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Abstract. Information on the relationship between cumula-

tive fossil CO2 emissions and multiple climate targets is es-

sential to design emission mitigation and climate adaptation

strategies. In this study, the transient response of a climate or

environmental variable per trillion tonnes of CO2 emissions,

termed TRE, is quantified for a set of impact-relevant cli-

mate variables and from a large set of multi-forcing scenar-

ios extended to year 2300 towards stabilization. An ∼ 1000-

member ensemble of the Bern3D-LPJ carbon–climate model

is applied and model outcomes are constrained by 26 physi-

cal and biogeochemical observational data sets in a Bayesian,

Monte Carlo-type framework. Uncertainties in TRE esti-

mates include both scenario uncertainty and model response

uncertainty. Cumulative fossil emissions of 1000 Gt C result

in a global mean surface air temperature change of 1.9 ◦C

(68 % confidence interval (c.i.): 1.3 to 2.7 ◦C), a decrease in

surface ocean pH of 0.19 (0.18 to 0.22), and a steric sea level

rise of 20 cm (13 to 27 cm until 2300). Linearity between cu-

mulative emissions and transient response is high for pH and

reasonably high for surface air and sea surface temperatures,

but less pronounced for changes in Atlantic meridional over-

turning, Southern Ocean and tropical surface water saturation

with respect to biogenic structures of calcium carbonate, and

carbon stocks in soils. The constrained model ensemble is

also applied to determine the response to a pulse-like emis-

sion and in idealized CO2-only simulations. The transient cli-

mate response is constrained, primarily by long-term ocean

heat observations, to 1.7 ◦C (68 % c.i.: 1.3 to 2.2 ◦C) and the

equilibrium climate sensitivity to 2.9 ◦C (2.0 to 4.2 ◦C). This

is consistent with results by CMIP5 models but inconsistent

with recent studies that relied on short-term air temperature

data affected by natural climate variability.

1 Introduction

How multiple climate targets are related to allowable CO2

emissions provides basic information to design policies

aimed to minimize severe or irreversible damage from an-

thropogenic climate change (Steinacher et al., 2013). The

emission of carbon dioxide from burning of fossil fuels is by

far the most dominant driver of the ongoing anthropogenic

climate change and of ocean acidification (IPCC, 2013; Gat-

tuso et al., 2015). The increase in a broad set of climate vari-

ables such as atmospheric carbon dioxide (CO2), CO2 radia-

tive forcing, global air surface temperature, or ocean acidi-

fication depends on cumulative CO2 emissions (Allen et al.,

2009; IPCC, 1995). It is thus informative to quantify the link

between cumulative, total CO2 emissions, and different cli-

mate variables. It is advantageous to represent a climate tar-

get, such as the United Nations’ 2 ◦C global mean surface

air temperature target, in terms of allowable total CO2 emis-

sions because this is an easily communicable emission mit-

igation goal. While the link between cumulative CO2 emis-

sions and global mean surface air temperature has been ex-

tensively studied (IPCC, 2013), relatively little attention has

been paid to the relationship between cumulative CO2 emis-

sions and other impact-relevant variables such as ocean acid-
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ification or sea level rise (Zickfeld et al., 2012; Herrington

and Zickfeld, 2014). However, considering the link to emis-

sions for other variables and from the global to the regional

scale appears important as many impact-relevant changes are

not directly related to global mean surface air temperature.

It is also important to quantify the uncertainty in

these links with CO2 emissions by using probabilistic,

observation-constrained approaches or multi-model ensem-

bles. This enables one to establish a budget for the amount of

allowable carbon emissions if a given climate target or a set

of targets is to be met with a given probability. Such budgets

in probabilistic terms have been established for surface air

temperature, but only recently for a set of multiple climate-

impact-relevant variables (Steinacher et al., 2013).

A climate target that is currently recognized by most world

governments (United Nations, 2010) places a limit of 2 ◦C

on the global mean warming since preindustrial times. An

objective of the recent Paris agreement (United Nations,

2015) is to hold “the increase in the global average tem-

perature to well below 2 ◦C above pre-industrial levels and

to pursue efforts to limit the temperature increase to 1.5 ◦C

above pre-industrial levels”. This target emerged from the

international negotiation process following the United Na-

tions Framework Convention of Climate Change (United Na-

tions, 1992) that entered into force in 1994. However, the

United Nations Framework Convention of Climate Change

has multiple objectives. It calls for the avoidance of danger-

ous anthropogenic interference within the climate system as

well as allowing for ecosystems to adapt naturally to climate

change, ensuring food production, and enabling sustainable

economic development. These objectives cannot be encap-

sulated in one single target, e.g., a global mean surface air

temperature target, but may require multiple targets. These

may be specific for individual regions and components of the

climate system, which includes the atmosphere, hydrosphere,

biosphere, and geosphere and their interactions (United Na-

tions, 1992). For example, targets may include bounds for sea

level rise, ocean acidification, and ocean warming that threat-

ens marine ecosystem functioning and services (IPCC, 2014;

Gattuso et al., 2015; Howes et al., 2015). Ocean acidification

is, like global warming, progressing with anthropogenic CO2

emissions but, unlike global warming, largely independent of

the emissions and atmospheric abundance of non-CO2 forc-

ing agents. It is thus expected that the quantitative link to

cumulative CO2 emissions is different for ocean acidifica-

tion variables, e.g., surface ocean pH, than for global mean

surface air temperature. In general, the quantitative relation-

ship to emissions and its uncertainty ranges are distinct for

different individual target variables.

Climate projections are associated with two fundamen-

tally distinct types of uncertainties (e.g. Hawkins and Sut-

ton, 2009). First, the scenario uncertainty arises from the fact

that future anthropogenic emissions are not known because

they depend largely on human actions and decisions, such as

climate policies, technological advances, and other socioeco-

nomic factors. Second, limitations in our process understand-

ing likely lead to differences between the simulated response

to emissions and the response of the actual system the model

is intended to describe. This constitutes an additional uncer-

tainty, termed the model or response uncertainty.

Well-defined metrics that summarize the Earth system re-

sponse to a given forcing by a single or a few values are use-

ful in many aspects. They allow one to quantify the response

uncertainty and to compare results from different sources,

such as ensemble model simulations, model intercompar-

isons, or observation-based estimates. Due to their relative

simplicity, metrics also ease the communication among sci-

entists and between scientists, stakeholders, and the public.

The transient climate response (TCR) and the equilibrium

climate sensitivity (ECS) are such metrics, which are used

to quantify the global mean surface air temperature (SAT)

change associated with a doubling of atmospheric CO2 (e.g.

Knutti and Hegerl, 2008). The TCR measures the short-term

response (i.e., the temperature increase at the time of dou-

bling atmospheric CO2 in a simulation with 1 %yr−1 in-

crease), while the ECS quantifies the long-term response

after reaching a new equilibrium of the system under the

increased radiative forcing. TCR and ECS are metrics for

the physical climate system and they do not depend on the

carbon-cycle response (e.g. Huber and Knutti, 2014; Kum-

mer and Dessler, 2014). TCR and ECS both depend on mul-

tiple physical feedbacks such as the water vapor, the ice-

albedo, or the cloud feedbacks. TCR also depends on the rate

of ocean heat uptake. ECS itself does not depend on the rate

of ocean heat uptake, while observationally constrained esti-

mates of ECS do.

Certain metrics are helpful to reduce the scenario depen-

dency of results, which may facilitate the communication in

a mitigation policy context (Allen et al., 2009). One such

metric is the response to a pulse-like emission of CO2 and

other forcing agents as applied to compute global warming

potentials used in the greenhouse gas basket approach of the

Kyoto protocol (Joos et al., 2013; Myhre et al., 2013). An-

other metric is the transient climate response to cumulative

CO2 emissions (TCRE), which links the global mean surface

air temperature increase to the total amount of CO2 emis-

sions. In addition to the physical climate response, these met-

rics also depend on the response of the carbon cycle. TCRE is

a useful metric because it has been shown that global warm-

ing is largely proportional to cumulative CO2 emissions and

almost independent of the emission pathway (Allen et al.,

2009; Matthews et al., 2009; Zickfeld et al., 2009; IPCC,

2013; Gillett et al., 2013). It essentially represents the com-

bination of the TCR and the cumulative airborne fraction

of CO2 (Gregory et al., 2009; Collins et al., 2013). More

recently, additional metrics, i.e., the equilibrium and multi-

millennial climate response to cumulative CO2 emission,

have been proposed to evaluate the long-term link between

global mean surface air temperature and emission (Frölicher

and Paynter, 2015).
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There is an apparent discrepancy between the TCR es-

timated with the most recent set of Earth system models

(ESMs) versus some recent studies that invoke observa-

tional constraints (Otto et al., 2013) and simplified models

(Schwartz, 2012; Collins et al., 2013). These latter studies

suggest the possibility of a TCR below 1 ◦C, i.e., outside

the very likely range given in the Fourth Assessment Report

of the IPCC (Collins et al., 2013). Shindell (2014b, a) sug-

gests that there are biases in simple models that do not ade-

quately account for the spatial distribution of forcings. Shin-

dell found by analyzing ESM output that the transient climate

sensitivity to historical aerosol and ozone forcing is substan-

tially greater than to CO2 forcing due to their spatial differ-

ences. Taking this into account resolves the discrepancies in

TCR estimates. Stainforth (2014) concluded from the study

by Shindell (2014b) that probabilistic 21st century projec-

tions based on simple models and observational constraints

under-weight the possibility of high impacts and over-weight

low impacts on multi-decadal timescales. Huber and Knutti

(2014) find that the TCR and ECS of the ESMs are consistent

with recent climate observations when natural variability and

updated forcing data are considered. Kummer and Dessler

(2014) concluded that considering a ≈ 33 % higher efficacy

of aerosol and ozone forcing than for CO2 forcing would re-

solve the disagreement between estimates of ECS based on

the 20th century observational record and those based on cli-

mate models, the paleoclimate record, and interannual vari-

ations. Van der Werf and Dolman (2014) applied a multiple

regression approach using historical temperature and radia-

tive forcing data to find that recent temperature trends are

influenced by natural modes of variability such as the At-

lantic Multidecadal Oscillation. They estimated TCR to be

above 1 ◦C using century-long records. However, an updated

probabilistic quantification of the TCR, ECS, and TCRE with

a spatially explicit model and constrained by a broad set of

observations is missing.

The goals of this study are (i) to establish the relation

between cumulative CO2 emissions and changes in illustra-

tive, impact-relevant Earth system variables; (ii) to quantify

TCRE, TCR, and ECS; and (iii) to establish the response of

different Earth system variables to an emission pulse, i.e.,

the impulse response function (IRF). In analogy to TCRE,

we introduce a new metric, the transient response to cumu-

lative CO2 emissions (TRE). TREX is the change in a cli-

mate variable, X, in response to cumulative CO2 emissions

of 1000 Gt C. To this end, we analyzed TRE for variables that

we deemed impact-relevant and also reasonably well repre-

sented in our model including surface air temperature, sea

surface temperature, steric sea level change, ocean acidity,

carbon storage in soils, and ocean overturning.

The link and the linearity between the responses in the

different variables and cumulative CO2 emissions is inves-

tigated in a structured way with an observation-constrained

model ensemble and a large set of emissions scenarios. This

allows us to address not only the scenario uncertainty but

also the model uncertainty. We quantify uncertainties related

to specific greenhouse gas emission trajectories, i.e., scenario

uncertainty, by analyzing responses to CO2 emission pulses

as well as to a set of 55 scenarios representing the evolu-

tion of carbon dioxide and other radiative agents. The re-

sponse uncertainties for these scenarios are quantified with

an ∼ 1000-member model ensemble constrained by 26 ob-

servational data sets in a Bayesian, Monte Carlo-type frame-

work with an ESM of intermediate complexity (EMIC). The

model features spatially explicit representations of land-use

forcing, vegetation, and carbon dynamics, as well as physi-

cally consistent surface-to-deep transport of heat and carbon

by a 3-D, dynamic model ocean, thereby partly overcoming

deficiencies identified for box-type models used in earlier

probabilistic assessments (Shindell, 2014b, a). This allows us

also to reassess the probability density distribution, including

best estimates and confidence ranges, for the ECS, the TCR,

and the TCRE.

This paper is structured in the following way. In the

Methods section, first the modeling framework is introduced

(Sect. 2.1). Specific subsections deal with model parame-

ter selection and sampling (Sect. 2.1.1), observational con-

straints and the calculation of model skill scores (Sect. 2.1.2),

the procedure for model spin-up (Sect. 2.1.3), and scenario

choices and model simulations (Sect. 2.1.4). The follow-

ing sections then cover the definition of TCRE and TREX

(Sect. 2.2), the calculation of probability density functions

(PDFs; Sect. 2.3), and how the linearity of the responses to

cumulative CO2 emissions is tested (Sect. 2.4). Finally, we

discuss the selection of the analyzed climate variables (X) in

Sect. 2.5. In the results section, we first discuss the response

in various climate variables to CO2 emission pulses of var-

ious magnitude to gain insight regarding to what extent we

may expect linearity in the response to emissions (Sect. 3.1).

