
The Basement of the Deccan Traps and Its Madagascar Connection: Constraints from Xenoliths
Author(s): Dewashish Upadhyay, Ellen Kooijman, Ajay K. Singh, Klaus Mezger, and Jasper
Berndt
Source: The Journal of Geology, Vol. 123, No. 3 (May 2015), pp. 295-307
Published by: The University of Chicago Press
Stable URL: http://www.jstor.org/stable/10.1086/682009 .

Accessed: 30/07/2015 06:58

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

 .
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

 .

The University of Chicago Press is collaborating with JSTOR to digitize, preserve and extend access to The
Journal of Geology.

http://www.jstor.org 

This content downloaded from 130.92.9.55 on Thu, 30 Jul 2015 06:59:00 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/action/showPublisher?publisherCode=ucpress
http://www.jstor.org/stable/10.1086/682009?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp


The Basement of the Deccan Traps and Its Madagascar Connection:
Constraints from Xenoliths
Dewashish Upadhyay,1,* Ellen Kooijman,2 Ajay K. Singh,1

Klaus Mezger,3 and Jasper Berndt4

1. Department of Geology and Geophysics, Indian Institute of Technology, Kharagpur, India; 2. Department of
Geosciences, Swedish Museum of Natural History, Frescativägen 40, SE-11418 Stockholm, Sweden; 3. Institute for
Geology and Center for Space and Habitability, University of Bern, Baltzerstrasse 113 CH-3012 Bern, Switzerland;

4. Institute for Mineralogy, Westfälische Wilhelms-University, Corrensstrasse 24, 48149 Münster, Germany
AB STRACT

Paleogeographic reconstructions of India and Madagascar before their late Cretaceous rifting juxtapose the Antongil

Block of Madagascar against the Deccan Traps of India, indicating that the Western Dharwar Craton extends below
the Deccan lavas. Some recent studies have suggested that the South Maharashtra Shear Zone along the northern
Konkan coast of India limits the northern extent of the Western Dharwar Craton, implying that the craton does not
extend below the Deccan Traps, raising a question mark on paleogeographic reconstructions of India and Madagas-
car. The continuity of the Western Dharwar Craton north of the South Maharashtra Shear Zone below the Deccan
Traps—or its lack thereof—is critical for validating tectonic models correlating Madagascar with India. In this study,
zircons in tonalitic basement xenoliths hosted in Deccan Trap dykes were dated in situ, using the U-Pb isotope sys-
tem.The data furnishU-Pb ages that define three populations at 25275 6, 24565 6, and 23795 9Ma. The 25275 6Ma
ages correspond to the igneous crystallization of the tonalites, whereas the 2456 5 6 and 2379 5 9 Ma ages date
metamorphic overprints. The results help to establish for the first time that the basement is a part of the Neoarchean
granitoid suite of the Western Dharwar Craton, which extends northward up to at least Talvade in central and Kihim
beach in the western Deccan. By implication, the South Maharashtra Shear Zone cannot be the northern limit of the
Western Dharwar Craton. The granitoids are correlated with the Neoarchean felsic intrusions (2.57–2.49) of the
Masaola suite in the Antongil Block of Madagascar, supporting the existence of a Neoarchean Greater Dharwar Craton
comprising the Western Dharwar Craton and the Antongil-Masora Block.

Online enhancements: supplementary table.

Introduction
Paleogeographic reconstructions suggest a close proterozoic crustal units with equivalents in India
and East Africa (Stern 1994; Unrug 1996; Blasband
et al. 2000; Kröner et al. 2000; Veevers 2004; Collins
link between India and Madagascar from the late
Neoproterozoic/early Paleozoic (McWilliams 1981;
Stern 1994; Meert et al. 1995; Blasband et al. 2000;
De Wit 2003; Sommer et al. 2003; Veevers 2004;
Collins and Pisarevsky 2005; Ratheesh Kumar
et al. 2014) until their separation in the late Cre-
taceous (Storey et al. 1995; Torsvik et al. 1998,
2000; fig. 1). The present-day crystalline basement
of Madagascar is made up of Archean to Neo-
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and Pisarevsky 2005). The Antongil-Masora Block
of Madagascar can be correlated with the Western
Dharwar Craton (WDC) of India on the basis of the
coherent Paleo/Mesoarchean and Neoarchean evo-
lutionary histories of the two crustal units (e.g.,
Tucker et al. 1999b, 2011a, 2011b, 2014; Schofield
et al. 2010; Rekha et al. 2013; 2014). Together, the
two terranes constituted the Greater Dharwar
Craton (GDC). According to Collins et al. (2003)
and others (Collins and Windley 2002; Cox et al.
2004; Fitzsimons and Hulscher 2005; Collins 2006),
the Neoarchean Antananarivo Block of present-day
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Figure 1. Juxtaposition of India and Madagascar at 120 Ma and suggested correlation of shear zones and tectonic
units, as proposed by Ishwar Kumar et al. (2013). The published ages of the crustal units in western India and north-
central Madagascar are shown (age data compiled from Balasubramanian et al. 1978; Swami Nath and Ramakrishnan
1981; Naqvi and Rogers 1987; Gupta et al. 1988; Agarwal et al. 1992; Jayananda et al. 1995, 2000; Peaucat et al. 1995;
Russel et al. 1996; Tucker et al. 1999b, 2011b, 2014; Chawwick et al. 2000; Paquette et al. 2003; Ghosh et al. 2004;
French and Heaman 2010; Schofield et al. 2010; Ishwar Kumar et al. 2013; Rekha et al. 2013). A major part of the
Peninsular Indian basement along the Konkan coast is covered and hidden by volcanic rocks of the Deccan Traps,
making reliable correlations with Madagascar difficult. The South Maharashtra Shear Zone—which Rekha et al.
(2013, 2014) and Rekha and Bhattacharya (2014) claim to represent the northern boundary of the WDC—is marked.
The new U-Pb zircon ages from basement xenoliths in Deccan Traps dykes help to establish the northern continuity
of the Western Dharwar Craton and its correlation with crustal units in northern Madagascar. Abbreviations:
A1, Betsimisaraka suture zone; A2, Kumta suture zone; A3, Coorg suture zone; B1, Ranotsara shear zone; B2, Angavo
shear zone; B3, Chitradurga shear zone; B4, Kolar shear zone; B6, Moyar shear zone; C1, Sahantaha shelf; C2, Sirsi
shelf; D1, Antananarivo block; D2, Karwar block; D3, Coorg block; E1, Antongil block; E2, Masora block; E3, Western
Dharwar Craton; E4, Eastern Dharwar Craton. Inset is an overview geological map of Madagascar showing the ma-
jor tectonic units. Abbreviations: a, Phanerozoic cover; b, Bemarivo Belt; c, Betsimisaraka Unit; d, Vohibory Unit;
e, Androyen Unit; f, Molo Unit; g, Tsaratanana Sheet; h, Antananarivo Block; i, Antongil-Masora Block; j, shear zone
systems (Am, Ampanihy; Be, Betsileo; If-A, Ifanadiana-Angavo; Ra, Ranotsara; V, Vorokafotra). A color version of this
figure is available online.
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Madagascar having East African affinity was amal-
gamated with India during the early Cambrian col-
lisionof theGDCwith theAntananarivoBlockalong

