δ^{13}C values of respired CO2 and microbial biomass would be desirable to further explore this issue. Although the results of Treatment 4 indicate that the
difference between $\delta^{13}C_{\text{ephippia}}$ and $\delta^{13}C_{\text{Daphnia}}$ values may be more variable than suggested by the cultivations at 12°C, the offset is still relatively small compared to the variation in $\delta^{13}C_{\text{ephippia}}$ values in lake sediment records (up to 10‰; e.g., Wooller et al., 2012).

$\Delta^{15}N$ between Daphnia and algae was $+4.0 \pm 0.2$‰ at 20°C, 0.6‰ higher than at 12°C. A small increase (0.4‰) in $\Delta^{15}N$ in this temperature range has also been reported for D. magna (Power et al., 2003). Power et al. (2003) found a decrease of 2.7‰ in $\Delta^{15}N$ values for D. magna between 20 and 26°C, however, and Barnes et al. (2007) found a decrease of 0.6‰ in $\Delta^{15}N$ values for sea bass with a temperature increase from 11 to 16°C. Previously observed $\Delta^{15}N$ values in field studies of aquatic food webs (Vander Zanden and Rasmussen, 2001), and specifically in experimental studies of Daphnia (Adams and Sterner, 2000; Matthews and Mazumder, 2008), are, in some cases, lower than $+3$ to $+4$‰. A potential effect of temperature on $\Delta^{15}N$ values for Daphnia which, based on presently available observations, may amount to 2.7‰ at temperatures above 20°C (Power et al., 2003) therefore deserves future attention. The offset between $\delta^{15}N_{\text{Daphnia}}$ and $\delta^{15}N_{\text{ephippia}}$ in our experiment was, however, not significantly different (t test: $t = 0.26$ $p > 0.05$) between Treatment 1 (control, 12°C) and 4 (20°C).

The effect of temperature on oxygen isotope fractionation during the formation of chitin by aquatic organisms has not been examined previously in experimental studies. Schimmelmann and DeNiro (1986) analyzed the $\delta^{18}O$ values of the chitin of marine crustaceans collected along a temperature gradient of 10°C and van Hardenbroek et al. (2012) studied the $\delta^{18}O$ values of aquatic beetles in museum specimens selected to represent a temperature gradient across North America. Both studies concluded that the temperature effect on oxygen isotope fractionation during chitin formation (if any) was smaller than the variability due to minor differences in local environmental conditions. In this study we kept close control over the environmental conditions and source water $\delta^{18}O$ values, and we found that $\delta^{18}O_{\text{Daphnia}}$ was slightly (0.8 to 1.5‰) lower with an increase of temperature by 8°C but otherwise similar conditions. This may indicate an effect of temperature on oxygen isotope fractionation by Daphnia. We do note, however, that the potential temperature effect on oxygen isotope fractionation by Daphnia observed in our experiment was relatively small and resulted from a large difference in temperature. Therefore, $\delta^{18}O_{\text{Daphnia}}$ values most likely primarily reflect environmental water $\delta^{18}O$ values. The offset between $\delta^{18}O_{\text{ephippia}}$ and $\delta^{18}O_{\text{Daphnia}}$ in Treatment 4 (20°C) was not significantly different, however (t test: $t = 0.09$, $p > 0.05$), from that in Treatment 1 (control, 12°C). This suggests that, in contrast to the difference between $\delta^{18}O_{\text{water}}$ and $\delta^{18}O_{\text{Daphnia}}$, this offset is not affected by temperature in the investigated temperature range (12 to 20°C). Verbruggen et al. (2011) measured the $\delta^{18}O$ values of recently deposited ephippia from surface sediments in lakes along a geographical gradient in Europe. They found a strong correlation between $\delta^{18}O_{\text{ephippia}}$ and lake water $\delta^{18}O$ values. In their data set, the $\delta^{18}O$ values of lake water increased by ~ 4.8‰ with a temperature increase of 8°C, whereas $\delta^{18}O_{\text{ephippia}}$ values increased by only ~ 3‰ over this temperature gradient, a difference of ~ 1.8‰. This difference is of a similar order of magnitude as the 0.8 to 1.5‰ lower $\delta^{18}O_{\text{Daphnia}}$ values we found with an 8°C temperature rise. The data of Verbruggen et al. (2011) and our experimental data would therefore be in agreement with a slight temperature effect on the fractionation of ^{18}O between lake water and Daphnia biomass. However, other mechanisms, such as a change in timing of Daphnia ephippia production with temperature and variations in $\delta^{18}O$ values of food across the examined temperature gradient could also explain varying offsets between $\delta^{18}O_{\text{water}}$ and $\delta^{18}O_{\text{Daphnia}}$ at different temperatures in the study of Verbruggen et al. (2011). Moreover, differences in air temperature at lakes, which Verbruggen et al. (2011) reported, do not necessarily lead to similar differences in lake water temperatures.