In Sect. 3.2, we present results for the TRE of the global

mean surface air and surface ocean temperatures, steric sea

level rise (SSLR), the Atlantic meridional overturning circu-

lation (AMOC), global mean surface ocean pH, the satura-

tion of surface waters in the Southern Ocean and the tropics

with respect to calcium carbonate, as used to build coral reefs

and shells and other structures of marine organisms, and fi-

nally global soil carbon stocks. In Sect. 3.3, results for the

transient and equilibrium climate sensitivity are presented.

Discussion and conclusions complete the paper.

2 Methods

2.1 Modeling framework

We apply the Bern3D-LPJ model in a Bayesian, probabilis-

tic, observation-constrained approach which is described in

detail by Steinacher et al. (2013). Probabilistic assessments

are widely used to determine probability distributions of

model parameters, climate sensitivity, and many other cli-
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mate variables (e.g. Wigley and Raper, 2001; Knutti et al.,

2002, 2003, 2005; Murphy et al., 2004; Schleussner et al.,

2014; Bodman et al., 2013; Little et al., 2013; Harris et al.,

2013; Holden et al., 2010, 2013; Bhat et al., 2012; Olson

et al., 2012; Williamson et al., 2013). The Bern3D model was

used in connection with an ensemble Kalman filter to con-

strain model parameters and regional air–sea carbon fluxes

from observations (Gerber et al., 2009; Gerber and Joos,

2010, 2013). Bern3D-LPJ is an EMIC that consists of a three-

dimensional dynamic ocean component (Müller et al., 2006;

Parekh et al., 2008) including sea ice (Ritz et al., 2011a);

a two-dimensional energy and moisture balance model of

the atmosphere (Ritz et al., 2011a, b); and a comprehensive

terrestrial biosphere model with dynamic vegetation (Sitch

et al., 2003), permafrost, peatland (Spahni et al., 2013), and

land-use (Strassmann et al., 2008) modules.

We rely here on simulations presented by Steinacher et al.

(2013) as described in the following subsections and illus-

trated in Fig. 1. Uncertainties in physical and carbon-cycle

model parameters, radiative efficiencies, climate sensitivity,

and carbon-cycle feedbacks are taken into account by varying

19 key model parameters to generate a model ensemble with

5000 members (Appendix Table A1). Each ensemble mem-

ber is assigned a skill score based on how well the model

version is able to represent the observational constraints. This

skill score is used as a weight to compute PDFs and ensemble

means for different model outcomes.

2.1.1 Model parameter sampling

Nineteen model parameters are sampled for the generation

of the model ensemble (Table A1). The selection of these

parameters has to balance computational costs vs. maximum

coverage of the parameter space that is relevant for the model

variables we are interested in.

Three parameters are sampled from the energy and mois-

ture balance model of the atmosphere. Most importantly,

the nominal ECS determines the equilibrium warming per

change in radiative forcing. Technically, this is implemented

by translating a given value for ECS to a value for the feed-

back parameter λ (Ritz et al., 2011a, b) using a calibration

curve. λ accounts for all feedbacks in the model that are

not explicitly resolved. Diffusivity coefficients, diffzonal and

diffmerid,scale, control the depth-integrated heat fluxes (Ritz

et al., 2011a, b). The uniform zonal diffusivity is specified

directly and diffmerid,scale is a scaling factor for the latitude-

dependent meridional diffusivity.

The selection of the most relevant parameters for terres-

trial photosynthesis, hydrology, vegetation dynamics, soil or-

ganic matter decomposition, and turnover is largely based

on a previous study by Zaehle et al. (2005). They analyzed

an earlier version of the model by sampling 36 parameters

and identified the most important ones in controlling carbon

fluxes and pool sizes. Perhaps not surprisingly, the most in-

fluential parameters directly govern either the input flux of

carbon into a carbon pool or the timescale of carbon over-

turning for individual pools.

Four parameters are sampled that govern carbon assimila-

tion and transpiration of water. These are a scaling parame-

ter to upscale assimilation from the leaf to the canopy level

(αa), the intrinsic quantum efficiency of CO2 uptake for C3

plants (αC3), a shape parameter specifying the degree of co-

limitation by light and RuBisCO activity (θ ), and a parame-

ter that influences the link between canopy conductance and

evapotranspiration (gm), and thereby soil hydrology and wa-

ter limitation of photosynthesis. These parameters were iden-

tified as the four most important ones controlling net primary

production and heterotrophic respiration and they are among

the eight most important parameters controlling carbon pool

sizes (Zaehle et al., 2005).

Two parameters are sampled that control the turnover of

carbon in vegetation. These are the timescale governing the

conversion of sapwood to heartwood (τsapwood) and the max-

imum mortality rate of trees (mortmax). Four parameters are

sampled that govern the carbon turnover in mineral soils. The

fractions fsoil and fslow determine how much decomposing

litter enters the fast and slow overturning soil pools and how

much is released directly to the atmosphere. ksoil,scale is a

global scaling factor applied to the spatial and temporal vari-

able decomposition rates of organic carbon in the fast and

slow soil pools. Litter and soil decomposition rates depend

on soil temperature and thus are influenced by global warm-

ing. The parameter governing the temperature sensitivity of

these rates is also sampled. Finally, Cpeat,scale determines the

initial amount of carbon stored in northern peatlands.

Three parameters are sampled from the Bern3D ocean

component. diffdia and diffiso are the diapycnal and isopy-

cnal diffusivities that control the ocean circulation and thus

the transport and vertical mixing of heat, carbon, and other

tracers (Müller et al., 2006; Schmittner et al., 2009). kgas,scale

is a scaling factor applied to the OCMIP-2 air–sea gas trans-

fer velocity field (Müller et al., 2008) and affects the oceanic

uptake of anthropogenic carbon. The ocean carbonate chem-

istry and marine biology parameters are not perturbed in this

study in order to save computational costs. The ocean chem-

istry is very well understood and the relevant parameters are

already well constrained (Dickson, 2002). The marine bi-

ology parameters are considered of secondary importance

for this study, and when compared to the parameters affect-

ing the physical transport and uptake of anthropogenic car-

bon (Joos et al., 1999; Plattner et al., 2001; Heinze, 2004;

Gangstøet al., 2008; Kwon et al., 2009).

Finally, two parameters are sampled to modulate the radia-

tive forcing from well-mixed greenhouse gases (RFGHG,scale)

and aerosols (RFaerosol,scale). They are applied as scaling fac-

tors to the prescribed time series (or to the simulated radia-

tive forcing in the case of atmospheric CO2) and reflect the

uncertainties given by Forster et al. (2007).

We generate a 5000-member ensemble from the prior dis-

tributions of those 19 key model parameters using the Latin
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Figure 1. Flowchart illustrating the applied methodology. First, an ensemble of model configurations is generated from prior distributions

of model parameters. Then the ensemble is constrained by 26 observational data sets by calculating a skill score (Sm) for each ensemble

member (m). In the next step, the constrained model ensemble is run into the future under multiple greenhouse gas scenarios (s) as well as

for idealized 2xCO2 and CO2 emission pulse simulations. Finally, probability distributions are calculated from these simulations for TCR,

ECS, and TCRE as well as for TREX and IRFX and different climate variables, X.

Table 1. Response to a 100 Gt C CO2 emission pulse on different timescales as simulated by the Bern3D-LPJ model (see also Fig. 2).

The values (ensemble median and 90 % range) indicate the difference to a baseline simulation without emission pulse after 20, 50, 100,

and 500 years for the atmospheric CO2 concentration (1pCO2), global annual mean surface temperature (1SAT), steric sea level rise

(SSLR), Atlantic meridional overturning circulation (1AMOC), global annual mean surface ocean pH (1pH), annual mean surface aragonite

saturation in the Southern Ocean (1�arag,S.O.) and in the tropics (1�arag, trop.), and global soil carbon stocks (1Csoil).

Variable Units 20 years 50 years 100 years 500 years

1pCO2 ppm 30.6 [26.9–33.8] 25.6 [21.0–29.6] 22.0 [17.3–26.6] 15.0 [11.2–21.9]

1SAT ◦C 0.18 [0.10–0.27] 0.17 [0.10–0.30] 0.17 [0.09–0.32] 0.14 [0.06–0.35]

SSLR cm 0.82 [0.51–1.15] 1.26 [0.68–1.99] 1.65 [0.80–2.81] 2.44 [1.03–5.82]

1AMOC % −2.4 [−4.0 to −0.8] −2.1 [−4.5 to −0.3] −1.8 [−4.5–0.0] −0.8 [−3.9–0.7]

1pH 10−2
−2.6 [−2.8 to −2.2] −2.3 [−2.6 to −1.9] −2.0 [−2.4 to −1.6] −1.4 [−2.0 to −1.0]

1�arag,S.O. 10−2
−7.7 [−9.0 to −5.8] −6.8 [−7.9 to −5.4] −5.9 [−6.9 to −4.7] −4.1 [−5.3 to −3.1]

1�arag,trop. 10−2
−12.7 [−13.9 to −11.4] −10.8 [−12.2 to −9.2] −9.3 [−10.8 to −7.7] −6.5 [−8.5 to −5.2]

1Csoil Gt C 1.11 [−1.03–5.22] 1.38 [−3.05–8.92] 1.42 [−6.82–12.01] 1.73 [−21.65–13.32]

www.biogeosciences.net/13/1071/2016/ Biogeosciences, 13, 1071–1103, 2016
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hypercube sampling method (McKay et al., 1979). The prior

distributions are selected such that the median matches the

standard model configuration and the standard deviation is

one-fourth of the plausible parameter range based on the lit-

erature and/or expert judgment (Table A1). Normal prior dis-

tributions are chosen for ranges that are basically symmetric

with respect to the standard parameter value and log-normal

priors are used for asymmetric ranges.

2.1.2 Observational constraints and the computation of

skill scores

Twenty-six observation-based data sets are used to constrain

the model results including projected Earth system changes,

allowable carbon emissions to meet a climate target, or met-

rics such as the transient and equilibrium climate sensitivity.

A single skill score is computed by comparing observations

and model outcomes for each ensemble member and across

all data sets. The data sets are organized in a hierarchical

structure to balance the weight of individual data sets and

groups of data. The skill scores are used to weight results

from individual ensemble members for the computation of

ensemble mean and uncertainties (PDF). Figure A1 summa-

rizes the observation-based data sets and their hierarchical

arrangement to compute skill scores (adapted from Fig. S3

and Table S2 in Steinacher et al., 2013).

The observational data sets combine information from

satellite, ship-based, ice-core, and in situ measurements to

probe both the mean state and transient responses in space

and time. The energy balance and its change over time is

probed by annual mean time series of Southern and Northern

Hemisphere temperature from 1850 to 2010 (Brohan et al.,

2006), upper (0–700 m) ocean heat content anomalies from

1955 to 2011 (Levitus et al., 2012) and from 1993 to 2008

(Lyman et al., 2010), and the ocean heat uptake over the pe-

riod 2005 to 2010 (von Schuckmann and Le Traon, 2011).

The atmospheric carbon balance is probed by the recon-

structed atmospheric CO2 history from ice cores (1850 to

1958; Etheridge et al., 1996) and direct atmospheric mea-

surements (1959 to 2010; Keeling and Whorf, 2005; Con-

way and Tans, 2011) as well as global and temporal means

of net carbon uptake by the land and by the ocean for the peri-

ods 1959 to 2006, 1990 to 1999, and 2000 to 2006 (Canadell

et al., 2007). Oceanic processes, which are key for the up-

take of both heat and carbon, are probed using gridded data

from the World Ocean Atlas (Locarnini et al., 2010; Antonov

et al., 2010; Garcia et al., 2010) and the Global Ocean Anal-

ysis Project (GLODAP; Key et al., 2004); surface fields and

whole ocean fields are considered separately for individual

tracers. Ocean temperature (T ) and salinity (S) fields probe

the water mass distribution and T and S influences CO2 sol-

ubility and carbonate chemistry. The transient tracer CFC-11

(distribution for 1995) and radiocarbon (preindustrial) probe

the ventilation timescales and thus the surface-to-deep trans-

port rates for carbon, heat, and other tracers. The marine bio-

logical cycle is probed by comparing modeled with observed

fields of the major nutrient phosphate, as well as dissolved

inorganic carbon (preindustrial) and alkalinity (1995). Tem-

perature, salinity and phosphate fields from the World Ocean

Atlas include seasonal variations in the upper ocean. Land

biosphere processes are constrained by comparing modeled

and observation-derived carbon stocks and fluxes. Vegeta-

tion carbon stock data include two different data sets for

about 140 sites each (Luyssaert et al., 2007; Keith et al.,

2009) and an estimate for the global preindustrial inventory

(550± 200 Gt C; Prentice et al., 2001). Gridded soil carbon

fields for low and mid-latitudes (south of 50◦ N; Global Soil

Data Task Group, 2000) and high-latitude North America

(Tarnocai et al., 2009, 2007) and an estimate for the global

soil carbon content in the top 100 cm (1950± 550 Gt C; Bat-

jes, 1996) are used for soil carbon pools. Net primary pro-

ductivity is probed using observation-based estimates from

around 80 sites (Olson et al., 2001) and 140 sites (Luyssaert

et al., 2007), as well as a gridded seasonal climatology of the

fraction of absorbed photosynthetic active radiation (Gobron

et al., 2006). Finally, we probe the seasonal cycle of the net

terrestrial carbon balance by prescribing modeled net land-

to-atmosphere fluxes in the TM2 transport model to compute

the average seasonal cycle of atmospheric CO2 at nine sites

as monitored by the GLOBALVIEW atmospheric CO2 net-

work (GLOBALVIEW-CO2, 2011).