In this contribution, we report, for the first
time, laser ablation–sector field–inductively cou-
pled plasma mass spectrometer (LA-SF-ICP-MS)

The Western Dharwar Craton. The WDC com-
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the Betsimisaraka Suture. This view is strongly
contested by Tucker and coworkers (e.g., Tucker
et al. 2011a, 2014), who have questioned the exis-
tence of such a suture. These authors propose that
the Archean rocks of present-day Madagascar—rep-
resented by the Antongil-Masora and Antananarivo
domains—were part of the GDC since ca. 3.0 Ga
until its fragmentation in the Cretaceous. They also
suggest that the Antananarivo Block was amalgam-
ated within the GDC during a Neoarchean (2.55–
2.48 Ga) accretion event. The Paleoproterozoic
Anosyen-Androyen unit in southern Madagascar
was sutured with the GDC—which comprised the
WDC, theAntongil-Masora Block, and theAntanan-
arivo Block—during Ediacaran–early Cambrian time
along the Ranotsara-Bongolava shear zone (fig. 1).
A reconstruction of India and Madagascar at

ca. 120Ma (e.g., Katz and Premoli 1979; Collins and
Windley 2002; Meert 2003; O’Neill et al. 2003;
Ishwar Kumar et al. 2013) just before their rift-
ing juxtaposes the Antongil Block of Madagascar
against the late Cretaceous to Paleocene (Lightfoot
et al. 1987; Vandamme et al. 1991; Sheth et al. 2001;
Mahoney et al. 2002; Pande 2002) Deccan Traps of
India (fig. 1). If the Antongil Block and the WDC
constituted an expansive GDC until the late Creta-
ceous, the WDC should extend below the Deccan
Trap lavas. Recently, Rekha et al. (2013, 2014) and
Rekha and Bhattacharya (2014) have identified a new
Paleoproterozoic/Mesoproterozoic shear zone sys-
tem called the Pernem-Phonda tectonic zone/South
Maharashtra Shear Zone between Pernem and
Phonda along the northern Konkan coast of western
India (fig. 1). These authors claim that the shear zone
system is a terrane boundary that limits the northern
extent of the WDC. By implication, the WDC does
not extend below the Deccan Traps. If true, the
Antongil Block would have no counterpart in pen-
insular India, requiring a relook at the paleogeo-
graphic reconstructions of India and Madagascar.
Thus, the continuity of the WDC north of the

South Maharashtra Shear Zone—or its lack
thereof—is critical for the validation of tectonic
models correlating India and Madagascar. Unfortu-
nately, a major part of the Peninsular Indian base-
ment (1500,000 km2; Ray et al. 2008) along the
Konkan coast north of the SouthMaharashtra Shear
Zone is covered and hidden by volcanic rocks of
the Deccan Traps (figs. 1, 2). As a result, the nature
and the geological-geochronological evolution of
the basement rocks underlying the Deccan lavas
are unconstrained.
This content downloaded from 130.92.9.
All use subject to JSTOR 
U-Pb zircon isotope ages from the rocks derived
from the basement below the Deccan Traps. These
rocks are exposed as crustal xenoliths in basaltic
dykes in the central and western Deccan Traps
(fig. 2). The new data help to establish the north-
ern continuity of the WDC and its correlation with
crustal units in northern Madagascar.