4.5 Implications for palaeoecological studies

In general, we found that the stable isotopic composition of ephippia closely reflected the stable isotopic composition of Daphnia. The offsets were consistent within treatments and between most treatments (Fig. 4), and the ephippia stable isotope ratios responded to the manipulations in $\delta^{13}C_{\text{algae}}$ and $\delta^{18}O_{\text{water}}$ that we performed. Studies investigating the $\delta^{13}C$ and $\delta^{15}N$ values of fossil Daphnia ephippia have recorded shifts of up to 5 to 10‰ in $\delta^{13}C$ values (Wooller et al., 2012; Frossard et al., 2014) and 3‰ in $\delta^{15}N$ values (Griffiths et al., 2010). Shifts of 2 to 3‰ in $\delta^{18}O$ values have been reported for fossil chironomid head capsules (Wooller et al., 2004; Verbruggen et al., 2010b). In our experiment, the standard deviation of the offset between Daphnia and ephippia stable isotope ratios was much smaller than the reported shifts in stable isotope ratios of fossil remains: ± 0.4‰ for $\delta^{13}C$, $\delta^{15}N$, and $\delta^{18}O$ (± 0.8‰ for $\delta^{13}C$ when including Treatment 4 at 20°C). If our findings are representative of the offset in stable isotope ratios between Daphnia and their ephippia in nature, they indicate that reported shifts in stable isotope ratios of fossil ephippia can reliably be interpreted as indicating past variations in Daphnia stable isotope ratios. These in turn can be expected to reflect past changes in isotopic composition of Daphnia diet and/or the $\delta^{18}O$ of the water they lived in. While experiments offer the possibility to closely control the food sources and growth conditions for Daphnia, they cannot cover the full range of environments and interactions found in nature. Further studies in the field, in the fossil record and in an experimental setting are therefore needed to confirm the findings that we present here and to improve our understanding of the relationship between the stable isotopic composition of food, ambient water and chitinous fossilizing structures produced by Daphnia and other invertebrates. Although we only cultured Daphnia at two different temper-
atures, we found indications that temperature may have affected $\Delta^{13}C$ and $\Delta^{15}N$ on the one hand and the relationship between $\delta^{18}O_{\text{water}}$ and $\delta^{18}O_{\text{Daphnia}}$ values on the other in an experimental setting. Future efforts focused on constraining the effect of temperature on these offsets and relationships are therefore particularly necessary.

Acknowledgements. We thank Christine Dambone-Boesch and Esther Keller for their help in maintaining the algae cultures and Päivi Rinta for feeding the Daphnia and exchanging the water on occasion. We also thank the Cantonal Bureau for Waste, Water, Energy and Air (AWEL, Zürich) for providing data on the water chemistry of Greifensee. We thank two anonymous referees for their valuable comments on an earlier version of this manuscript. This research was supported by the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC grant agreement no. 239858 (RECONMET) and by a grant of the Swiss Science Foundation (CR3213_125211 to P.S.).

Edited by: T. J. Battin

References

Martínez del Río, C., Wolf, N., Carleton, S. A., and Gannes, L. Z.: Isotopic ecology ten years after a call for more laboratory experi-

