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Abstract 

Trabecular bone score (TBS) rests on the textural analysis of DXA to reflect the decay in 

trabecular structure characterising osteoporosis. Yet, its discriminative power in fracture 

studies remains incomprehensible as prior biomechanical tests found no correlation with 

vertebral strength. To verify this result possibly due to an unrealistic set-up and to cover a 

wide range of loading scenarios, the data from three previous biomechanical studies using 

different experimental settings was used. They involved the compressive failure of 62 human 

lumbar vertebrae loaded 1) via intervertebral discs to mimic the in vivo situation (“full 

vertebra”), 2) via the classical endplate embedding (“vertebral body”) or 3) via a ball joint to 

induce anterior wedge failure (“vertebral section”). HR-pQCT scans acquired prior testing 

were used to simulate anterior-posterior DXA from which areal bone mineral density 

(aBMD) and the initial slope of the variogram (ISV), the early definition of TBS, were 

evaluated. Finally, the relation of aBMD and ISV with failure load (Fexp) and apparent failure 

stress (σexp) was assessed and their relative contribution to a multi-linear model was 

quantified via ANOVA. We found that, unlike aBMD, ISV did not significantly correlate 

with Fexp and σexp, except for the “vertebral body” case (r2=0.396, p=0.028). Aside from the 

“vertebra section” set-up where it explained only 6.4% of σexp (p=0.037), it brought no 

significant improvement to aBMD. These results indicate that ISV, a replica of TBS, is a poor 

surrogate for vertebral strength no matter the testing set-up, which supports the prior 

observations and raises a fortiori the question of the deterministic factors underlying the 

statistical relationship between TBS and vertebral fracture risk. 

Keywords: Biomechanics, Fracture risk assessment, Osteoporosis, Trabecular bone score 

(TBS), Vertebral strength.  



4 

 

Introduction 

Osteoporosis is a metabolic bone disease characterised by bone loss and impaired 

architecture(1). Those alterations induce an increased likeliness of bone failure, even during 

daily activities(2). Consequently, millions of fractures are attributable each year worldwide to 

osteoporosis(3). Dual energy X-ray absorptiometry (DXA), the clinical standard to evaluate 

fracture risk, is based on the measure of the areal bone mineral density (aBMD), which 

explains bone strength only partially(4) and strongly overlaps between patients with and 

without fractures(5). Indeed, the trabecular structure, known to affect bone fragility, is not 

accounted for by DXA measurements, but textural approaches such as trabecular bone score 

(TBS) have been proposed in order to overcome this limitation(6). 

TBS evaluated on lumbar DXA improves fracture prediction(7-9) and the monitoring of 

glucocorticoid therapy(10) compared to aBMD alone. Its integration in FRAX, an 

epidemiological tool including population-based clinical risk factors (age, body mass index, 

prior fracture…), is now considered(11,12). However, the reasons for such predictive ability are 

not clear as TBS exhibits contradictory relationships with trabecular micro-architectural 

parameters(13,14). More intriguing is the absence of correlation between lumbar TBS and in 

vitro vertebral strength observed by Roux et al.(15). 

This surprising result may be due to the chosen biomechanical testing set-up: the authors 

embedded the vertebral endplates in a stiff material before uniaxial compression. This 

configuration circumvents the impact of disc degeneration and forward flexion on vertebral 

strength, but prevents common osteoporotic fractures such as endplate and anterior wedge 

failures(16). Our hypothesis is that a more physiological testing set-up could improve the 

relations between TBS and vertebral strength. Accordingly, the aim of this study was to 
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provide a more comprehensive understanding of the relationship between the initial slope of 

the variogram (ISV), the textural component of TBS, and vertebral strength. For this purpose, 

62 human vertebrae were evaluated by ISV on simulated DXA projections and their strength 

measured from a set-up similar to Roux et al.’s(15) or along two more realistic loading 

scenarios mimicking, either an anterior wedge fracture or a loading via the intervertebral 

discs. 