Regional Geology and Field Setting
prises Paleo- to Mesoarchean (3.4–3.0 Ga) tonalite-
trondhjemite-granodiorite basement referred to as
the Peninsular gneisses (Beckinsale et al. 1980; Tay-
lor et al. 1984; Dhoundial et al. 1987; Meen et al.
1992; Peucat et al. 1993; Ishwar Kumar et al. 2013;
fig. 2). The basement is overlain by two greenstone-
type supracrustal sequences that have been sub-
divided into the amphibolite to granulite facies Sargur
Group of Paleo- to Mesoarchean (3.3–3.1 Ga) age and
the greenschist facies Dharwar Supergroup of Neo-
archean (3.0–2.6 Ga) age (Swami Nath et al. 1976;
Janardhan et al. 1979; Nutman et al. 1992; Bouhallier
et al. 1993, 1995; Peucat et al. 1995; Ramakrishnan
and Vaidyanadhan 2008). The Dharwar Supergroup
has been subdivided into two volcano-sedimentary
successions, an older Bababudan Group overlain by
the younger Chitradurga Group, separated by a dis-
conformity (Swami Nath and Ramakrishnan 1981).
The Bababudan Group comprises metamorphosed
basalts, layered mafic complexes, mafic/ultramafic
schists, and felsic volcanic units together withmeta-
sedimentary rocks, such as quartzite, phyllite, and
banded iron formations. The Chitradurga Group is
made up of metasedimentary rocks, such as ortho-
quartzite, graywacke, conglomerate, banded iron
formation, phyllite, and carbonate interlayered with
metavolcanic units. The two volcano-sedimentary
successions form the Shimoga and Chitradurga
greenstonebelts (SwamiNathet al. 1976). The craton
underwent a major phase of felsic magmatism ac-
companied by deformation and metamorphism dur-
ing the late Neoarchean (2.6–2.4 Ga) related to the
amalgamation of the Western and Eastern Dharwar
Cratons (Friend and Nutman 1991; Chadwick et al.
2000; Moyen et al. 2003; Peucat et al. 2007; Chardon
and Jayananda 2008) and the closure of the Goa basin
(Rekha et al. 2013). The final phase of igneous ac-
tivity is represented by the emplacement of mafic
dyke swarms at 2.4, 2.0–2.2, and 1.6 Ga (French and
Heaman 2010 and references therein).
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Recently, Ishwar Kumar et al. (2013) have iden-
tified a new arcuate paleo-suture called the Kumta
suture zone along the western coast of India. This

(fig. 1). The suture separates the Sirsi shelf (Dharwar
supracrustals) of the Dharwar cratonic block from
the Karwar block (Ishwar Kumar et al. 2013), which
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belt is purported to be the extension of the Betsi-
misaraka Suture of Madagascar into western India
This content downloaded from 130.92.9.5
All use subject to JSTOR T
comprises tonalite-trondhjemite-granodiorite and
amphibolites equivalent to the Peninsular gneisses.
Figure 2. Generalized geological map of peninsular India showing the broad lithotectonic units (modified from
Ratheesh Kumar et al. 2014). The Deccan Trap volcanic rocks and the location of Talvade (GPS coordinates: lat 207
40.240N, long 74752.370E) and Kihim beach (GPS coordinates: lat 18743.850N, long 72751.880E) xenolith-bearing basaltic
dykes are marked with stars. Insets are Google Earth images showing the exact locations of the two dykes. Rifts,
shear/suture zones, and mobile belts: 1, Narmada-Son; 2, Satpura Mobile Belt; 3, Great Boundary Fault; 4, Aravalli
Fold Belt; 5, Delhi Fold Belt; 6, Cambay Rift; 7, Kutch Rift; 8, Mahanadi Rift; 9, Godavari Rift; 10, Eastern Ghats
Mobile Belt; 11, Chitradurga shear zone; 12, Mettur-Kolar shear zone; 13, Palghat-Cauvery shear system; 14, Karur-
Kamban-Painavu-Trichur shear zone; 15, Achankovil shear zone. A color version of this figure is available online.
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On the basis of the correlation of various shear
zones in a reconstruction of India and Madagascar
at ∼120 Ma, Ishwar Kumar et al. (2013) suggested

can Traps (Sant and Karanth 1990; Ray et al. 2007).
The swarm covers an area of ∼14,500 km2 and con-
tains about 210 dykes of dolerite and basalt intru-
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that the Antananarivo-Karwar-Coorg block (2500–
3200 Ma) in the west and the GDC (∼2571 Ma) in
the eastwere amalgamated along the Betsimisaraka-
Kumta-Coorg suture (fig. 1) diachronously from
north to south in the period 1380–750 Ma.

The Deccan Traps and Related Dyke Swarms. The
Deccan Traps represent an expansive continental
flood basalt province with a composite thickness
of ca. 3000 m and covering an area of more than
500,000 km2 of the Indian Peninsula (fig. 2). The
volcanic rocks are dominated by subaerial flows
of tholeiitic basalts with minor occurrences of pic-
rites and alkali basalts (e.g., Beane et al. 1986). The
flood basalts were erupted close to the Cretaceous-
Tertiary boundary (61–72 Ma; Lightfoot et al. 1987;
Vandamme et al. 1991; Sheth et al. 2001; Mahoney
et al. 2002; Pande 2002).
The xenolith samples were collected from two

E-W-trending dykes at Talvade near Dhule in the
central and at Kihim beach near Alibaugh in the
western part of theDeccanTraps (fig. 2). TheTalvade
dyke forms a part of the large Narmada-Satpura-Tapi
giant dyke swarm of tholeiitic basalts outcropping
in the Nandurbar-Dhule region of the central Dec-
This content downloaded from 130.92.9.
All use subject to JSTOR 
sive into compound pahoehoe flows of basaltic
composition (Ray et al. 2007, 2008). All dykes strike
E-W and have been interpreted to be related to the
∼N-S regional minimum horizontal compressive
stress (j3) direction.
The Talvade dyke is 18 km long, ca. 3 m wide,

and of basaltic composition (Ray et al. 2008). The
dyke contains an assorted variety of xenoliths that
are concentrated in the upper part of the dyke
along the ridge crest (fig. 3; cf. Ray et al. 2008). The
xenoliths are usually angular to tabular and span
a wide range of sizes, from millimeter-sized frag-
ments to rafts tens of centimeters across (fig. 3).
The rock types include granite gneiss, tonalite
gneiss, granite, quartzite, vein quartz, feldspathic
granulite, calcareous rock, and fine-grained tuff
(this study; Ray et al. 2008). Some of the quartzite
and gneissic xenoliths preserve megascopic folds
and mylonitic bands (cf. Ray et al. 2008).
The Kihim beach dyke forms a part of the NNW-