A hierarchical structuring of the data sets is applied for the

computation of the skill scores. Individual data sets consist of

single numbers, site data, time series, and gridded two- and

three-dimensional fields. The number of values included in a

data set ranges from one to many thousands. In addition, dif-

ferent data sets sometimes probe closely related quantities.

It is thus necessary to implement a formalism to avoid that

the data sets with the largest number of data dominate the

outcome. The task is to attribute a weight to each individual

data set that is appropriate in comparison with the other data

sets. Here, this is done by organizing the data in a hierarchi-

cal structure for aggregating the scores of individual data sets

to the total score. We consider four main data groups prob-

ing the energy balance, termed “heat” in Appendix Fig. A1;

the atmospheric carbon balance, “CO2”; ocean processes and

inventories, “ocean”; and land biosphere fluxes and stocks,

“land”. Each of these groups has the same weight for the

computation of the overall skill scores. The individual data

sets are further arranged in additional subgroups.

From the simulation results over the historical period

(“mod”) and the set of observational constraints (“obs”),

we assign a score to each ensemble member m as Sm ∝

exp(− 1
2

(Xmod
m −X

obs)2

σ 2 ). This likelihood-type function basi-

cally corresponds to a Gaussian distribution of the data–

model discrepancy (Xmod
m −Xobs) with zero mean and vari-

ance σ 2. The overbar indicates that the error-weighted data–

model discrepancy is first averaged over all data points of

each observational variable (volume- or area-weighted) and
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then aggregated in the hierarchical structure by averaging

variables belonging to the same group. Out of the 5000 en-

semble members, 3931 contribute less than a percent to the

cumulative skill
∑
mSm of all members m and are not used

any further.

The variance σ 2 represents the combined observational er-

ror and model discrepancy and needs to be specified. The

model discrepancy is the inherent model error that cannot be

eliminated even with the best parameter settings and input

data. While most of the observational data sets come with

estimates of the observational errors, the model discrepancy

is difficult to specify. Here we estimate the combined ob-

servational and model error with the variance of the model-

data difference for the best fitting model realization (i.e., the

model with the smallest mean squared error). In some few

cases where the observational error is larger than this esti-

mate (and thus the combined error is clearly underestimated),

the observational error is taken as total error.

2.1.3 Spin-up procedure

The spin-up procedure for the 5000 ensemble members is

tailored to keep computational costs low, while at the same

time achieving small model drift after completion of the spin-

up. First, a very long spin-up over more than 20 000 years is

carried out with standard model parameters and preindustrial

(year 1800) boundary conditions. The spin-up is then contin-

ued for all individual members from this initial steady state to

adjust the model to the perturbed parameters. In this way, the

new equilibrium for the perturbed parameter set is reached

faster than when starting from scratch.

The adjustment spin-up is done in a sequence where not all

model components are active in all steps to further decrease

the computational costs. First, the physical ocean component

is run stand-alone for 1500 years. Then, the atmospheric en-

ergy balance model is coupled again to the ocean and the

model is run for 1000 more years. Next, the oceanic biogeo-

chemistry module is activated with initial tracer fields from

the standard model configuration. The model is run for an-

other 1000 years to allow the biogeochemical fields to ad-

just to the new physics. In parallel, the terrestrial component

is run stand-alone for 400 years with the perturbed param-

eter settings, including an instantaneous adjustment of the

soil carbon pools after 200 years by calculating the new pool

sizes analytically from the adjusted fluxes. Finally, the fully

coupled model is run for another 200 years and all transient

simulations are started from this state.

The reliability of the spin-up procedure is verified by per-

forming a 500-year-long control run without additional forc-

ing and checking for unacceptable drift. Slight drifts in deep

ocean tracers are accepted.

Modern peat carbon stocks are not in equilibrium with the

current climate and boreal peatlands still sequestered about

0.1 Gt C yr−1 during the last millennium (Charman et al.,

2013; Yu et al., 2010). Peat carbon distribution for our tran-

sient simulations is initialized with the output from a tran-

sient simulation starting at the Last Glacial Maximum as de-

scribed in Spahni et al. (2013). This initial pattern, and thus

the total peat carbon inventory, is uniformly scaled with the

value sampled for the parameter Cpeat,scale.

After the spin-up, the 5000-member ensemble is run over

the industrial period under prescribed CO2 and non-CO2

forcing. The model output is compared with the observa-

tional data and the ensemble is reduced to the 1069 simu-

lations with the highest skill, as described in the previous

section.

2.1.4 Model simulations

In a next step we run the constrained model ensemble for

55 greenhouse gas scenarios spanning from high business-

as-usual to low-mitigation pathways. The set of scenarios

consists of economically feasible multi-gas emission scenar-

ios from the integrated assessment modeling community. In

addition to the four RCP scenarios (Moss et al., 2010) that

were selected for the Fifth Assessment Report (AR5) of the

IPCC, we included 51 scenarios from the EMF-21 (Weyant

et al., 2006), GGI (Grübler et al., 2007), and AME (Calvin

et al., 2012) projects. For these simulations, we prescribe at-

mospheric CO2 and the non-CO2 radiative forcing derived

from the emission scenarios (Fig. A2) as described in Joos

et al. (2001) and Strassmann et al. (2009). We note that the

AME scenarios are less complete than the others because

they do not provide emission paths for aerosols and some

minor greenhouse gases. We therefore make the conserva-

tive assumption of constant aerosol emissions at the level of

the year 2005 (−1.17 Wm−2), which implies a significant

cooling effect continued into the future in those 23 (out of

55) scenarios (Fig. A2f). Note that this effect does not af-

fect our estimates of TCR, ECS, and TCRE, which are based

on the atmospheric CO2-only simulations described below,

nor does it affect the constraining of the model ensemble

with observation-based data over the historical period. The

scenarios are extended from 2100 to 2300 by stabilizing at-

mospheric CO2 and the non-CO2 forcing by the year 2150

(see Steinacher et al., 2013, for details). Note that the exten-

sions of the RCP scenarios beyond 2100 CE as used in the

AR5 (extended concentration pathways, ECPs; Meinshausen

et al., 2011) are not identical to the extensions applied here.

Our extensions of RCP4.5 and RCP6 are similar to ECP4.5

and ECP6, but ECP8.5 differs significantly from our exten-

sion of RCP8.5, where atmospheric CO2 is stabilized by

2150.

In addition to these multi-gas scenarios used by Steinacher

et al. (2013), we run the model ensemble for an idealized

“2xCO2” scenario to determine TCR, ECS, and TCRE and

an emission pulse experiment. In the 2xCO2 simulation, at-

mospheric CO2 is increased by 1 %yr−1 from its preindus-

trial level until a doubling of the concentration is reached.

After that, the atmospheric CO2 concentration is held fixed.
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All other forcings remain constant at preindustrial levels.

The emission pulse simulations are conducted as described

by Joos et al. (2013). A pulse input of 100 Gt C is added

to a constant background atmospheric CO2 concentration of

389 ppm in year 2010, while all other forcings are held con-

stant at 2010 levels. The impulse response function (IRF) is

then derived from the difference between simulations with

and without emission pulse. Additionally, experiments with

pulse sizes of 1000, 3000, and 5000 Gt C were performed to

test the sensitivity of the response to the pulse size. These

additional pulse experiments were run for a model configu-

ration with median parameter settings, which is able to repro-

duce the median response of the ensemble for the 100 Gt C

pulse (Fig. 2).

2.2 Definition of TCRE and TREX

There are slightly different definitions of the TCRE in the lit-

erature. Matthews et al. (2009) define it similarly to the TCR,

i.e., as the ratio of warming to cumulative CO2 emissions

in a simulation with prescribed 1 %yr−1 increase in atmo-

spheric CO2 at the time when atmospheric CO2 reaches dou-

ble its preindustrial concentration. In the AR5 of the IPCC,

TCRE is defined more generally as the annual mean global

surface temperature change per unit of cumulated CO2 emis-

sions in a scenario with continuing emissions (Collins et al.,

2013). In scenarios with non-CO2 forcings, such as the rep-

resentative concentration pathways (RCPs), the diagnosed

TCRE thus also depends on the non-CO2 forcing. Further,

the transient response should be distinguished from the peak

response to cumulative emissions as defined in Allen et al.

(2009), although the TCRE is nearly identical to the peak

climate response to cumulative CO2 emissions in many cases

(Collins et al., 2013).

The responses, TCR and TCRE, are defined for surface air

temperature in previous studies. Here, we extend the defini-

tion of TCRE to any climate variable X(t). We define the

transient response, TREX, and peak response, TREXpeak, per

cumulative CO2 emissions at a given time t as

TREX(t)=
X(t)

E(t)
, (1)

TREXpeak(t)=
X(tmax)

E(t)
with

tmax : |X(tmax)| =max
t ′≤t

(|X(t ′)|), (2)

where E(t) are the cumulative CO2 emissions (either total or

fossil-fuel-only emissions; see Appendix A).

For the transient response analyses, TREX(t) is computed

for every year t in the range 2000< t ≤ 2300 (i.e., 300 data

points per simulation). In contrast, the peak response is rep-

resented by only one data point per simulation. It is the value

of X(t) at the time tmax, i.e., where the maximum change in

the absolute value of X(t) between the years 2000 and 2300

occurs, divided by the cumulative emissions in the year 2300,

E(t = 2300), and denoted TREXpeak(t = 2300). Note that the

actual peak response might occur after 2300 CE, in which

case TREXpeak is only an approximation. Surface air temper-

ature usually peaks before 2300 CE in the applied scenarios.

Steric sea level rise, on the other hand, continues to increase

after 2300 CE due to the large thermal inertia of the oceans.

TCRE is used in this study as defined by Gillett et al.

(2013). Thus, TCRE is equivalent to TRE1SAT derived from

a simulation with prescribed 1 %yr−1 atmospheric CO2 in-

crease and no other forcings.

2.3 Calculation of PDFs

Cumulative CO2 emissions Em,s(t) and climate response

Xm,s(t) are diagnosed for each model configuration 1≤

m≤Nm (Nm = 1069), greenhouse gas scenario 1≤ s ≤Ns
(Ns = 55), and simulation year 2000< t ≤ 2300. For a given

model configuration m and year t we obtain 55 points in the

two-dimensional (E,X) space, representing the response un-

der different scenarios (Em,s(t), Xm,s(t)). These points are

considered to span the range of plausible emission-response

combinations for this model configuration. Technically, we

use the convex hull, which is the smallest region containing

all points such that, for any pair of points within the region,

the straight-line segment that joins the pair of points is also

within the region.

By combining the convex hulls from all model configura-

tions m in the (E, X) space we can derive a two-dimensional

PDF, p(E,X), of the plausible emission-response combi-

nations. The model ensemble is constrained in this step by

weighting the contribution of an individual model to the PDF

with the model score Sm:

p(x,y)=
∑
m

θm(x,y)Sm, (3)

θm(x,y)=


1, if (x,y) ∈ C({(Em,s,Xm,s),

s = 1, . . .,Ns})

0, otherwise,

(4)

where C(P ) denotes the convex hull of the set of points P .

Finally, the resulting field is normalized for each emission E

to obtain the relative probability map prel(E,X), as shown,

for example, in Fig. 3a:

prel(E,X)=
p(E,X)

max
X
(p(E,X))

(5)

Alternatively, p(x,y), is normalized by its integral,

pnorm(E,X)=
p(E,X)∫

∞

−∞
p(E,X)dX

, (6)

which then represents the PDF of the response in X for

given emissions E. The probability that the change X re-

mains smaller than a target value, Xtarget, given emission E
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Figure 2. Response to an emission pulse of 100 Gt C added to an atmospheric concentration of 389 ppm. Ensemble median (solid red line)

and 68/90 % ranges (dark/light orange) of changes in (a) atmospheric CO2, (b) surface air temperature, (d) steric sea level rise, (e) Atlantic

meridional overturning circulation, (f) global soil carbon stocks, (g) global mean surface ocean pH, and (h) southern and (i) tropical ocean

surface aragonite saturation are shown. The dashed lines show the response (per 100 Gt C) for median parameters and pulse sizes of 100

(red), 1000 (black), 3000 (blue), and 5000 Gt C (green). Panel (c) shows the mean age of past emissions over the historical period and for

the four RCP scenarios (left axis), and the fraction of the emissions older than 30 years (right axis) versus calendar years. More than half of

the emissions are older than ∼ 30 years. The bulk of the emissions at any calendar year is thus in the age range (x axis in the other panels)

where the pulse response function varies within a limited range for surface air temperature (b), surface pH (g), steric sea level rise (d), and

Atlantic meridional overturning (e). This implies an approximately linear relationship between cumulative emissions and responses in these

variables.

is then in percent:

pcum(E,Xtarget)=

Xtarget∫
−∞

pnorm(E,X)dX · 100%. (7)

The allowable CO2 emissions, Eallowable, to not exceed the

climate target Xtarget with a probability of 68 % are then im-

plicitly given by pcum(E,Xtarget)= 68 %.