Materials and methods 

Implementation of the initial slope of the variogram 

Published details of the original calculation of TBS(6,13,17) were used to implement what is 

renamed here “initial slope of the variogram” (ISV) for copyright reasons. ISV is also based 

on an isotropic experimental variogram, extensively used in geostatistics to evaluate terrain 

roughness(18) or the heterogeneity of a landscape’s vegetation(19) from an aerial picture. This 

variogram is built by computing the mean squared difference γ(h) between the intensity of 

pixels located at an increasing lag distance (h). The larger γ, the more heterogeneity in the 

image. Parameters such as nugget (subpixel variance), range (lag distance for which the 

pixels are not anymore related) and sill (variance towards which the variogram tends) are 

image-specific and can be determined after fitting exponential or spherical models to the 

variogram data (kriging). ISV is the slope at the origin of this variogram on a log-log scale 

and characterises how quickly intensities vary between nearby pixels. In practice, ISV would 

be computed on the selected region of interest (ROI) of raw lumbar DXA scans(20), where the 

point resolution is different from the line spacing (respectively 0.901 mm and 1.008 mm for a 

QDR 4500A, Hologic, Bedford, MA). To deal with the anisotropic pixel size, ISV 

interpolates the intensity of the pixels. An isotropic variogram is then built by averaging the 
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intensity pairs according to their orientation. Finally, ISV is computed as the least square 

regression line of the first 5 points of the variogram(17). ISV and TBS are based on the same 

textural principles, but may not be rigorously equivalent. Yet, the high similarities between 

the two measures are shown in the appendices. 

Imaging and biomechanical testing of vertebral samples 

In order to cover a wide range of loading scenarios, the data from three previous studies using 

different biomechanical settings was used(21,22,23). However, their initial objectives, sample 

selection and inclusion criteria were different.  

• The “full vertebra” specimens 

In the first experiment (Fig. 1A) and after approval from the Ethics Committee of the 

Hamburg Chamber of Physicians, 13 T11-T12-L1 spinal segments from female donors (80 ± 8 

years) were scanned by a high-resolution peripheral quantitative computed tomography 

system with posterior elements (HR-pQCT, 82µm voxel size, XtremeCT, Scanco Medical 

AG, Zurich, Switzerland). The specimens were stripped from all soft tissues, but the 

intervertebral discs. The facet joints were also removed to focus the load on the vertebral 

body. T11 and L1 were filled with polymethylmethacrylate (PMMA) and partially embedded 

in PMMA discs. The spinal segments were fixed to a servo-hydraulic testing machine (MTS 

Bionix 858.2, Eden Prairie, MN, US). After preconditioning, a quasi-static uniaxial 

compression (6 mm/min) was applied on each spinal segment with a 4° angle until anterior 

failure of the middle vertebral body (T12). Details of the study can be found elsewhere(21). 

• The “vertebral body” specimen 

For the second configuration (Fig. 1B), 12 vertebral bodies (L1 to L5) from four male donors 



7 

 

(66 ± 15 years) were deprived from all soft tissues and posterior elements. Their endplates 

were embedded in PMMA discs and they were scanned by HR-pQCT (82µm voxel size, 

XtremeCT, Scanco Medical AG, Zurich, Switzerland). For the mechanical testing, the 

PMMA discs were rigidly coupled to a servo-hydraulic testing apparatus (5560 Series Table 

Model Systems, Instron, Norwood, MA, USA). After preconditioning, a quasi-static uniaxial 

compression (5 mm/min) was performed on each specimen until failure. This study received 

authorization from the Ethics Committee of the Medical University of Vienna. More details 

can be found in a previous publication(22). 