SSE-trending Konkan dyke swarm outcropping
along the Konkan plain (Dessai and Viegas 1995;
Ray et al. 2007). The dykes of the Konkan swarm
display a large compositional variation from tho-
Figure 3. Field photographs documenting the occurrence of an assorted variety of basement xenoliths in basaltic
dykes at Talvade (a–e) and Kihim beach (f). The xenoliths are concentrated in the upper central part of the dyke along
the ridge crest. They span a wide range of sizes, from millimeter-sized fragments to rafts tens of centimeters across,
and include rock types such as granite gneiss, tonalite gneiss, granite, quartzite, vein quartz. Many of the xenoliths are
fragmented and heavily altered. A color version of this figure is available online.
55 on Thu, 30 Jul 2015 06:59:00 AM
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leiitic to alkalic, ultramafic to silicic and carbon-
atitic. The Kihim beach dyke is of basaltic com-
position and contains numerous granitic and tona-

physics, Indian Institute of Technology, Kharag-
pur. The U-Pb isotope measurements were done on
a Thermo-Fisher Scientific Element 2 SF-ICP-MS

Petrographic Description. Four granitoid xenolith
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litic xenoliths concentrated along the upper central
part of the dyke (fig. 3). The size of the xenoliths is
variable, from a few millimeters to several cen-
timeters across. In both the Talvade and Kihim
beach dykes, basaltic lava has been injected along
the foliation/layering of the xenoliths and grain
boundaries of the minerals. As a result, many of the
xenoliths are fragmented and heavily altered.

North-Central Madagascar. North-Central Mada-
gascar has been divided into five tectonic units
(Collins et al. 2000; Kröner et al. 2000; Collins and
Windley 2002; Tucker et al. 2011b, 2014; fig. 1):
(1) the Antongil-Masora Block, comprising Paleo-
to Mesoarchean (∼3.2 Ga) gneisses intruded by Neo-
archean (∼2.5 Ga) granites metamorphosed under
greenschist facies conditions (Tucker et al. 1999b;
Collins et al. 2001; Schofield et al. 2010); (2) the
Antananarivo Block, consisting of ∼2.5-Ga gneisses
interlayered with 820–740-Ma granitoids and gab-
bros, deformed and metamorphosed at high-grade
conditions between 700 and 550 Ma (Tucker et al.
1999b; Kröner et al. 2000; Collins et al. 2003); (3) the
Itrimo sheet, comprising Paleo- to early Neoprote-
rozoic deformed metasedimentary rocks (Cox et al.
1998; Collins et al. 2003) that have been thrust over
the Antananarivo block; and (4) the Tsaratanana
sheet, consisting of mafic gneisses having an age of
2.8–2.5 Ga (U-Pb zircon) and yielded Meso- to Neo-
archean xenocrystic zircon and Sm-Nd ages (Tucker
et al. 1999b; Collins et al. 2001). The Tsaratanana
sheet rocks have been multiply deformed/meta-
morphosed at ∼2.5 Ga and ∼0.5 Ga and cut by 800–
760 Ma gabbro intrusions (Goncalves et al. 2000);
(5) the Bemarivo belt made up of metasediments,
granites, and gneisses overlain by deformed meta-
volcanic rocks metamorphosed under granulite fa-
cies conditions at 510–520Ma (Tucker et al. 1999a).
The crustal blocks of central and northern Mada-
gascar are separated from southern Madagascar by
the Ranotsara shear zone (Windley et al. 1994).

Analytical Techniques
Zircon grains from granitic/tonalitic xenoliths in

the Talvade and Kihim beach dykes were dated in
situ in thin sections using a LA-SF-ICP-MS at the
Institut für Mineralogie, Westfälische Wilhelms-
Universität, Münster. The internal structures of
the grains were imaged by cathodoluminescence
(CL) and back-scattered electron (BSE) techniques,
using a JEOL JSA 6490 secondary electron micro-
scope at the Department of Geology and Geo-
This content downloaded from 130.92.9.5
All use subject to JSTOR T
coupled to a New Wave UP193HE ArF Excimer la-
ser system. The laser was operated at a 10-Hz rep-
etition rate, 5-J/cm2 beam energy density, and 12–
35-mm spot size. External standardization was done
by bracketing groups of 10 unknowns with three
measurements of the GJ-1 reference zircon (Jackson
et al. 2004). Further details of the analytical and
data reduction protocols can be found in Kooijman
et al. (2012). Selection of laser ablation spots was
based on the internal structure of grain interiors as
seen in CL and BSE images. To monitor precision
and accuracy, the 91500 reference zircon (Wieden-
beck et al. 1995) was measured (n p 62) as un-
knowns over the course of the analyses and yielded
206Pb/238U p 0.179 (51.5%, 2j) and 207Pb/206Pb p
0.0749 (50.99%, 2j), which match published val-
ues within analytical errors. All uncertainties are
reported at the 2j level. The U contents were esti-
mated relative to the GJ-1 reference zircon. Con-
cordia diagrams were constructed using Isoplot
4.15 (Ludwig 2003). The U-Pb isotope ratios and
ages are listed in table S1, available online.

Results
samples were selected for the study. Three of them
(ZEN-1C, ZEN-2a, ZEN-2c) are from the Talvade
dyke,whereas the fourth (ZEN-7a) is from theKihim
beach dyke.