2.4 Testing the linearity of the response

From the probability maps in the (E,X) space, PDFs are

extracted at E = 1000, 2000, and 3000 Gt C. To compare

the response at different emission levels the PDFs at 2000

and 3000 Gt C are rescaled to the response per 1000 Gt C. In

a perfectly linear system we would expect that the rescaled

PDFs are identical for the different emission levels. To test

the linearity of the response further, we fit a linear func-

tion X̂(E)= aX,m ·E to the points (Em,s(t), Xm,s(t)) for

each model configuration m. The linear function is forced

through zero because we require X(E = 0)= 0 at preindus-

trial (t = 1800). From the obtained coefficients aX,m of the

model ensemble, we then calculate a PDF for the sensitiv-

ity aX of the response to cumulative emissions under the as-

sumption that a linear fit is reasonable. The goodness of fit

is quantified by the correlation coefficients, rm, and standard

errors of the regression, σm =

√∑
s (Xm,s−X̂(Em,s ))

2

Ns
, for each

model setup m. In Table 2, the ensemble median and 68 %

range of aX, of rm, as well as the ensemble median standard

error (expressed as a percentage of the median linear slope),

σ̂ , are reported.

2.5 Selection of the climate variables for analysis and

computation of TRE

We compute TREX and IRFs (see Sect. 3.1) for eight cli-

mate variables. These are represented by the emission-driven

changes in the model variables global mean surface air tem-

perature (1SAT), surface ocean temperature (1SST), steric

sea level rise (SSLR), the Atlantic meridional overturn-

ing circulation (1AMOC), global mean surface ocean pH

(1pH), saturation of surface waters in the Southern Ocean

(1�arag,S.O.; south of 50◦ S) and the tropics (1�arag,trop.;
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Figure 3. Transient and peak warming as a function of cumulative emissions: (a) relative probability of transient surface air temperature

change (1SAT) for given cumulative CO2 emissions (fossil fuel and deforestation), derived from annual values from ensemble model

simulations for 55 greenhouse gas emission scenarios. Black dashed lines show the median and 68 % range of the linear regression slope.

The red line indicates the coverage of the emission range by the model ensemble. High and low emission ranges with a coverage of less than

90 % are shaded and considered not robust. (b) Transient1SAT response (ensemble median) for the 55 different scenarios. The dashed/dotted

lines show the 68/90 % range of the ensemble for the RCP8.5 scenario to indicate the model spread. Note that our extensions of the RCP

scenarios beyond 2100 are not identical to the extended concentration pathways (ECPs; see Methods). (c) Same as (a) but for the peak

warming for given total cumulative emissions. (d) PDFs of the peak warming for 1000 (blue), 2000 (green), and 3000 Gt C (red) cumulative

emissions, and for the linear regression (black). The dashed lines indicate the unscaled PDFs and solid lines the normalized response per

1000 Gt C. (e, f) Same as (a, b) but for transient sea surface temperature change (1SST).

30◦ N to 30◦ S) with respect to calcium carbonate in the min-

eral form of aragonite, and global soil carbon stocks (1Csoil).

These variables are deemed both impact-relevant and reason-

ably well represented in the Bern3D-LPJ EMIC. We stress

the illustrative nature of this selection. TREX may be com-

puted for other climate variables and regions in future work.

In particular the determination of TREX for extreme events,

such as droughts, heat waves, and floods, or for food pro-

duction and fishery may be relevant for policy makers and

stakeholders.

Changes in SAT and sea level are known to impact bi-

ological and physical systems (e.g. IPCC, 2014; Sherwood
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Table 2. Transient (TREX) and peak (TREX
peak

) response per 1000 Gt C total CO2 emissions estimated with different methods. Ensemble

medians and 68 % ranges (i.e., the 16th and 84th percentiles) are taken from the relative probability maps derived from all model configura-

tions and scenarios at 1000, 2000, and 3000 Gt C total emissions as well as from the linear regression slope (see Methods). The correlation

coefficient (r , median, and 68 % range) and the median standard error as a percentage of the median regression slope (σ̂ ) are given for the

linear fit of the peak response.

Variable X Method TREX TREX
peak

Goodness of linear fit

1SAT 1000 Gt C 1.95 [1.12–3.38] 2.31 [1.49–3.81]

(◦C) 2000 Gt C 1.96 [1.23–3.12] 2.12 [1.37–3.30]

3000 Gt C 1.90 [1.27–2.66] 1.92 [1.29–2.68]

Lin. reg. 1.75 [1.18–2.48] 1.76 [1.14–2.56] r = 0.92± 0.04, σ̂ = 36%

1SST 1000 Gt C 1.47 [0.89–2.45] 1.68 [1.11–2.68]

(◦C) 2000 Gt C 1.40 [0.91–2.08] 1.49 [0.99–2.15]

3000 Gt C 1.30 [0.91–1.70] 1.32 [0.91–1.72]

Lin. reg. 1.30 [0.87–1.78] 1.31 [0.85–1.86] r = 0.92± 0.04, σ̂ = 35%

SSLR 1000 Gt C 25 [14–44] 29 [18–48]

(cm) 2000 Gt C 23 [14–38] 27 [17–42]

3000 Gt C 21 [13–32] 25 [17–36]

Lin. reg. 19 [12–25] 23 [15–33] r = 0.91± 0.04, σ̂ = 39%

1AMOC 1000 Gt C −16 [−29 to −7] −24 [−35 to −15]

(%) 2000 Gt C −15 [−23 to −9] −18 [−26 to −12]

3000 Gt C −14 [−19 to −9] −15 [−20 to −10]

Lin. reg. −15 [−22 to −9] −15 [−22 to −10] r = 0.8± 0.1, σ̂ = 40%

1 pH 1000 Gt C −0.19 [−0.22 to −0.15] −0.20 [−0.23 to −0.18]

(1) 2000 Gt C −0.18 [−0.21 to −0.16] −0.18 [−0.21 to −0.15]

3000 Gt C −0.17 [−0.19 to −0.15] −0.17 [−0.19 to −0.15]

Lin. reg. −0.18 [−0.20 to −0.16] −0.17 [−0.19 to −0.15] r = 0.98± 0.01, σ̂ = 12%

1�arag,S.O. 1000 Gt C −0.55 [−0.66 to −0.45] −0.61 [−0.68 to −0.55]

(1) 2000 Gt C −0.46 [−0.53 to −0.39] −0.46 [−0.51 to −0.41]

3000 Gt C −0.40 [−0.45 to −0.35] −0.40 [−0.43 to −0.35]

Lin. reg. −0.48 [−0.53 to −0.42] −0.43 [−0.48 to −0.38] r = 0.87± 0.05, σ̂ = 30%

1�arag, trop. 1000 Gt C −0.87 [−1.04 to −0.71] −0.96 [−1.04 to −0.89]

(1) 2000 Gt C −0.76 [−0.86 to −0.65] −0.74 [−0.82 to −0.68]

3000 Gt C −0.67 [−0.73 to −0.61] −0.66 [−0.70 to −0.61]

Lin. reg. −0.78 [−0.85 to −0.71] −0.71 [−0.79 to −0.65] r = 0.93± 0.03, σ̂ = 24%

1Csoil 1000 Gt C −59 [−234 to +22] −77 [−268 to −17]

(Gt C) 2000 Gt C −73 [−201 to −5] −82 [−217 to −4]

3000 Gt C −75 [−162 to −17] −80 [−170 to −15]

Lin. reg. −26 [−85 to +24] −39 [−122 to +25] r = 0.7+0.1
−0.7

, σ̂ = 165%

and Huber, 2010). Sea level rise is expected to affect coastal

ecosystems such as mangroves, reduce coastal protection,

and increase flood occurrence, possibly affecting hundreds

of millions of people living in low-lying cities and along the

coast.

The uptake of CO2 by the ocean fundamentally changes

the chemical composition of ocean waters (Orr, 2011), gen-

erally referred to as “ocean acidification”. The reaction of

dissolved CO2 with H2O to H2CO3 and the dissociation of

the latter lead to an increase in the hydrogen ion concentra-

tion (H+); a decrease in pH (pH=− log[H+]); and, through

shifting acid–base equilibria, a decrease in the concentration

of carbonate ions, CO2−
3 . The decrease in CO2−

3 is associated

with a decrease in the saturation state of water with respect

to calcium carbonate (CaCO3).

Ocean acidification in conjunction with warming waters

poses large risks to marine species, marine ecosystems such

as corals, sea grass meadows, and marine ecosystem services

such as tropical fisheries (e.g. Gattuso et al., 2015; Howes

et al., 2015). Warming waters affect the aerobic scope of ma-

rine organisms and constrain marine habitats (Deutsch et al.,

2015; Pörtner et al., 2011). The saturation state of water with

respect to aragonite and other mineral forms of calcium car-

bonate determines whether water is corrosive (in the absence
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Figure 4. Response of SSLR, AMOC, and pH to cumulative CO2 emissions (including deforestation), similar to Fig. 3a, b.

of protective mechanisms) to shells and structures made out

of calcium carbonate. Model projections reveal large and sus-

tained changes in the saturation state of surface and deep wa-

ters for a range of emission scenarios (Orr et al., 2005; Joos

et al., 2011). Waters in the Arctic Ocean, coastal upwelling

zones, and the Southern Ocean are becoming increasingly

undersaturated with respect to aragonite (Steinacher et al.,

2009; Gruber et al., 2012) and ongoing changes in saturation

state are largest in the tropics, possibly adversely affecting

net calcification rates of coral systems.

The AMOC contributes to the net heat transport into the

North Atlantic region and changes in the AMOC may af-

fect climate patterns in Europe and worldwide. Paleo-data re-

veal a southward shift of the Intertropical Convergence Zone

linked to a decrease or collapse of the AMOC with related

terrestrial ecosystem impacts (e.g. Bozbiyik et al., 2011). Fi-

nally, changes in the global soil carbon inventory may be

taken here as an indication of the strength of the land carbon–

climate feedback.

3 Results

3.1 Climate response to a CO2 emission pulse: testing

the linearity of the emission-response relationship

In a first step, we explore how different climatic variables

respond to a pulse-like input of carbon into the atmosphere

(Fig. 2) and determine the so-called IRF for the different cli-

mate variables. The IRF experiments provide a framework

to discuss path dependency and linearity in responses with-

out the need to run many independent scenarios. IRFs for

atmospheric CO2, SAT, SSLR, and ocean and land carbon
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uptake are given elsewhere and we refer the reader to the lit-

erature for a general discussion on IRFs, underlying carbon-

cycle and climate processes, and timescales (e.g. Archer

et al., 1998; Joos et al., 2013; Maier-Reimer and Hasselmann,

1987; Shine et al., 2005).

A main goal of this section on IRF is to discuss to which

extent one may expect a close-to-linear relationship between

cumulative CO2 emissions and a climate variable of inter-

est. A linear relationship between emissions and variable X

has the advantage that the determination of TREX depends

on neither the choice of scenario nor the magnitude of CO2

emissions. In addition, TREX would, in the case of linear-

ity, fully describe the response to any CO2 emissions. We

start with a description of the model setup, followed by the-

oretical considerations. Then we discuss linearity in the con-

text of CO2-only scenario uncertainty by analyzing median

model responses. After that, we investigate the response un-

certainty by relying on the full model ensemble and compare

scenario and response uncertainty. Finally, we briefly address

the scenario uncertainty due to non-CO2 forcing.

3.1.1 Model simulations to determine IRFs

CO2 is added instantaneously to the model atmosphere to

determine IRFs. This results in a sudden increase in atmo-

spheric CO2 and radiative forcing. Afterwards, the evolution

in the perturbation of atmospheric CO2 and in any climate

variable of interest, e.g., global mean surface air tempera-

ture, is monitored in the model. The resulting curve is the

impulse response function (Fig. 2). Here, 1069 runs were

carried out in different model configurations by adding emis-

sions of 100 Gt C to an atmospheric CO2 background con-

centration of 389 ppm, which corresponds to the concentra-

tion in the year 2010. Additionally, simulations with emis-

sion pulses of 1000, 3000, and 5000 Gt C were run for a me-

dian model configuration (Methods). For comparability, all

IRFs are normalized to a carbon input of 100 Gt C.

3.1.2 The link between IRF and TRE: theoretical

considerations

The motivation to analyze IRFs is twofold. First, the dynamic

of a linear (or approximately linear) system is fully charac-

terized by its response to a pulse-like perturbation – i.e., the

response of variable X at year t to earlier annual emissions,

e, at year t ′ can be represented as the weighted sum of all

earlier annual emissions. The weights are the values of the

IRF curve at emission age t − t ′:

X(t)=
∑
t ′

e(t ′) · IRF(t − t ′), (8)

where the sum runs over all years t ′ with annual emissions

up to year t . IRFs thus provide a convenient and comprehen-

sive quantitative characterization of the response of a model.