• The “vertebral section” specimens 

For the last experiment (Fig. 1C), 37 vertebral bodies (T12 to L4) from male (7) and female 

(3) donors (64 ± 12 years) were isolated. Their endplates were trimmed in parallel surfaces 

perpendicular to the cranio-caudal axis (300 CP, Exakt Gmbh, Germany). The vertebral 

sections were scanned with HR-pQCT (82µm voxel size, XtremeCT, Scanco Medical AG, 

Zurich, Switzerland) for the densitometric and ISV analyses. After scanning each specimen 

was placed between the sand-blasted loading plates of a servo-hydraulic apparatus (Mini-

Bionix, MTS system, U.S.A.). After preconditioning, a quasi-static compression (5 mm/min) 

was performed on each section until anterior wedge failure was induced thanks to the free 

rotation of the loading plate allowed by a ball joint and the shift of the load application 5-

10% of the vertebral width anteriorly. These tests have been conducted after approval by the 

Ethics Committee of the Medical University of Vienna. Other details are also available 

elsewhere(23). 

Mechanical, densitometric and textural variables 

In biomechanics, strength is usually a structural parameter defined as the largest force a bone 
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sustains before failure (failure load Fexp [N]). In mechanics, strength is a material parameter 

corresponding to the apparent failure stress (σexp [MPa]) defined by a ratio of the failure load 

and mean cross-sectional area of the sample (CSA). For completeness, the predictions of both 

definitions of vertebral strength were evaluated for ISV, aBMD, but also for bone mineral 

content (BMC), total volumetric BMD including both cortical, and trabecular bone (vBMD). 

The HR-pQCT data of each specimen was rotated to match the coordinate systems of the 

image with the cranio-caudal and anterior-posterior axis respectively along Z and Y. This 

data was coarsened to match the resolution of a lumbar DXA scan (0.901*0.901*1.008 mm3) 

and CSA (volume/height) as well as vBMD were evaluated. Anterior-posterior DXA scans 

were then simulated by projecting the BMD values along the frontal plane of each sample 

(Fig. 3). These simulated DXA, similar to those previously used to mimic clinical DXA(24,25) 

or to test the robustness of TBS(26), were used to measure aBMD, ISV and BMC. The image 

processing was performed with Medtool (www.dr-pahr.at).  

Statistical analysis 

A statistical analysis was conducted after logarithmic transformation (Python-Statsmodels). 

First, the relation of ISV, aBMD, BMC, vBMD with Fexp and σexp was assessed via root-

mean-square-errors (rmse) and coefficients of determination (r2). Then, aBMD and ISV were 

combined in multi-linear models after evaluation of their multi-collinearity via the variance 

inflation factor (VIF)(27). VIF quantifies the inflation of the regression coefficient due to 

correlation between predictors and is used to avoid over-fitting of multi-linear models. 

Parameters were considered independent if VIF < 4(28). An analysis of variance (ANOVA) 

was performed on the multi-linear models to evaluate the relative contribution of aBMD and 

ISV to the strength predictions. Their contribution was given as a percentage corresponding 
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to their relative sum of squares over the total sum of squares. 

Results 

Value of ISV as a surrogate for vertebral strength 

The correlations between ISV and Fexp, respectively σexp, were non-significant, except in the 

“vertebral body” case (Fexp, r2=0.396, p=0.028) for which the errors reached 24 to 50% of the 

actual failure load (rmse = 1.55 kN, 3.057 ≤ Fexp ≤ 6.289 kN). In fact, ISV is the explanatory 

variable related to the largest errors in the strength predictions, around 30% more than 

aBMD. The aBMD performed reasonably well, even when the posterior elements were 

included in the simulated DXA (“full vertebra”). It correlated significantly against with Fexp 

(0.587 < r2 < 0.694, p < 0.05) and σexp (0.47 < r2 < 0.570, p < 0.05). In comparison, BMC 

provided significant, but lower correlations (Fexp: 0.533 < r2 < 0.672, p < 0.05; σexp: 0.228 < r2 

< 0.422, p < 0.05) and the correlations observed with vBMD were generally higher than with 

the other predictors (Table 1). 