ZEN-1C. This is a quartzofeldspathic rock hav-
ing two distinct textural domains. One of the do-
mains is strongly foliated, with the foliation plane
defined by stretched quartz lenticels showing dy-
namic recrystallization (fig. 4a). Basaltic melt is
seen to have intruded between the foliation planes
(fig. 4a) as well as along grain boundaries of min-
erals (fig. 4d ). Evidence of residual strain is seen in
the form of undulose extinction in quartz. The dy-
namically recrystallized quartz grains are over-
printed by partial static annealing producing 1207
triple junctions. This annealing is possibly related
to the heating of the xenolith within the basaltic
host magma. The other domain is relatively coarse
grained, with coarse-scale layering comprising alter-
nate quartz-rich and plagioclase-rich layers (fig. 4b).
The plagioclase is extensively altered and appears
cloudy (fig. 4b–4d). Inclusion of iron oxide within
grains and along fractures/cracks imparts a dark
color to the grains (fig. 4b). The quartz is coarse
grained, weakly strained, and equigranular. Euhe-
dral zircons occur within quartz and plagioclase as
5 on Thu, 30 Jul 2015 06:59:00 AM
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resorption (fig. 4d ). extensive alteration manifested by porosity forma-
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ZEN-2A. The rock is tonalite gneiss with a
strong tectonic foliation defined by alternate quartz-
rich and feldspar-rich layers (fig. 4e). Quartz grains
are stretched to lenticels and show undulose ex-
tinction and subgrain formation (fig. 4f). The feld-
spars are mostly plagioclase and show extensive al-
teration. They appear clouded and contain opaque
(iron oxide) inclusions (fig. 4e–4h). There is exten-
sive iron oxide staining/impregnation along cleav-
ages and grain boundaries (fig. 4f–4h). The quartz has
recrystallized to a very fine aggregate and is full of
mineral and fluid inclusions. Zircons are euhedral
to subhedral and occur largely in quartz or at the
quartz-plagioclase grain boundaries (fig. 4g, 4h).
ZEN-2C. This is relatively coarse-grained tonal-

ite gneiss. The foliation is defined by coarse grains
This content downloaded from 130.92.9.
All use subject to JSTOR 
tion, clouding of the grains, patches of iron oxide
inclusions, fluid inclusions, as well as sericite and
zoisite inclusions (fig. 4i–4l). The coarse elongated
plagioclase laths are recrystallized to a granoblastic
mosaic with 1207 triple junctions (fig. 4i, 4j). Veins
and pockets of basaltic melt intrude the xenolith
along foliation. These interfaces are characterized
by extensive plagioclase alteration (fig. 4j–4l). Zir-
con occurs both in quartz as well as within altered
plagioclase.
ZEN-7A. This is a very coarse-grained rock

comprising mostly plagioclase, with some intersti-
tial quartz. The rock can be classified as a tonalite
(fig. 4m). It contains veins and pockets of the host
basaltic melt, along which there is extensive al-
teration of the plagioclase, as in the other samples
well as along the contact between the two miner-
als (fig. 4c, 4d). Quartz crystals show evidence for

of elongated quartz alternating with plagioclase-
rich layers (fig. 4e). The plagioclase grains show

Figure 4. Plane-polarized light photomicrographs (left columns) and BSE images (right columns) illustrating micro-
textural relationships in the tonalite/tonalite gneiss basement xenoliths: ZEN-1C (a–d), ZEN-2A (e–h ), ZEN-2C (i–l ),
ZEN-7A (m–p). Extensive alteration of feldspars is observed especially in domains where basaltic melt has intruded the
xenoliths. A color version of this figure is available online.
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(fig. 4n–4p). The altered plagioclase is porous and
full of iron oxide inclusions (fig. 4o, 4p). Quartz
grains show evidence of resorption (fig. 4o, 4p). A

age is therefore interpreted as the emplacement age
of the tonalite. Many of the zircons show evidence
of fluid/melt-assisted alteration. In BSE images,
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thick reaction rim has developed at the mineral-
melt andmineral-mineral interface (fig. 4m, 4p).

Zircon Internal Structure and U-Pb Ages. Tonalite
(ZEN-1C). Laser ablation analyses of core and rim
regions in 16 grains furnish concordant as well as
discordant spot ages. The data points define a dis-
cordia with an upper intercept age of 25215 10 Ma
and a lower intercept age of 90 5 15 Ma (MSWD p
2; fig. 5). The young lower intercept age indicates
alteration/Pb loss of the zircons during the eruption
and entrainment of the xenoliths within the Dec-
can Trap lavas. Therefore, the 207Pb/206Pb ages from
even the discordant data points may represent the
real formation ages, especially since most of them
cluster within a relatively narrow range. The 207Pb/
206Pb ages define three age populations at 2527 5 8,
2487 5 13, and 2373 5 28 Ma. The 2527 5 8 Ma
cluster is identical to the discordia upper inter-
cept age and was measured from domains display-
ing prominent to relict oscillatory growth zoning
(fig. 5b, grains 10, 18, 19, and 20). The 2527 5 8 Ma
This content downloaded from 130.92.9.5
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such grains appear pitted with the development of
macroporosity (e.g., grain 3, fig. 5b). In CL images,
these zircons show CL-weak alteration patches/
layers along cracks/fractures (e.g., grains 3 and 7,
fig. 5b). The discordant data points were measured
from grains showing these alteration features. Their
207Pb/206Pb ages define a major age cluster at 2487 5
13 Ma and a minor one at 2373 5 28 Ma, both of
which are attributed to late Neoarchean to early
Paleoproterozoic metamorphism of the tonalite.