IRFs form also the basis for the metrics used to compare dif-

ferent greenhouse gases in the Kyoto basket approach and

to compute CO2 equivalent concentrations (Joos et al., 2013;

Myhre et al., 2013) and are used to build substitute models of

comprehensive models (Joos et al., 1996). Second, and rele-

vant for the TRE and for this study, IRFs allow us to gauge

whether there is a roughly linear relationship between cumu-

lative CO2 emissions,

E(t)=
∑
t ′

e(t ′), (9)

and the change in a climate variable of interest, X(t). The

transient response for variable X to cumulative CO2 emis-

sions is in this notation:

TREX(t)=
X(t)

E(t)
. (10)

We note that there is a close relationship between Eqs. (8) to

(10) and thus between cumulative CO2 emissions E(t), re-

sponse X(t), and TREX. The IRF provides the link between

these quantities.

Three conditions are to be met for a strict linear relation-

ship between cumulative CO2 emissions E and response X

for any emission pathway: (i) the response is independent of

the magnitude of the emissions, (ii) the response is indepen-

dent of the age of the emission, i.e., the time passed since

emissions occurred (in this case the IRF and the response

TREX is a constant and all emissions are weighted equally

in Eq. 8), and (iii) non-CO2 forcing factors play no role –

a point that will be discussed later in Sect. 3.1.4. While these

conditions are not fully met for climate variables, they may

still approximately hold for plausible emission pathways. For

the range of RCP scenarios, the mean age of the CO2 emis-

sions varies from a few decades to about 100 years for the

industrial period and up to year 2100, and then it increases

up to 300 years until 2300 CE (Fig. 2c). More than half of

the cumulative CO2 emissions have typically an age older

than 30 years (Fig. 2c). If the IRF curve is approximately

flat after a few decades and independent of the pulse size,

then the vast majority of emission is weighted by a simi-

lar value in Eq. (8). Consequently, the relationship between

response X(t) and cumulative emissions, E(t), is approxi-

mately linear and path-independent. This response sensitivity

per unit emission, X(t)/E(t), corresponds to an “effective”

(emission-weighted) mean value of the IRF and is the tran-

sient response to cumulative CO2 emissions TREX. Indeed,

the IRF for many variables varies within a limited range after

a few decades (Fig. 2). Then, an approximately linear rela-

tionship between E(t) and X(t) holds and TREX is approxi-

mately scenario-independent.

3.1.3 IRFs: median results

The median values of the (normalized) IRFs (Fig. 2, solid and

dashed lines; Table 1) vary within a limited range over the pe-

riod from 30 years to the end of the simulation (500 years)

and for the different pulse sizes of 100 to 3000 Gt C for
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global mean SAT, surface ocean pH, AMOC, and to a some-

what lesser degree SSLR. Consequently, we expect a close-

to-linear relationship between these variables and cumulative

CO2 emissions.

For a given pulse size, the median of the IRF for the sat-

uration with respect to aragonite in the tropical (�arag, trop.)

and Southern Ocean (�arag,S.O.) surface waters and for the

global soil carbon inventory varies within a limited range.

However, the normalized IRFs for these variables vary sub-

stantially with the magnitude of the emission pulse. Thus, we

expect a nonlinear relationship between the ensemble median

responses and cumulative CO2 emissions for these quanti-

ties.

The atmospheric CO2 perturbation declines by about a fac-

tor of 2 within the first 100 years for an emission pulse of

100 Gt C. This means that the atmospheric CO2 concentra-

tion at a specific time depends strongly on the emission path

of the previous 100 years. In addition, the IRFs differ for dif-

ferent pulse sizes because the efficiency of the oceanic and

terrestrial carbon sinks decreases with higher atmospheric

CO2 concentrations and warming. The fraction remaining

airborne after 500 years is about 75 % for a pulse input of

3000 Gt C, about 2.5 times larger than the fraction remain-

ing for a pulse of 100 Gt C (Fig. 2a). Thus, we do not ex-

pect a scenario-independent, linear relationship between at-

mospheric CO2 and cumulative emissions.

At first glance, it may be surprising that the responses in

SAT, SSLR, AMOC, and pH do not depend much on the size

of the emission pulse given the strong sensitivity of the at-

mospheric CO2 response to the pulse size. For the physical

variables, this is a consequence of near-cancellation of non-

linearity in the carbon cycle and in the relationship between

radiative forcing and atmospheric CO2 (Joos et al., 2013).

The long-term response in atmospheric CO2 (Fig. 2a) in-

creases with increasing emissions and the fraction remaining

airborne is substantially larger for large than for small emis-

sion pulses. On the other hand, radiative forcing depends log-

arithmically on atmospheric CO2 and the change in forcing

per unit change in CO2 is smaller at high than at low atmo-

spheric CO2 concentrations. As a consequence, the response

in radiative forcing is rather insensitive to the magnitude of

the emission pulse and so is the response in climate variables

forced by CO2 radiative forcing. A similar effect applies for

pH. Changes in dissolved [CO2] and [H+] in the surface

ocean closely follow changes in atmospheric CO2 as the typ-

ical timescale to equilibrate the ocean mixed layer with an

atmospheric CO2 perturbation is of the order of a year and

because changes in [H+] are roughly proportional to [CO2]

(Orr, 2011). pH is by definition the (negative) logarithm of

the H+ concentration. As for radiative forcing, nonlinearities

in the CO2 and thus H+ response roughly cancel out when

applying the logarithm to compute pH.

3.1.4 Response vs. scenario uncertainty

The Monte Carlo IRF experiments allow us also to assess

the response or model uncertainty (Fig. 2, orange range). The

90 % confidence range in the IRF are substantially larger than

the variation of the (normalized) median IRF for the vari-

ables SAT, SSLR, AMOC, and soil carbon inventory. Conse-

quently, the model uncertainty will dominate the uncertainty

in TREX and is larger than uncertainties arising from de-

pendencies on the carbon emission pathway. On the other

hand, the response uncertainty from our 1069 Monte Carlo

model setups are more comparable to the variation in the me-

dian IRFs for atmospheric CO2, and surface water saturation

with respect to aragonite in the tropical ocean and Southern

Ocean.

In addition to the path dependency and the response un-

certainty in TREX discussed above, forcing from non-CO2

agents will affect TREX. We expect a notable influence

of non-CO2 agents on the physical climate variables SAT,

SSLR, and AMOC. For example, Strassmann et al. (2009)

attributed simulated surface warming to individual forcing

components for a range of mitigation and non-mitigation

scenarios. They find that non-CO2 greenhouse gas forcing

causes up to 50 % as much warming as CO2 forcing and that

the non-CO2 forcing is only partly offset by aerosol cool-

ing by 2100. On the other hand, we expect a small influ-

ence of non-CO2 forcing on pH and saturation state which is

predominantly driven by the atmospheric CO2 perturbation

(Steinacher et al., 2009; McNeil and Matear, 2007).

In summary, uncertainty in the response dominates over

the uncertainty arising from path dependency for SAT, SSLR,

AMOC, and soil carbon. For CO2-only or CO2-dominated

scenarios, we expect close-to-linear relationship between cu-

mulative CO2 emissions and SAT, surface ocean pH, AMOC,

and to some extent for SSLR. In other words, the concept of

TREX should work particularly well for these variables. On

the other hand, less well expressed linear behavior is found

for global soil carbon and surface water saturation with re-

spect to aragonite. In the next section, we will elaborate on

these findings and quantify TREX.

3.2 The transient response to cumulative CO2

emissions

We investigate the response in multiple climate variables,

X(t), as a function of cumulative fossil or total CO2 emis-

sions E(t). We used the model ensemble presented in

Steinacher et al. (2013) for 55 multi-gas emission scenarios

from the integrated assessment modeling community which

range from very optimistic mitigation to high business-as-

usual scenarios (Methods). From those simulations we de-

termine the transient response to cumulative CO2 emis-

sions TREX(t)=X(t)/E(t) (Tables 2 and A2; Figs. 3–5).

In addition, we also present results for the peak response
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TREXpeak(t = 2300)=maxt ′(X(t
′)/E(t = 2300)) (Tables 2

and A2, Fig. 3).

The discussion of results is guided by the results shown in

Figs. 3 to 5. These show the relative probability of change

in the variable X for given cumulative CO2 emissions (e.g.,

colors in Fig. 3a) together with the linear regression slopes

(black dashed lines). These graphs allow one to visually in-

spect the linearity in response to cumulative CO2 emissions

and results include both scenario and response uncertainty.

In accompanying panels (e.g., Fig. 3b), the focus is on sce-

nario uncertainty versus response uncertainty. The relation-

ship between change and cumulative emissions is plotted for

the ensemble median and for the 55 scenarios (55 colored

lines). In addition, the 68 and 90 % confidence intervals for

the response (or model) uncertainty are given for one sce-

nario, RCP8.5, by red dashed and dotted lines, respectively.

These graphs allow one to infer scenario and response uncer-

tainty individually.

3.2.1 TRE1SAT

We find a largely linear relationship between cumulative CO2

emissions and both transient and peak warming (Fig. 3a and

c) for the set of emission scenarios considered here. These

linear relationships confirm the finding from the pulse exper-

iment above, i.e., that the response in the global SAT change

is largely independent of the pathway of CO2 emissions in

our model. We note, however, that some low-end scenarios

show a nonlinear behavior due to non-CO2 forcing (Fig. 3b).

Some AME scenarios show a decrease in temperature due

to a strong reduction in the non-CO2 forcing while cumu-

lative emissions continue to increase slightly. Other scenar-

ios (mostly from GGI) deviate from the linear relationship

when negative emissions decrease the cumulative emissions

while the increased temperature is largely sustained. These

nonlinearities are evident as large changes in the slope be-

tween SAT and cumulative emissions towards the end of the

individual simulations – that is, after ≈ 2150 CE, when at-

mospheric CO2 is stabilized and emissions are low (Fig. 3b).

Yet those deviations are not large enough to eliminate the

generally linear relationship found for this set of scenarios.

The projected warming for a given amount of CO2 emis-

sions is associated with a considerable uncertainty which in-

creases with higher cumulative emissions. This uncertainty

arises both from the response uncertainty of the model en-

semble such as the uncertain climate sensitivity or oceanic

carbon uptake and from the scenario uncertainty. The sce-

nario uncertainty is mainly due to different assumptions for

the non-CO2 forcing in the scenarios. The AME scenarios,

for example, assume a relatively strong negative forcing from

aerosols which leads to a consistently smaller warming than

in the other scenarios (Fig. 3b). The response and scenario

uncertainty appear to be of the same order of magnitude

(Fig. 3b).

The median transient response is 2.0 ◦C (TtC)−1 (1.1–

3.4 ◦C (TtC)−1 68 % c.i.) evaluated at 1000 Gt C total emis-

sions and similar for 2000 and 3000 Gt C. The median peak

warming response is slightly larger. It is 2.3 ◦C (TtC)−1

(1.5–3.8 ◦C (TtC)−1 68 % c.i.) for scenarios with 1000 Gt C

total emissions and decreases slightly to 1.9 ◦C (TtC)−1

(1.3–2.7 ◦C (TtC)−1 68 % c.i.) for scenarios with 3000 Gt C

total emissions (Fig. 3d; Table 2). The corresponding re-

sponses to fossil-fuel emissions only are accordingly some-

what higher, e.g., 2.2 ◦C (TtC)−1 (1.3–3.8 ◦C (TtC)−1) for

the transient response evaluated at 1000 Gt C fossil emissions

(Fig. A3, Table A2).

We fitted a linear function through zero to the results of

each ensemble member and then calculated the PDFs from

the individual slopes. The median slope is 1.8 ◦C (TtC)−1

(1.1–2.6 ◦C (TtC)−1) for the peak response and values are

similar for the transient response (Table 2). These slopes are

somewhat lower than the direct results, but in general the lin-

ear regression approach is able to reproduce the distribution

of the peak and transient warming response per 1000 Gt C

CO2 emissions, although the confidence interval is narrower

and the long tail of the distribution might be underestimated.

3.2.2 TCRE

Following Matthews et al. (2009) and Gillett et al. (2013),

we also determined the TCRE for our model ensemble from

a scenario where atmospheric CO2 is increasing by 1 %yr−1

until twice the preindustrial concentration is reached. No

other forcing agents are included. Correspondingly, we find

a slightly lower median TCRE of 1.7 ◦C (TtC)−1 (1.3–

2.3 ◦C (TtC)−1 68 % c.i.; 1.0–2.7 ◦C (TtC)−1 5–95 % c.i.)

than for the SAT response in the multi-agent scenarios. The

68 % c.i. includes the scenario uncertainty range in TCRE

(1.5 to 2.0 ◦C) obtained by Herrington and Zickfeld (2014)

with a single model setup and for a range of CO2-only

scenarios (with constant future non-CO2 forcing). Gillett

et al. (2013) report a TCRE of 0.8–2.4 ◦C (TtC)−1 (5–95 %

range) from 15 models of the Coupled Model Intercompar-

ison Project (CMIP5) for a 2xCO2 scenario and a range of

0.7–2.0 ◦C (TtC)−1 estimated from observations. In IPCC

AR5, TCRE is estimated to be likely in the range of 0.8 ◦C

to 2.5 ◦C for cumulative emissions up to about 2000 GtC

(IPCC, 2013). Those ranges are somewhat lower than our

5–95 % ranges of 0.9–3.1 ◦C (TtC)−1 obtained by linear re-

gression from the scenarios that include non-CO2 forcing and

1.0–2.7 ◦C (TtC)−1 from the 2xCO2 simulations.