Relative contribution of aBMD and ISV to the strength predictions 

VIF evaluation confirmed that aBMD and ISV were independent enough to be included in 

multi-linear models (VIF < 1.55). Without surprise, aBMD contributed highly and 

significantly to the explained variance of the models explaining more than 60% and 50% of 

the variance in Fexp and σexp, for all testing set-ups. In most cases, the improvements due to 

ISV were not significant (p > 0.05), with the exception of the failure stress of the “full 

vertebra” (p = 0.037), where only 6.4% of the variance was explained by ISV (Fig. 3).  
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Discussion 

Presented as an estimate of the trabecular structure, TBS should be related to vertebral 

strength. Interestingly, the only study on the matter shows otherwise(15). To verify this 

unexpected result, the initial slope of the variogram (ISV), derived from early descriptions of 

TBS(6,13,17), was evaluated on simulated DXA for 62 human vertebrae compressed to failure 

via three distinct biomechanical tests. At best, ISV poorly predicts vertebral strength. 

A major strength of this work is that it is not limited to the uniaxial compression of vertebral 

bodies via rigid endplate embedding. More physiological testing scenarios such as loading 

via a rotating plate, to induce anterior wedge(23), or via intervertebral discs, to allow endplate 

failure(29), have been investigated. All three configurations led to the same conclusion: ISV is 

poorly related to vertebral strength and induces large root-mean-square errors, even when a 

significant correlation is reached. Combining aBMD and ISV as a multi-linear model did not 

prove more successful. Independently of the loading condition, the contribution of ISV to the 

model predictions was poor or non-significant. Whether strength was considered a failure 

load or an apparent failure stress did not have much impact on those results either. Another 

strong point is that the geometry of the vertebra differs in the three experiments. Cortical 

bone induces high contrasts on DXA that influence ISV. Still, regardless of the presence of 

the posterior elements and/or endplates, ISV did not predict vertebral strength. Finally, the 

study benefits from a higher power than the previous work. Indeed, 62 human vertebral 

samples have been crushed in total and our largest cohort alone includes more than twice the 

number of specimens tested by Roux et al. in a prior study (only 16 samples). 

Based on the same textural principles as ISV, TBS does not predict vertebral strength 

either(15). Of course, the purpose of TBS is to assess fracture risk, not vertebral strength, but a 

link to the mechanical properties is clearly missing. The weak, but significant, correlation 
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between TBS and vertebral stiffness found by Roux et al.(15) was sometimes provided as a 

justification(11,30). Yet, bone stiffness is the least accurate variable measured in a 

biomechanical test and is highly correlated with strength in well-controlled experiments(31). It 

is unlikely for TBS to share a solid relationship with one and not with the other. In fact, this 

weak correlation with stiffness cannot be trusted: unlike strength that is solely due to bone 

failure, stiffness is a composite measure affected by each element of the structure being 

tested. In other words, if vertebral stiffness were to be calculated from Roux et al.’s 

experiments, the actual deformation of the embedding material on the endplates must be 

accounted for. 

Furthermore, if TBS estimates trabecular morphology(32), which is sometimes not so 

clear(13,14), it should at least predict the mechanical properties of trabecular bone. This crucial 

point is yet to be demonstrated for TBS(33), but constitutes the cornerstone of other textural 

methods. The “sill variance” is also computed from the isotropic variogram and reflects the 

global heterogeneity of an image, when TBS focuses on the rate of variation between nearby 

pixels. The sill variance improves the fracture discrimination at the hip compared to aBMD 

alone(34), which is sound since it describes around 80% of the variance in elastic modulus and 

strength of trabecular samples(35). 

To improve the fracture risk assessment, alternative exist. Several parameters excluded from 

FRAX, such as fall history, also contribute to fracture risk(36). Then, fracture remains a 

mechanical event that occurs when the load applied on a bone is larger than its strength, for 

which finite element analyses (FEA) are the best surrogate(37). Indeed, FEA generated from 

DXA images can predict hip fracture for diverse loading scenarios (fall, stance)(38,39), an 

essential aspect of fracture etiology(40) that is omitted by densitometric and textural measures. 