Tonalite gneiss (ZEN-2A). Most zircon spot
analyses give discordant ages that define a discor-
dia indicating near-recent alteration and Pb loss
(fig. 6). Thus, the 207Pb/206Pb ages from even the
discordant data points are likely to date real geo-
logical events. At the least, they are minimum ages
and likely to be geologically significant, since most
of them cluster closely together. The 207Pb/206Pb
ages define two populations: one at 2521 521 Ma,
measured from U-poor CL-bright domains that
preserve prominent-to-faint oscillatory growth zo-
Figure 5. Collage of BSE images showing the overall texture of the tonalite xenolith ZEN-1C (a), BSE and CL images
of zircons from the sample with the spot ages marked (d indicates discordant analysis; b), concordia (c), and 207Pb/206Pb
age relative probability density plots (d), respectively, of U-Pb isotope data from zircons. Age populations were
computed using the unmix ages option in Isoplot, which uses the unmixing algorithm of Sambridge and Compston
(1994). A color version of this figure is available online.
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cluster is identical to the 2527 5 8 Ma ages ob-
tained from igneous domains in zircons from the

(ZEN-1C) and tonalite gneiss (ZEN-2A), the 25295
9 Ma age is interpreted to date the emplacement of
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tonalite xenolith ZEN-1C and is therefore inter-
preted to be dating the igneous crystallization of
the tonalite. The metamorphic components define
a 207Pb/206Pb age cluster at 2447 5 12 Ma, similar
to the 2487 5 13 Ma ages obtained from metamor-
phic zircon in the tonalite ZEN-1C. In CL images,
these domains display patchy zoning, haveweakCL,
and show embayed and irregular resorbed margins
(fig. 6b, grains 1, 4, and 13).
Tonalite gneiss (ZEN-2C). Zircon grains in the

sample are euhedral and have internal structures
typical of igneous zircon. These include oscillatory
growth zonation aswell as sector zoning (grains 3, 6,
9, 20, and 21, fig. 7b). U-Pb spot (n p 19) ages from
12 representative grains define a discordia with up-
per and lower intercept ages of 25335 9 and 1025
25 Ma (MSWD p 0.56), respectively (fig. 7). The
young lower discordia intercept indicates recent
alteration of the zircons, a feature similar to zircons
from the tonalite ZEN-1C and ZEN-2A. The 207Pb/
206Pb ages define a prominent age peak at 2529 5
9 Ma, analytically indistinguishable from the dis-
This content downloaded from 130.92.9.
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the magmatic protolith of the gneiss. A minor age
peak at 2456 5 21 Ma is similar to the late Neo-
archean to early Paleoproterozoic ages from meta-
morphic zircon in tonalite ZEN-1C and ZEN-2A
and is attributed to a metamorphic overprint on the
rocks.
Tonalite (ZEN-7A). Most zircon grains show ev-

idence of extensive fluid/melt-induced alteration
and plot along a discordia with a young lower in-
tercept age, suggesting recent Pb loss. The 207Pb/
206Pb ages from both concordant and discordant data
points define major age peaks at 2445 5 9, 2380 5
10, and 23135 15 Ma. All the three populations are
from altered domains that are pitted and charac-
terized by extensive microporosity in the form of
irregular patches or fractures (e.g., BSE images of
grains 31, 29, 32, 23, and 35, fig. 8b). The altered
regions are bright in BSE images (fig. 8b, grains 31,
19). In some of the grains, core regions are more
strongly affected by the alteration, which proceeds
inward along irregular fractures (e.g., grains 31, 35,
and 19, fig. 8b). Such cores are usually U rich, have
nation (e.g., grains 12, and 13, fig. 6b). This age cordia upper intercept age. As with the tonalite

Figure 6. Collage of BSE images showing the overall texture of the tonalite xenolith ZEN-2A (a), BSE and CL images
of zircons from the sample with the spot ages marked (d indicates discordant analysis; b), concordia (c), and 207Pb/206Pb
age relative probability density plots (d), respectively, of U-Pb isotope data from zircons. A color version of this figure
is available online.
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other grains, the pitted zones define a narrow rim
around cores that display patchy CL and BSE zoning

24565 6 and 23795 9Ma (weightedmean, 2jinternal)
are interpreted to date metamorphic overprints on

Pb Loss in Zircon during Xenolith Entrainment. Zir-
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(e.g., grains 23 and 29, fig. 8b). The internal struc-
tures of the zircon clearly indicate that the three
Paleoproterozoic populations (24455 9, 23805 10,
and 2313 5 15 Ma) date metamorphic overprints
on the rocks. One zircon grain furnished an older age
of 2529 5 39 Ma from a domain having a weak
CL growth zoning. In consanguinity with the other
tonalite xenoliths, the 2529 5 39 Ma age dates
crystallization of the tonalite. It appears that the
metamorphic overprints have almost completely
reequilibrated the igneous zircons, accounting for
their scarcity.

In summary, the U-Pb isotopic compositions of
zircons from the four tonalite/tonalite gneiss xe-
noliths indicate recent to subrecent Pb loss asso-
ciated with the emplacement of the Deccan Traps.
Igneous components with variably preserved oscil-
latory growth and sector zoning in all four sam-
ples yield a tightly clustered age of 2527 5 6 Ma
(weighted mean, 2jinternal), which is interpreted as
dating late Neoarchean tonalitic magmatism in the
basement of theDeccanTrap lavas. Zircon domains
This content downloaded from 130.92.9.5
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the rocks.