3.2.3 TRE1SST

The transient response in sea surface temperature (SST)

shows the same characteristics as the response in SAT

(Fig. 3e, f). The response is 1.5 ◦C (TtC)−1 (0.9–

2.5 ◦C (TtC)−1 68 % c.i.) evaluated at 1000 Gt C total emis-
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Figure 5. Same as Fig. 4 but for the transient response in surface aragonite saturation state in the Southern Ocean and in the tropics, as well

as in global soil carbon stocks.

sions, and 1.3 ◦C (Tt C)−1 (0.9–1.8 ◦C (TtC)−1) for the linear

regression approach.

3.2.4 TRESSLR and TRE1AMOC

Compared to global mean warming, the responses in SSLR

and in the strength of the AMOC are more emission-path-

dependent (Fig. 4b, d). In all scenarios applied here, it is as-

sumed that atmospheric CO2 and total radiative forcing is

stabilized after 2150. This yields a slow additional growth in

cumulative emissions after 2150, whereas SSLR continues

largely unabated and the AMOC continues to recover. This

results in a steep slope in the relationship between cumula-

tive CO2 emissions and these variables after 2150 as well

visible in Fig. 4b. The path dependency also results in larger

differences between transient and peak responses (Table 2).

The projected peak SSLR is described remarkably well by

a linear regression (Table 2). However, these results for the

peak SSLR response are somewhat fortuitous and influenced

by our choice to stabilize atmospheric CO2 and forcings af-

ter 2150 in all scenarios and by the stopping of simulations

in year 2300. We emphasize that SSLR would continue to

increase beyond the end of the simulation and TRESSLR are

thus only indicative for the period from today to year 2300.

For AMOC, the response is somewhat stronger for low-

emission than high-emission paths (Fig. 4d). For 1000 Gt C

total emissions, we find a peak reduction in AMOC of−24 %

(−35 to −15 %) (Table 2). This sensitivity is larger than

found by Herrington and Zickfeld (2014), but simulated

changes in AMOC are known to be model-dependent.
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3.2.5 TREpH, TRE1�arag,S.O. and TRE1�arag,tropics

Surface 1pH shows a very tight and linear relationship with

cumulative CO2 emissions (Fig. 4e, f). This is consistent

with a small influence of non-CO2 forcing agents, a small

response uncertainty, and a relatively small dependency on

the CO2 emission pathway as revealed by the IRF experi-

ments. Both scenario uncertainty and response uncertainty

are smaller than for other variables. pH decreases by about

0.2 unit per 1000 Gt C emissions from fossil sources.

For �arag, the nonlinearities are more pronounced than

for the physical variables and pH with a proportionally

stronger response at low total emissions (1�arag =−0.68

to −0.54 (Tt C)−1 at 1000 Gt C total emissions) and weaker

response at higher total emissions (1�arag =−0.43 to

−0.35 (TtC)−1 at 3000 Gt C total emissions, Fig. 5b, d).

Again, results for fossil-fuel emissions only are provided in

Fig. A3 and Table A2.

3.2.6 TRE1Csoil

Finally, the change in global soil carbon (Fig. 5e, f) shows

a similar response to SSLR, with continued carbon release

from soils after stabilization of greenhouse gas concentra-

tions in medium- to high-emission scenarios. Like the ocean

heat uptake, the respiration of soil carbon can be slow, partic-

ularly in deep soil layers at high latitudes, and it takes some

time to reach a new equilibrium at a higher temperature.

The response uncertainty represented by the model spread

for a given scenario, however, is even larger than the spread

from the scenarios. For the same scenario, the 90 % confi-

dence interval ranges from a very high loss of up to 40 % to

increases in global soil carbon by a few percent (Fig. 5f).

In summary, we find that not only global mean surface air

temperature but also the other target variables investigated

here show a monotonic relationship with cumulative CO2

emissions in multi-gas scenarios. The relationship with cu-

mulative CO2 emission is highly linear for pH as evidenced

by the high correlation coefficient and the invariance in the

ensemble median and confidence range from total emissions

(Table 2). Changes in steric sea level, meridional overturn-

ing circulation, and aragonite saturation are generally less

linearly related to cumulative emissions than global pH and

surface air temperature. These variables show a substantial

nonlinear response after stabilization of atmospheric CO2.

Nevertheless, the PDF of the peak response for all these vari-

ables can be reproduced relatively well with a linear regres-

sion yielding correlations of r = 0.8–0.98 and standard er-

rors of σ̂ = 30–40 % (Table 2).

3.3 Transient and equilibrium climate sensitivity

TCR is estimated from the ensemble simulations with

1 %yr−1 increase until doubling of atmospheric CO2 and in

combination with the observational constraints (Methods).

TCR is constrained to a median value of 1.7 ◦C with 68

and 90 % c.i. of 1.3–2.2 ◦C and 1.1–2.6 ◦C, respectively. The

68 % range is somewhat narrower than the corresponding

IPCC AR5 range of 1.0–2.5 ◦C (Collins et al., 2013). The

CMIP5 model mean and 90 % uncertainty range of 1.8 and

1.2–2.4 ◦C (Flato et al., 2013) are fully consistent with our

observation-constrained estimates.

ECS is estimated by extending the 2xCO2 simulations by

1500 years (at constant radiative forcing) and fitting a sum of

exponentials to the resulting temperature response. Median

ECS is 2.9 ◦C with constrained 68 and 90 % c.i. of 2.0–4.2 ◦C

and 1.5–6.0 ◦C. Again, the CMIP5 model mean and 90 %

range of 3.2 and 1.9–4.5 ◦C are well within our observation-

constrained estimates. However, our 68 % confidence inter-

val is narrower than the IPCC AR5 estimate of 1.5–4.5 ◦C,

particularly on the low end.

3.3.1 Influence of individual observational data on the

probability distribution

Twenty-six different observational data sets are applied to

constrain carbon-cycle and physical climate responses. This

raises the question of to what extent an individual data set

or a group of data sets constrain the model responses and

whether some data sets may unintentionally deteriorate esti-

mates. Uncertainties in the carbon cycle are irrelevant for the

physical metrics TCR and ECS. Correspondingly, data sets

aimed at constraining the carbon-cycle response, e.g., land

carbon inventory data, should not affect estimates of TCR

and ECS.

The effect of the different observational constraints on the

constrained, posterior distribution for TCR and ECS is es-

timated by applying only subsets of the observational data.

First, the subsets of constraints is given the full weight as if

they were the only available data (Fig. 6a, c). As expected,

the data groups “land” and “ocean”, targeted at carbon-cycle

responses, do not influence the outcomes for TCR and ECS.

The subgroups “heat” (SAT and ocean heat uptake records)

and “CO2” both constrain TCR and ECS and shift the prior

PDF towards the fully constrained PDF when applied alone

(Fig. 6a, c). The SAT record tends to constrain TCR and ECS

to slightly higher values and the ocean heat uptake data to

slightly lower values than the full constraint.

Interestingly, the “CO2” subgroup also narrows the prob-

ability distribution for TCR and ECS, although less than the

SAT and ocean heat records. The “CO2” subgroup includes

data sets of the atmospheric CO2 increase over the industrial

period and observation-based estimates of the ocean and land

carbon uptake for recent periods. Ocean carbon and heat up-

take are governed by similar processes, namely the surface-

to-deep transport of excess carbon and heat from the surface

to the deep ocean. Apparently, model members that are not

able to describe the ocean carbon uptake and the evolution in

atmospheric CO2 reasonably well, also fail to match obser-

vational records for SAT and ocean heat content. The PDF
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for the “CO2” subgroup displays several maxima for ECS

and similar for TCR. We are not in a position to provide a

firm explanation for these maxima, but we speculate that this

result may be related to the limited number of members in

our ensemble and that the multi-dimensional model parame-

ter space is not completely sampled.

Second, the subsets of constraints are added successively

(Fig. 6b, d). Unlike above, weights associated with each sub-

group are now set to correspond to the weights they will have

in the fully constrained set (i.e., after adding all the sub-

sets). Note that the fully constrained posterior distribution

does not depend on the order of applying the individual con-

straints. When applied sequentially with their corresponding

weights in the full constraint, ocean heat uptake represents

the strongest constraint. In contrast, the SAT record changes

the prior PDF only slightly (dashed magenta line in Fig. 6b,

d) when applied with its corresponding weight in the full con-

straint. Similarly, adding the group “CO2” after the ocean

heat uptake data shifts the PDF only slightly (solid magenta

vs. cyan line in Fig. 6b, d). This suggests that the CO2 data

do not add substantial information with respect to TCR and

ECS that is not already captured by the temperature data. In

summary, the subgroup “heat” represents the strongest con-

straints for TCR and ECS. In particular, the ocean heat uptake

data are important for constraining these metrics and exerts

the dominant influence on the final PDFs.

4 Discussion

We have quantified the transient response to cumulative CO2

emissions, TREX, for multiple Earth system variables, the

responses to a CO2 emission pulse defining the IRF, and

three other important climate metrics, the ECS, the TCR,

and the TCRE. TREX and IRF are evaluated for global and

regional changes in physical and biogeochemical variables.

The linearity and path dependency in responses and sce-

nario uncertainties as well as model response uncertainties

are quantified. Our probabilistic results are derived with an

observationally constrained∼ 1000-member ensemble of the

Bern3D-LPJ model and for 55 different greenhouse gas sce-

narios and additional idealized simulations.

A caveat is that we apply a cost-efficient EMIC with

limitations in spatial and temporal model resolution and

mechanistic representation of important climate processes.

However, and in contrast to reduced-form, box-type, two-

dimensional, linear response models; expert assumptions; or

component models applied in many earlier probabilistic as-

sessments (e.g. Wigley and Raper, 2001; Knutti et al., 2002,

2003, 2005; Schleussner et al., 2014; Bodman et al., 2013;

Little et al., 2013; Harris et al., 2013; Holden et al., 2013;

Bhat et al., 2012), Bern3D-LPJ features a dynamic three-

dimensional ocean with physically consistent formulations

for the transport of heat, carbon, and other biogeochemical

tracers, similar to work by Holden et al. (2010) and Olson

et al. (2012), and includes a state-of-the-art dynamic global

vegetation model, peat carbon, and anthropogenic land-use

dynamics. The model is applied directly without using an

emulator (Holden et al., 2010, 2015; Olson et al., 2012).

Further, we note that no ocean carbonate chemistry or ma-

rine biology parameters were varied in this study. Results for

changes in AMOC are known to vary considerably among

different models and our ensemble may not represent the full

uncertainty in AMOC response. Important processes are not

represented in Bern3D-LPJ. Most notably, the melting of ice

sheets and glacier and its impacts on sea level and AMOC are

not included. Consequently, only results for the steric com-

ponent of sea level rise are reported and results for changes

in AMOC should be considered with caution. Potential cli-

matic “surprises” such as the massive release of methane

from clathrates or permafrost are also not considered.

4.1 TREX: The emission-response relationship

A main focus of this study is on TREX and thus on the prob-

abilistic relationship between cumulative CO2 emissions and

the transient or peak response in individual, illustrative cli-

mate variables. TREX was evaluated both by using the re-

sponse and emission data for each year of a simulation and,

in the case of TREXpeak, by considering only the peak (or max-

imum) in response over a transient simulation. For simplicity,

the term TREX is often used to refer to both quantities in the

following discussion. In this study, probability distributions

are always determined for the climate variable response for a

fixed, given amount of emissions. For example, for 1000 Gt C

of total emissions, the peak response in global mean surface

temperature change (1SAT) is determined to 2.31 ◦C and to

be with a probability of 68 % within 1.49 and 3.81 ◦C (Ta-

ble 2).

The magnitude of the response is in general nonlinearly re-

lated to cumulative CO2 emissions. This may present no fun-

damental problem. Yet, nonlinearity in responses add to the

scenario uncertainty and extrapolation beyond the considered

scenario space may not provide reliable results. Non-linear

relationships cannot be precisely summarized with one single

number. For convenience, we have approximated responses

for the investigated variables by linear fits (Tables 2 and A2).

A close to linear relationship is found for pH. Consistent with

earlier studies, we also find an approximately linear relation

between transient surface temperature increase and cumula-

tive CO2 emissions of about 1–3 ◦C (TtC)−1 over our set of

multi-agent scenarios. There are some nonlinear temperature

responses in strong mitigation scenarios (particularly those

with negative emissions).