Finally, trabecular anisotropy is the second best determinant of trabecular stiffness after bone 
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volume fraction(33). It can be retrieved in vivo from HR-pQCT scans at the radius or the tibia, 

and allows accurate non-invasive evaluation of its strength via FEA(41). 

Two points deserve clarification. First, ISV is not exactly TBS, or rather the contrary, as TBS 

may have been modified since its original description from which ISV was defined(13). 

Fortunately, the modifications must have been minimal since ISV, based on Pothuaud’s early 

description of TBS(6,17), and the latest version of TBS at the time of the study (1.8.2) compare 

well on clinical DXA (Appendix 1). Just as TBS, ISV is independent from lumbar aBMD(42) 

(VIF << 4) and relatively insensitive to noise(26) (Appendix 2). Just as TBS(13,14), ISV seems 

to be more affected by regions of high contrast located near the contour of the vertebra rather 

than its trabecular core (Appendix 3). The second point concerns the use of simulated DXA, 

which is not strictly equivalent to the clinical modality. Still, clinical and simulated aBMD 

measures correlate highly (Appendix 4). 

In conclusion, the initial slope of the variogram was not appreciably related to vertebral 

strength and brought no meaningful improvements to strength predictions provided by aBMD 

alone, independently of the loading set-up. Given the similitudes between ISV and TBS, this 

result concurs with prior observations showing the lack of relationship between TBS and 

vertebral strength(15). Unlike other textural variables(34,35), there is also no evidence that TBS 

predicts the mechanics of trabecular bone either, peculiar for an index of trabecular structure. 

The rationale behind the statistical relationship between TBS and fracture risk remains a 

fortiori unknown. 
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Appendices 

1. ISV correlates highly with TBS on clinical data 

TBS (TBSiNsight, v.1.8.2.0, MedImaps, Pessac, France) was analysed on lumbar DXA scans 

(QDR4500A, Hologic, Bedford, MA) of 16 female patients without deformities, 

calcifications or fractures (61 ± 15 yrs). Their body mass index (BMI: 23.4 ± 4.24 kg.m-2) 

fitted the range suggested by MedImaps. ISV was evaluated on BMD maps generated from 

the raw data of the scans (R files) via a Matlab script developed at the University of 

Sheffield(38,39). ISV correlated significantly with TBS (r2 = 0.745, p < 0.001) despite being 

calculated on BMD maps. As the amount of abdominal tissues can affect TBS, its calculation 

is sometimes adjusted to BMI(8). Indeed, combining the BMI of the patients to ISV further 

enhanced the correlation (r2 = 0.845, p < 0.001). 

2. Just as TBS, ISV is relatively insensitive to noise  

Unlike their clinical analogues, simulated DXA are almost noiseless. A Gaussian white noise 

(SD = 0.9) was added to the simulated DXA of the full vertebrae to evaluate the effect of a 

poor signal-to-noise ratio on ISV. ISV values decreased due to noise (-7.34 ± 1.78 %), but 

correlated highly with ISV values from the clean images (r2 = 0.954, p < 0.001). 

3. The contour of the vertebra has more influence on ISV than the core 

TBS and ISV reflect how quickly intensities vary from one pixel to another. Since the cortical 

regions feature the strongest gradients of intensity, they may dominate their calculation(13,14). 