Discussion and Conclusion
cons in the all the xenolith samples show Pb loss
trends, with the discordia lower intercepts scat-
tering between 102 and 56 Ma. The large spread
in the lower intercept ages is due to fanning of the
discordant analyses from multiple points on the
concordia—which date magmatic and metamor-
phic events—toward the lower intercept. These ages
thus might not have any real geological meaning.
However, the lower intercepts indicate that the
discordance is associated with the disturbance of
the U-Pb isotope system in the zircons during the
entrainment of the xenoliths in the Deccan Trap
basalts.

The Deccan basalts had mantle potential tem-
perature of ∼14007C (Sen 1995, Sen 2001; White
and McKenzie 1995) and eruption temperature of
11257–12007C (Melluso et al. 1995). Although the
weak CL response, and are possibly metamict. In that furnish statistically significant age clusters at

Figure 7. Collage of BSE images showing the overall texture of the tonalite xenolith ZEN-2C (a), BSE and CL images
of zircons from the sample with the spot ages marked (d indicates discordant analysis; b), concordia (c), and 207Pb/206Pb
age relative probability density plots (d), respectively, of U-Pb isotope data from zircons. A color version of this figure
is available online.
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took place at 65–66 Ma, existing age data show that
magmatism continued long after 61 Ma (Lightfoot

The Late Neoarchean (2.6–2.4 Ga) period in the
WDC is marked by a major phase of granitoid
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et al. 1987; Sheth et al. 2001) to ca. 72Ma (Mahoney
et al. 2002). Thus, the entrained xenolithsmay have
experienced high-temperature conditions for a long
period of time. On the basis of numerical modeling,
Bea and Montero (2013) have shown that zircon
grains shielded and surviving within xenoliths in
mafic magmas at temperatures 110007C can expe-
rience high temperatures and develop large dis-
turbances in their U-Pb isotopic systematics as a
result of enhanced Pb diffusion in a relatively short
time, if they are at least partially metamict before
entrainment; only zircons with low U concentra-
tions would remain undisturbed by such a thermal
overprint (Kooijman et al. 2011). The Pb loss trends
exhibited by zircons from the tonalite xenoliths in
this study can be explained by a similar process
involving high-temperature diffusive Pb loss during
the entrainment of the xenoliths in the Deccan
basalt magmas. The Pb loss may have been accen-
tuated as a result of the zircons being hosted in
feldspars, which have high Pb partitioning and dif-
fusivity (Cherniak 2010; Bea and Montero 2013).
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magmatism and accompanying deformation-meta-
morphism. Dhoundial et al. (1987) obtained Neo-
archean Rb-Sr whole-rock ages from several syn- to
post-tectonic granitic plutons in theGoa region (e.g.,
Chandranath granodiorite/granite: 2650 5 100 Ma;
Dudhsagar granite: 25655 95Ma;Canacona granite
porphyry: 2395 5 390 Ma). More recently, Ishwar
Kumar et al. (2013) have reported U-Pb SHRIMP
ages of ∼2.57 Ga for quartzo-feldspathic gneisses
from the Dharwar block. Similar ages (2.6–2.5 Ga,
CHIME-monazite) were obtained by Rekha et al.
(2013) for the Quepem granitoid in the Goa schist
belt. Other parts of the craton also show evidence for
extensive Neoarchean felsic magmatism. Acid vol-
canic rocks of the Chitradurga Group (Dharwar Su-
pergroup) give a 207Pb/204Pb-206Pb/204Pb whole-rock
isochron age of 2565 5 28 Ma (Taylor et al. 1984)
and an Rb-Sr isochron age of 25205 62Ma (Bhaskar
Rao et al. 1992). The Chitradurga granite pluton
has a 207Pb/204Pb-206Pb/204Pb whole-rock isochron age
of 2605 5 18 Ma (Taylor et al. 1984) and a U-Pb
zircon age of 2614 5 10 Ma (Jayananda et al. 2006).
general consensus is that the bulk of the eruption The Northern Extent of the West Dharwar Craton.

Figure 8. Collage of BSE images showing the overall texture of the tonalite xenolith ZEN-7A (a), BSE and CL images
of zircons from the sample with the spot ages marked (d indicates discordant analysis; b), concordia (c), and 207Pb/206Pb
age relative probability density plots (d), respectively, of U-Pb isotope data from zircons. A color version of this figure
is available online.
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Felsic volcanism and granitic intrusion in theGadag
greenstone belt has been dated at 2588 5 10 and
2570 5 10 Ma, respectively (U-Pb zircon; Sarma

Phonda tectonic zone/South Maharashtra Shear
Zone represents a crustal domain formed by long-
lived Proterozoic tectonism (∼2.4–1.7 Ga). The au-
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et al. 2011). The N-S-trending expansive Closepet
batholith, which roughly marks the boundary be-
tween the western and eastern parts of the Dharwar
craton, was also emplaced in the Neoarchean (ca.
2.52 Ga; e.g., Friend and Nutman 1991). The large-
scale magmatic activity in the craton is broadly
synchronous with deformation metamorphism re-
lated to the closure of the Goa basin at ca. 2.57 Ga
(CHIME monazite; Rekha et al. 2013) and the amal-
gamation of the Western and Eastern Dharwar Cra-
tons at ca. 2.50 Ga (Friend and Nutman 1991; Chad-
wick et al. 2000; Moyen et al. 2003; Peucat et al.
2007; Chardon and Jayananda 2008).