Within Bern3D-LPJ, TRE1SAT is higher when evaluated

at 1000 Gt C than when evaluated at 2000 or 3000 Gt C (see

Table 2). This may be related to non-CO2 forcing as it po-

tentially has a relatively smaller role in high-emission sce-

narios. It may also be model-specific as similar tenden-

cies are found for not only the other physical variables but
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Figure 6. PDFs of transient climate response (a, b) and equilibrium climate sensitivity (c, d) derived from the model ensemble and for

different observation-based constraints. In (a, c) the PDFs are shown for the ensemble without constraints (prior, black line), for the case

when each of the constraint groups “heat” (magenta), “CO2” (cyan), “ocean” (blue), and “land” (green) is applied alone with equal weights,

and for all constraints (red). The group “heat” is split up further into SAT anomaly (dashed magenta) and ocean heat uptake observations

(dotted magenta). In (b, d) the constraints are added sequentially with their corresponding weights in the full constraint in the following

order: SAT anomaly (magenta dashed), ocean heat uptake (magenta solid), CO2 (cyan), ocean (blue), and land (red, corresponding to the full

constraint).

also the ocean acidification variables which are hardly in-

fluenced by non-CO2 forcing. A tendency for the TCRE to

decrease with increasing cumulative emissions is noted in

earlier studies (Herrington and Zickfeld, 2014; Gillett et al.,

2013; Matthews et al., 2009), while Krasting et al. (2014)

find TCRE to be large for low and high emission rates and

low for modern emission rates in idealized scenarios in the

GFDL model.

4.2 Climate targets, allowable emissions, and TREX

Next we address climate targets and allowable emissions,

widely discussed in the literature for global mean sur-

face temperature (e.g. Siegenthaler and Oeschger, 1978;

Friedlingstein et al., 2011; Rogelj et al., 2011; Peters et al.,

2013). The link between a climate target, e.g., the 2 ◦C tar-

get, and allowable emissions is closely related to TREX and

TREXpeak. The probabilistic, quantitative relationship between

a climate variable of choice and cumulative CO2 emissions

permits one to assess the ceiling in cumulative CO2 emis-

sions if a specific individual limit is not to be exceeded

with a given probability, P . This quantification of allowable

emissions is possible irrespective of whether the emission-

response relationship is linear or not. Estimates of allowable

emissions may be inferred from the full model ensemble re-

sults or approximated graphically from the Figs. 3 to 5. Even

simpler, TREX(P ) (or TREXpeak(P )) is a convenient measure

to link a given climate target with allowable fossil-fuel CO2

emissions, Eallowable. It holds that

Eallowable =
Xtarget(P )

TREX(P )
Tt C, (11)

where Xtarget(P ) is a limit in variable X not to be exceeded

with probability P . TREX(P ) is then the numerical value

determined from the probability distribution (e.g., Fig. 3d)

of TREX for a given cumulative probability P (or (1−P)).

In the case of an approximately linear emission-response

relationship, a single value of TREX(P ) applies for differ-

ent target levels. For example, TRE1SAT
peak is 2.85 ◦C (TtC)−1

at the 68th percentile (evaluated for total emissions of

1000 Gt C). Then, allowable total carbon emissions to keep

global mean surface temperature warming below 2 ◦C at

any time with a 68 % probability are estimated to 702 Gt C

(2 ◦C/(2.85 ◦C (TtC)−1)). Correspondingly, allowable total

carbon emissions to meet the 1.5 ◦C target mentioned in the

Paris agreement (United Nations, 2015) are 526 Gt C.

Numerical values of TREX vary with the magnitude of

emissions (Tables 2 and A2) as mentioned above. Cumula-

tive fossil and land-use emissions up to year 2100 are typ-

ically lower than 1500 Gt C for the mitigation scenarios of
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the Energy Modeling Forum Project 21 (Van Vuuren et al.,

2008). Thus, in the context of emission mitigation, the nu-

merical values (median and confidence interval) determined

at 1000 Gt C cumulative fossil-fuel emissions appear best

suited (Tables 2 and A2). For convenience, we provide the

inverse values of TREX and TREXpeak for the different cli-

mate variables for the 68th and 90th percentiles of the cumu-

lative, integrated probability distribution in Table 3. Multi-

plying the appropriate value by the climate target of choice

yields the allowable emissions to meet this target with 68 and

90 % probability, respectively.

Some aspects are not explicitly considered here. First,

meeting a set of multiple targets requires lower cumulative

CO2 emissions than required to meet the most stringent tar-

get within the set in probabilistic assessments (Steinacher

et al., 2013). Thus, the evaluation of allowable cumulative

emissions to meet multiple climate targets requires their joint

evaluation. In practical terms, the joint evaluation of the 2 ◦C

target and the Southern Ocean saturation target would yield

lower allowable emissions than indicated in the above para-

graph.

Second, inertia in the socioeconomic system limits the rate

of carbon emission reduction. In other words, carbon emis-

sions are committed for the future through existing infras-

tructure. The committed peak change in a climate variable

X (relative to preindustrial) under a limited, constant rate of

emission reduction s is easily evaluated using the tabulated

values of TREX (Allen and Stocker, 2014):

Xpeak = TREX
(
e(t)

s
+E(t)

)
(12)

Here, e(t) denotes the CO2 emissions at time t , e.g., today,

e(t)/s is the cumulative sum of future emissions (given ex-

ponentially decreasing emissions with rate s), andE(t) is the

cumulative emissions over the historical period up to time t .

Economically feasible emission reduction rates are consid-

ered to be in the range of a few percent. In 2015, total CO2

emissions are about 10 Gt C per year and realized emissions

from fossil-fuel burning, land use, and cement production are

about 600 Gt C. This yields a committed (median) change in

SAT of 2.5 (2.31 ◦C (Tt C)−1
× (10/0.02+ 600) Gt C) and

1.8 ◦C when assuming immediate emission reduction with a

rate of 2 and 5 %, respectively. The corresponding commit-

ments in pH decrease are 0.22 and 0.16.

Climate targets may become out of reach when the tran-

sition to a decarbonized economy is delayed. This is quanti-

tatively illustrated by the mitigation delay sensitivity (MDS;

Stocker, 2013; Pfister and Stocker, 2016), a metric that cap-

tures the additional, committed increase in a climate variable

due to a delay in emission reduction. Again, the values of

TREX given in Tables 2 and A2 allow one to compute the

median and the 68 % confidence interval for the MDS fol-

lowing Allen and Stocker (2014).

4.3 Impulse response functions (IRFs)

The response to a pulse-like input of carbon into the atmo-

sphere for atmospheric CO2, ocean and land carbon, surface

air temperature, and steric sea level rise are discussed else-

where (e.g. Archer et al., 1998; Frölicher et al., 2014; Joos

et al., 2013; Shine et al., 2005). Here we provide, in addition,

IRFs for surface ocean pH and calcium carbonate saturation

states as well as soil carbon. A substantial fraction of carbon

emitted today will remain airborne for centuries and millen-

nia. The impact of today’s carbon emissions on surface air

temperature will accrue within about 20 years only but per-

sists for many centuries. In Bern3D-LPJ, as in many other

models, surface air temperature remains approximately con-

stant after the first ∼ 20 years after the pulse input. As found

in earlier studies, the normalized IRF in SAT depends rela-

tively weakly on the magnitude of the emission pulse. How-

ever, the peak warming is realized later for larger than for

smaller emission pulses in Bern3D and in a range of other

models (Joos et al., 2013; Zickfeld and Herrington, 2015).

Interestingly, Frölicher et al. (2014) find that surface air tem-

perature increases for several centuries in their CO2 pulse ex-

periment with the GFDL model. Steric sea level rise accrues

slowly on multi-decadal to century timescales. Similar to at-

mospheric CO2, peak impacts in surface ocean pH and sat-

uration states occur almost immediately after emissions and

these changes will persist for centuries to millennia. Thus,

the environment and the socioeconomic system will expe-

rience the impact of our current carbon emissions more or

less immediately and these impacts are irreversible on hu-

man timescales.

4.4 Transient and equilibrium climate sensitivity

Another focus of this study is to provide observation-

constrained estimates of the TCR, the ECS, and the TCRE as

determined from CO2-only scenarios. The recent slow-down

in global surface air temperature warming (Hartmann et al.,

2013; Roberts et al., 2015; Nieves et al., 2015; Karl et al.,

2015; Marotzke and Forster, 2015), termed hiatus, has pro-

voked discussions whether climate models react too sensi-

tive to radiative forcing. Here, the observation-constrained

TCR and ECS are quantified to 1.7 and 2.9 ◦C (ensemble

mean) with 68 % uncertainty ranges of 1.3 to 2.2 and 2.0 to

4.2 ◦C, respectively. TCRE is estimated to 1.7 ◦C (TtC)−1.

Our results for ECS, TCR, and TCRE are consistent with

the CMIP5 estimates in terms of multi-model mean and un-

certainty ranges (Flato et al., 2013) and there is no apparent

discrepancies between our observation-constrained TCR and

CMIP5 models. On the other hand, our results do not con-

firm some recent studies (Otto et al., 2013; Schwartz, 2012;

Collins et al., 2013) that suggest the possibility of a TCR

below 1 ◦C. Such low values for TCR are outside the very

likely range given in the Fourth Assessment Report of IPCC

(discussed by Collins et al., 2013) and of this study.
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Table 3. Inverse values of TREX and TREX
peak

for the different climate variables. The values are determined at 1000 Gt C total and fossil-fuel

CO2 emissions, respectively, and are given for the 68th and 90th percentiles of the cumulative probability distribution. Under the assumption

of linearity, the allowable emissions to meet a given target with 68 or 90 % probability can be estimated by multiplying the corresponding

value in the table with the target value of the climate variable.1Csoil is omitted in this table due to its nonlinear response and large uncertainty.

Total emissions Fossil-fuel emissions

Variable Units P = 68% P = 90% P = 68% P = 90%

[TRE1SAT
]
−1

GtC/◦C
402 245 360 219

[TRE1SAT
peak

]
−1 351 215 315 194

[TRE1SST
]
−1

GtC/◦C
532 329 479 296

[TRE1SST
peak
]
−1 479 294 426 262

[TRESSLR
]
−1

GtC/cm
31.2 19.6 27.8 17.2

[TRESSLR
peak
]
−1 27.8 17.9 25.6 16.1

[TRE1AMOC
]
−1

GtC/%
−46.6 −30.3 −42.3 −27.9

[TRE1AMOC
peak

]
−1

−35.3 −25.1 −33.4 −23.8

[TRE1pH
]
−1

GtC
−5000 −4348 −4348 −3846

[TRE
1pH
peak
]
−1

−4545 −4000 −4348 −3704

[TRE1�arag,S.O. ]
−1

GtC
−1667 −1449 −1515 −1316

[TRE
1�arag,S.O.

peak
]
−1

−1563 −1429 −1471 −1333

[TRE1�arag, trop. ]
−1

GtC
−1042 −926 −935 −840

[TRE
1�arag, trop.

peak
]
−1

−1010 −926 −943 −870

The choice and record length of observational constraints

may bias results for TCR and ECS. In particular, internal

climate variability, e.g., associated with the Atlantic Multi-

decadal Oscillation, may obscure the link between anthro-

pogenic forcing and response (van der Werf and Dolman,

2014). Ocean heat content data provide the strongest con-

straint on ECS and TCR in our analysis. The influence of the

applied long-term hemispheric SAT records is smaller. This

is not surprising as ocean heat content represents the time-

integrated anthropogenic forcing signal both in the observa-

tions and in our model. Roemmich et al. (2015) analyzed

a large set of ocean temperature measurements from floats

covering the top 2000 m of the water column and concluded

that ocean heat uptake continues steadily and unabated over

the recent period 2006 and 2013. The significant variability

in surface temperature and upper 100 m heat content was off-

set by opposing variability from 100 to 500 m. The high vari-

ability in the SAT and SST records as evidenced by the hia-

tus serves to emphasize that these records are poor indicators

of the steadier subsurface-ocean and climate warming signal

on the decadal timescale. These findings appear to support

our approach where ocean heat data provide the strongest

constraint on TCR and ECS, complemented by hemispheric

century-scale (1850 to 2010) SAT records. Studies that rely

on decadal-scale SAT (or SST) changes as included in the

most recent assessment by the IPCC may be affected by

large and unavoidable uncertainties due to the chaotic na-

ture of natural, internal variability (van der Werf and Dolman,

2014). These findings suggest that the downward revision of

the ECS range from the IPCC’s AR4 to AR5 may, in hind-

sight, appear perhaps somewhat cautious and that the AR4

range may be more reliable.

5 Summary and conclusions

We have quantified the transient response to cumulative CO2

emissions, TREX, for multiple Earth system variables, the

responses to a CO2 emission pulse defining the impulse re-

sponse function (IRF), and three other important climate

metrics, the equilibrium climate sensitivity (ECS), the tran-

sient climate response (TCR), and the transient climate re-

sponse to cumulative CO2 emissions (TCRE). Our results

are based on (i) a large number of simulations carried out

in a probabilistic framework for the industrial period and for

the future using 55 different greenhouse gas scenarios, differ-

ent emission pulses, and an∼ 1000-member model ensemble

and (ii) a diverse and large set of observational data as con-

straints. The observation-constrained PDFs provide both best

estimates and uncertainties ranges for risk analyses and for

determining allowable emissions to meet a climate target.