To probe in this direction, ISVcontour was computed after erosion of the contour of each “full 

vertebra” by a single pixel. For ISVcore, the same amount of pixels, corresponding to 10.6 ± 

0.9 % of the initial area, was removed from the trabecular core. ISV decreased less after 

deletion from the core (-26.50 ± 7.68 %) than after contour erosion (-34.28 ± 9.89 %) and 

correlated better with ISVcore (r2 = 0.779, p < 0.001) than with ISVcontour (r2 = 0.616, p < 

0.001). It appears that the contour of the vertebra has more influence on ISV than the 

trabecular core. Should TBS share the same sensitivity, inaccurate definition of the region of 

interest could affect its diagnosis. 
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4. aBMD values from simulated and clinical DXA correlate highly 

Previous works established that DXA could be simulated from QCT images. Their degree of 

concordance with the clinical scans was evaluated based on the aBMD values. At the wrist(24) 

and hip(43), simulated and clinical aBMD measures were highly correlated (r2 > 0.82). A 

similar procedure was used to verify our simulated images. For the “full vertebra” group, 

DXA scans were simulated for L1 vertebrae from the HR-pQCT data of 11 T11/T12/L1 spinal 

segments used in this study. Their aBMD was then compared to values obtained from lumbar 

DXA scans (Lunar Prodigy, Lunar Corporation, Madison, WI) performed on the intact 

cadavers before extraction of those segments(44). For the “vertebral body” dataset, the 12 

simulated images were directly compared to DXA scans (Hologic QDR 4500A Scanner, 

Hologic, Waltham, USA) performed on the freshly extracted lumbar spines(22). In both cases, 

a strong and significant correlation was found between clinical and simulated aBMD 

measures (r2 = 0.711, p = 0.0011 for the “full vertebra” group and r2 = 0.775, p < 0.0001 for 

the “vertebral body” group). No clinical DXA had been performed for the “vertebral section” 

samples. Those correlations were lower than reported for other sites(24,43), which can be due to 

dissimilar DXA and HR-pQCT scanning positions in case of the “full vertebra” cohort and to 

the presence of posterior elements during the DXA scanning of the “vertebral body” 

specimens. 
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Figures  

 

Fig.1. Three experimental set-ups for vertebra testing. In configuration A, the loads are 

transmitted to the vertebra via the intervertebral discs (“full vertebra”). In set-up B, the 

endplates of the vertebral body have been embedded in a stiff resin (“vertebral body”). 

Design C induces wedge failure in a vertebral section by allowing rotations of the loading 

plate (“vertebral section”). 
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Fig.2. ISV was computed on DXA images simulated by projecting the HR-pQCT data 

coarsened to DXA resolution on the frontal plane of the “full vertebra” (A), “vertebral body” 

(B) and “vertebral section” (C). 
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Fig.3. Relative contribution of aBMD and ISV to the variance explained by the multi-linear 

models for the “full vertebra” (A), “vertebral body” (B) and “vertebral section” (C). The 

contribution of ISV is minimal and mostly not significant. 
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Table 

Table 1. Coefficients of determination (r2) after log transformation and root-mean-square 

error (rmse) between explanatory variables and vertebral strength. Two significance levels * 

(p < 0.05) and ** (p < 0.001) are displayed. Rmse is provided in the unit of the dependent 

variable: kN for the failure load (Fexp), MPa for the apparent failure stress (σexp). 

  A. Full vertebra B. Vertebral body C. Vertebral section 
  Fexp σexp Fexp σexp Fexp σexp 

ISV  r2 0.186 0.134 0.396* 0.309 0.014 0.011 
rmse 0.407 0.373 1.550 1.318 1.638 1.227 

aBMD r2 0.587* 0.518* 0.694** 0.570* 0.667** 0.470** 
rmse 0.323 0.308 0.937 0.968 0.979 0.888 

BMC r2 0.533* 0.369* 0.672* 0.422* 0.643** 0.228* 
rmse 0.337 0.346 1.097 1.169 0.891 1.070 

vBMD r2 0.714** 0.703** 0.707** 0.718** 0.487** 0.707** 
rmse 0.275 0.250 0.953 0.773 1.196 0.624 

ISV: initial slope of the variogram, aBMD: areal bone mineral density, BMC: bone mineral 
content, vBMD: volume bone mineral density 
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