The 2.53-Ga tonalitic basement xenoliths within
the Deccan Trap dykes at Talvade are thus clearly
a part of the expansive Neoarchean granitoid suite
of the WDC. That the basement beneath the Dec-
can Traps has a WDC affinity is also supported
by the 2.46-Ga ages obtained from metamorphic
domains in zircon from the Talvade and Kihim
beach tonalite xenoliths. Similar ages, inferred to be
dating late Neoarchean to early Paleoproterozoic
metamorphism, have been reported from metacar-
bonates at Sandur (∼2.48 Ga, 207Pb/204Pb-206Pb/204Pb
whole-rock isochron; Russell et al. 1996), dolomite-
diopside-forsterite marble in the Sargur schist belt
(2.48–2.46Ga, TIMS zircon; Sarangi et al. 2007), and
phyllites, schists, and polymict conglomerates from
theGoa schist belt (CHIMEmonazite, 2.44–2.46Ga;
Rekha et al. 2013). The significance of the 2370 5
22 Ma age from a patchy zircon core in xenolith
sample ZEN-7A is not clear. It is tentatively corre-
lated with thermal metamorphism associated with
the emplacement of the oldest set of mafic dyke
swarm within the Dharwar craton at ca. 2.37 Ga
(French et al. 2010).

The results of our study clearly establish the fol-
lowing: (1) the basement of the Deccan Trap lavas
comprises tonalitic granitoids that were emplaced
at ∼2.53 Ga andmetamorphosed/deformed at ∼2.46
and ∼2.37 Ga; (2) the tonalitic basement below the
Deccan Traps is a part of the expansive Neoarchean
granitoid suite of the WDC; (3) the geological evo-
lution of the basement rocks below the Deccan
Traps is similar to that of the other parts of the
WDC; and (4) the WDC forms the basement to the
Deccan Traps lavas, and the cratonic nucleus ex-
tends northward up to at least Talvade in the cen-
tral Deccan andKihim beach in thewesternDeccan
Traps.

On the basis of CHIME monazite ages, Rekha
and Bhattacharya (2014) inferred that the Pernem-
This content downloaded from 130.92.9.5
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thors documented a northward younging of meta-
morphic episodes across the zone and suggested that
the Pernem-Phonda crustal domain was a terrane
boundary that limited the northern extent of the
WDC. This is not supported by the new zircon age
data from the basement xenoliths, which instead
show that the WDC extends northward beyond the
Pernem-Phonda corridor, thereby necessitating a re-
evaluation of the status of the Pernem-Phonda tec-
tonic zone/South Maharashtra Shear Zone.

Paleoproterozoic to Mesoproterozoic ages sim-
ilar to those for the Pernem-Phonda corridor (e.g.,
Rekha and Bhattacharya 2014) have also been re-
ported by Ishwar Kumar et al. (2013) from theKumta
suture and the neighboring Karwar and Dharwar
blocks. These authors obtained CHIME ages of
∼1.70 Ga from zircon rims in quartz-phengite-schist
from theKumta suture andK-Ar biotite ages of 1.55–
1.64 Ga from the Bondla ultramafic-gabbro com-
plex. They also reported Paleoproterozoic K-Ar bi-
otite ages of ∼1.73 and 1.75–1.80 Ga from quartzo-
feldspathic gneisses in the Dharwar block and
tonalite-trondhjemite-granodiorites of the Karwar
block, respectively. Ishwar Kumar et al. (2013) have
interpreted the Paleoproterozoic ages to be dating
uplift of the Karwar and Dharwar blocks before
their suturing. Thus, the Pernem-Phonda tectonic
zone/SouthMaharashtra Shear Zone could be either
(1) intracontinental shear zone within the Dharwar
block or (2) suture between the Karwar block and
the Dharwar block and therefore equivalent to the
Kumta suture.

Correlation with Madagascar. Though the status
of the Betsimisaraka suture and its continuation
into India as the Kumta suture is still debated, pa-
leogeographic reconstructions juxtaposing Mada-
gascar against India until their late Cretaceous sep-
aration is supported by geochronological (e.g.,
Tucker et al. 1999a, 2011a, 2011b, 2014; Collins
and Windley 2002; Collins et al. 2003; Cox et al.
2004; Collins and Pisarevsky 2005; Collins 2006;
Schofield et al. 2010; Ishwar Kumar et al. 2013;
Rekha et al. 2013, 2014; Rekha and Bhattacharya
2014; Zhou et al. 2015) and geophysical (Chand and
Subrahmanyam 2003; Ratheesh Kumar et al. 2014)
studies. In a recent study, Ratheesh Kumar et al.
(2014) identified zones of conjugate rift-related lith-
ospheric thinning/deformation along the western
continental margin of India and the eastern con-
tinental margin of Madagascar on the basis of ef-
fective elastic thickness of the lithosphere. These
zones were inferred to represent the paleo-rift in-
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ception points. There is also a close-fit correlation
of Moho geometry and bathymetry of the shelf mar-
gins for the two continents.

of granitoid rocks in the northern part of the WDC
similar to those in the Antongil Block. The lack of
Neoarchean rocks along the Konkan coast is there-

We thank an anonymous reviewer and the editor

C E

Journal of Geology 307B A S EM ENT O F TH E D E CCAN TRA P S
The existence of 2.53-Ga WDC granitoids below
theDeccan Traps further adds to the growing body of
evidence supporting the existence of a Neoarchean
GDCcomprising theWDCof India and theAntongil-
Masora Block of Madagascar. TheseWDC granitoids
can be correlated with the expansive Neoarchean
felsic intrusives (2.57–2.49 Ga; Tucker et al. 1999b,
2014; Paquette et al. 2003; Schofield et al. 2010) of
the Masaola suite in the Antongil Block of Mada-
gascar. Contrary to observations by Rekha et al.
(2013) that late Archean intrusive rocks are spatially
restricted along the Konkan coast, this study pro-
vides evidence for the existence of an expansive suite

R E F E R EN
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fore apparent only because the Neoarchean base-
ment lies covered by the Deccan Trap volcanic rocks.
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