The 68 % confidence intervals for TCR and ECS are con-

strained to 1.3 to 2.2 and 2.0 to 4.2 ◦C, respectively. This is
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fully consistent with the range found by the CMIP5 models,

but in conflict with suggestions of the possibility of a TCR

below 1 ◦C. Ocean heat content data provide the most strin-

gent constraint on these estimates, while observation-based

records of surface air temperature and of the atmospheric

CO2 budget are of secondary importance in our analysis.

TREX and IRF are evaluated for changes in physical vari-

ables including surface air and ocean temperature, sea level,

and Atlantic meridional overturning circulation and changes

in ocean acidification variables and terrestrial soil carbon

stocks. Path dependency in responses and scenario uncertain-

ties as well as model response uncertainties are quantified.

The IRF analysis provides a theoretical framework to dis-

cuss path dependency and linearity in response without the

need to run many independent scenarios. It reveals that a per-

fect linearity between cumulative CO2 emissions and Earth

system variables is not to be expected. Nevertheless, the me-

dian values of the (normalized) IRFs vary within a limited

range for an emission age range between 30 and 500 years

and for pulse sizes between 100 and 3000 Gt C for global

mean surface air temperature, surface ocean pH, AMOC, and

to a somewhat lesser degree for SSLR. This implies a close-

to-linear relationship between these variables and cumula-

tive CO2 emissions and relatively little influence of the CO2-

emission scenario choice for these variables. On the other

hand, the IRFs for atmospheric CO2, global soil carbon in-

ventory, and aragonite saturation in the tropics and South-

ern Ocean are shown to vary with the size of the emission

pulse, implying some nonlinearity in the emission-response

relationship.

TREX provides a convenient metric to characterize (i) re-

sponses of different climate variables to CO2 emissions and

(ii) to estimate the link between an individual climate tar-

get and allowable emissions. A close to linear relationship

between cumulative CO2 emissions and modeled change is

found for the Earth system variables investigated here and

when considering both scenario and response uncertainty and

total emissions of up to 3000 Gt C. These findings suggests

that the emission-response and emission-climate target re-

lationships described by TREX should be further evaluated

and quantified for additional impact-relevant climate vari-

ables and using the full Earth system model hierarchy.
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Appendix A: Total vs. fossil-fuel-only CO2 emissions

Many studies report TCRE with respect to “cumulative total

anthropogenic CO2 emissions” (e.g. IPCC, 2013; Allen et al.,

2009; Meinshausen et al., 2009), not distinguishing between

fossil-fuel emissions and emissions from land-use changes.

Here, we use a model that explicitly simulates terrestrial car-

bon fluxes, including those from land-use changes. Thus the

diagnosed CO2 emissions obtained by closing the global car-

bon budget to match the prescribed atmospheric concentra-

tion in the scenarios correspond to fossil-fuel emissions only.

In order to estimate total emissions in our simulations, direct

land-use emissions (i.e., carbon from vegetation that is re-

moved due to land-use changes) are instantaneously added to

the diagnosed fossil-fuel emissions. The delayed emission of

carbon from deforestation via product and litter pools and the

indirect land-use-change effects such as the losses of terres-

trial sink capacity (Strassmann et al., 2008) or from the aban-

donment of land-use areas are simulated by the model, but

they are not included in the estimate of total carbon emissions

because this would require additional simulations. Shifting

cultivation (Stocker et al., 2014) has not been considered in

this study. Results in the present study are mostly given as

a function of total (fossil fuel plus deforestation) and, where

indicated, additionally as a function of fossil-fuel emissions.

Results for fossil-fuel emissions only are provided in the ap-

pendix (Fig. A3 and Table A2).

Table A1. Sampled model parameters with plausible ranges based on the literature and/or expert judgment (pmin, pmax). Normal prior

distributions N(x;pstd,σ )=
1

(
√

2πσ)
exp(−

(x−pstd)
2

2σ 2 ) with σ =
pmax−pmin

4
are chosen for ranges that are basically symmetric with respect

to the standard parameter value (pstd). Log-normal priors L(x;pstd, s, l)=
1

(
√

2πs(x−l))
exp(−

(ln(x−l)−ln(pstd−l))
2

2s2 ) are used for asymmetric

ranges, with s and l chosen such that the median of the distribution matches pstd and the standard deviation σ is one-fourth of the parameter

range, as for the normal distribution.

Parameter Description pstd pmin pmax Prior Refs.

αa Photosynthesis scaling parameter (leaf to canopy) 0.5 0.3 0.7 N(pstd,σ ) Zaehle et al. (2005); Haxeltine and Prentice (1996)

αC3
Intrinsic quantum efficiency of CO2 uptake (C3 plants) 0.08 0.02 0.125 N(pstd,σ ) Zaehle et al. (2005); Farquhar et al. (1980); Hallgren and Pitman (2000)

θ? = 1− θ Co-limitation shape parameter (light vs. RuBisCO act.) 0.3 0.004 0.8 L(pstd,0.54,0) Zaehle et al. (2005); Collaty et al. (1990); Leverenz (1988)

gm Max. canopy conductance 3.26 2.5 18.5 L(pstd,1.05,1.5) Zaehle et al. (2005); Magnani et al. (1998)

τsapwood Sapwood to heartwood turnover (yr) 20 5 100 L(pstd,0.76,0) Zaehle et al. (2005); Bartelink (1998)

mortmax Asymptotic maximum mortality rate (yr−1) 0.01 0.005 0.1 L(pstd,1.19,0) Zaehle et al. (2005)

respQ10,eq Temp. sensitivity of respiration and soil decomp. 2.4 1.3 3.3 N(pstd,σ ) Lloyd and Taylor (1994); Raich and Schlesinger (1992)

ksoil,scale Scaling factor for SOM decomp. rates at 10 ◦C 1.0 0.5 2.0 L(pstd,0.41,0.2) Trumbore (2000)

fsoil Fraction of decomp. litter entering soil pools (%) 40 20 60 N(pstd,σ ) Zaehle et al. (2005); Jenkinson (1990)

fslow Fraction of soil-bound litter entering slow soil pool (%) 1.5 1.0 15 L(pstd,1.05,0) Zaehle et al. (2005); Kergoat (1998)

Cpeat,scale Initial soil carbon in NH peatlands (Gt C) 420 190 650 N(pstd,σ ) Tarnocai et al. (2009)

CS Nominal equilibrium climate sensitivity (◦C) 3 1 10 L(pstd,0.58,0) Knutti et al. (2003); Meinshausen et al. (2009)

diffzonal Zonal atmospheric eddy diffusivity (106 m2 s−1) 1.0 0.1 10 L(pstd,1.06,0) Ritz et al. (2011a)

diffmerid,scale Scaling factor for meridional atm. eddy diffusivity 1.0 0.5 2.0 L(pstd,0.34,0) Ritz et al. (2011a)

diffdia Ocean diapycnal diffusivity (10−5 m2 s−1) 1.0 0.2 20 L(pstd,1.35,0) Edwards and Marsh (2005); Meinshausen et al. (2009)

diffiso Ocean isopycnal diffusivity (m2 s−1) 1.000 300 9.000 L(pstd,1.01,0) Edwards and Marsh (2005); Huang et al. (2003)

kgas,scale Scaling factor for standard OCMIP gas transfer velocity 0.81 0.65 0.97 N(pstd,σ ) Müller et al. (2008)

RFGHG,scale Scaling factor for total RF from well-mixed GHG 1.0 0.92 1.12 L(pstd,0.17,0.7) Forster et al. (2007)

RFaerosol,scale Scaling factor for total aerosol RF 1.0 0.5 2.0 L(pstd,0.35,0) Forster et al. (2007)
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Table A2. Same as Table 2 but for fossil-fuel CO2 emissions only – i.e., the gross emissions from deforestation are not included when

regressing the responses against cumulative CO2 emissions (see Methods).

Variable X Method TREX TREX
peak

Goodness of linear fit

1SAT 1000 Gt C 2.17 [1.25–3.79] 2.56 [1.64–4.25]

(◦C) 2000 Gt C 2.12 [1.36–3.32] 2.26 [1.47–3.47]

3000 Gt C 1.94 [1.33–2.68] 1.96 [1.34–2.70]

Lin. reg. 1.88 [1.28–2.69] 1.87 [1.22–2.78] r = 0.91± 0.04, σ̂ = 35%

1SST 1000 Gt C 1.62 [0.98–2.70] 1.86 [1.22–3.01]

(◦C) 2000 Gt C 1.50 [1.00–2.19] 1.58 [1.06–2.25]

3000 Gt C 1.33 [0.95–1.72] 1.35 [0.94–1.73]

Lin. reg. 1.38 [0.95–1.93] 1.39 [0.91–2.00] r = 0.91± 0.04, σ̂ = 35%

SSLR 1000 Gt C 29 [16–49] 32 [19–52]

(cm) 2000 Gt C 24 [15–40] 29 [19–45]

3000 Gt C 22 [14–33] 26 [18–37]

Lin. reg. 20 [13–27] 25 [16–35] r = 0.90± 0.04, σ̂ = 36%

1AMOC 1000 Gt C −18 [−31 to −8] −25 [−37 to −16]

(%) 2000 Gt C −16 [−24 to −10] −19 [−27 to −12]

3000 Gt C −14 [−20 to −9] −15 [−20 to −11]

Lin. reg. −16 [−23 to −10] −16 [−24 to −10] r = 0.8+0.1
−0.2

, σ̂ = 41%

1pH 1000 Gt C −0.21 [−0.25 to −0.18] −0.22 [−0.25 to −0.20]

(1) 2000 Gt C −0.19 [−0.22 to −0.17] −0.19 [−0.22 to −0.17]

3000 Gt C −0.18 [−0.19 to −0.16] −0.17 [−0.19 to −0.16]

Lin. reg. −0.19 [−0.22 to −0.18] −0.18 [−0.20 to −0.16] r = 0.97± 0.01, σ̂ = 17%

1�arag,S.O. 1000 Gt C −0.61 [−0.73 to −0.50] −0.65 [−0.73 to −0.59]

(1) 2000 Gt C −0.48 [−0.56 to −0.41] −0.48 [−0.53 to −0.43]

3000 Gt C −0.41 [−0.46 to −0.36] −0.41 [−0.45 to −0.37]

Lin. reg. −0.51 [−0.56 to −0.46] −0.46 [−0.52 to −0.41] r = 0.80± 0.04, σ̂ = 35%

1�arag, trop. 1000 Gt C −0.98 [−1.15 to −0.81] −1.02 [−1.11 to −0.94]

(1) 2000 Gt C −0.80 [−0.90 to −0.70] −0.78 [−0.85 to −0.72]

3000 Gt C −0.70 [−0.74 to −0.64] −0.68 [−0.72 to −0.64]

Lin. reg. −0.84 [−0.91 to −0.77] −0.76 [−0.84 to −0.69] r = 0.89± 0.03, σ̂ = 28%

1Csoil 1000 Gt C −66 [−260 to +25] −81 [−288 to +24]

(Gt C) 2000 Gt C −80 [−212 to −9] −89 [−228 to −9]

3000 Gt C −74 [−154 to −17] −80 [−163 to −16]

Lin. reg. −28 [−91 to +26] −42 [−132 to +27] r = 0.7+0.1
−0.7

, σ̂ = 158%
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Figure A1. Observation-based data sets used to constrain the model ensemble. The data sets are organized in a hierarchical structure to

balance the weight of individual data sets, and model skill scores are aggregated by averaging over the group of constraints at the same level

in the hierarchy (Steinacher et al., 2013).
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Figure A2. Time series of (a) atmospheric CO2 and (b) total non-CO2 radiative forcing prescribed in the scenario simulations. The forcings

are derived from 22 EMF-21 (black), 4 RCPs (red), 6 GGI (green), and 23 AME (blue) scenarios. After 2100 the scenarios are extended

to 2300 by stabilizing CO2 concentrations and non-CO2 radiative forcing by 2150. The total non-CO2 radiative forcing is the sum of the

forcing from (d) non-CO2 greenhouse gases and (f) aerosols. Note that for the AME scenarios the aerosol forcing is kept constant after 2005

because no aerosol emission paths are available for these scenarios. (c) Annual and (e) cumulative fossil-fuel CO2 emissions diagnosed with

the standard model parameter settings are shown for reference. The annual emissions are smoothed with a 10-year moving average filter. The

cumulative emissions are given relative to the year 2000.
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Figure A3. Response as function of fossil-fuel CO2 emissions: (a) same as Fig. 3a but for cumulative fossil-fuel emissions only – i.e.,

CO2 emissions from deforestation are not included in this figure (see Methods). (b–d) Same as (a) but for the transient SSLR, sea surface

temperature change (1SST), and global annual mean surface ocean pH (1 pHsurf). The response of the remaining variables to fossil-fuel-

only CO2 emissions are given in Table A2.
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