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Imputation of sequence level genotypes in the
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Abstract

Background: A cost-effective strategy to increase the density of available markers within a population is to
sequence a small proportion of the population and impute whole-genome sequence data for the remaining
population. Increased densities of typed markers are advantageous for genome-wide association studies (GWAS)
and genomic predictions.

Methods: We obtained genotypes for 54 602 SNPs (single nucleotide polymorphisms) in 1077 Franches-Montagnes
(FM) horses and Illumina paired-end whole-genome sequencing data for 30 FM horses and 14 Warmblood
horses. After variant calling, the sequence-derived SNP genotypes (~13 million SNPs) were used for genotype
imputation with the software programs Beagle, Impute2 and FImpute.

Results: The mean imputation accuracy of FM horses using Impute2 was 92.0%. Imputation accuracy using
Beagle and FImpute was 74.3% and 77.2%, respectively. In addition, for Impute2 we determined the imputation
accuracy of all individual horses in the validation population, which ranged from 85.7% to 99.8%. The
subsequent inclusion of Warmblood sequence data further increased the correlation between true and imputed
genotypes for most horses, especially for horses with a high level of admixture. The final imputation accuracy of
the horses ranged from 91.2% to 99.5%.

Conclusions: Using Impute2, the imputation accuracy was higher than 91% for all horses in the validation
population, which indicates that direct imputation of 50k SNP-chip data to sequence level genotypes is feasible
in the FM population. The individual imputation accuracy depended mainly on the applied software and the level
of admixture.

Background
Rapid innovations in high-throughput sequencing and
array technologies have drastically reduced the costs of
next-generation sequencing (NGS) [1], which has made it
feasible to re-sequence a large fraction of any mammalian
genome. However, sequencing thousands of individuals is
still too costly for routine implementation in breeding
programs. To date, 50 k SNP (single nucleotide poly-
morphism)-chips typically build the genetic resource for
genomic predictions and genome-wide association studies
(GWAS) in livestock and other species [2]. With SNP-

chips, thousands of individuals can be cost-effectively
genotyped. However, depending on the extent of linkage
disequilibrium (LD) in a given population, it has been esti-
mated that a reasonably powered GWAS requires as many
as 300 000 to 500 000 SNPs [3,4]. In cattle, a high-density
(HD) SNP-chip was developed that contains 777 k SNPs
[5], but HD SNP-chips are not yet available for most other
livestock animals. However compared to NGS data, HD
SNP-chips only represent a small fraction of the variation,
given the 17 million DNA variants that were determined
in cattle [6].
NGS thus represents a powerful alternative to array-

based genotyping methods. To circumvent the economical
and logistical difficulties involved in re-sequencing more
than 1000 individuals, genotype imputation can be per-
formed. Genotype imputation is a well-established method
to combine information across collections of individuals
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with similar ancestry [7,8] and to derive HD genotype in-
formation for individuals that were genotyped on a low or
medium density set of loci [9-13]. In livestock, genotype
imputation accuracies have been mainly investigated in
cattle, imputing low-density (3 k and 6 k) to medium
(50 k) and medium to HD (777 k) SNP panels. The
reported genotype imputation accuracies obtained in these
studies ranged from 91.2% for imputation from 3 k to
50 k [11], to 99.1% from 6 k to 50 k [13] and to 99.7%
from 50 k to 777 k [14]. Results in cattle show that the
imputation of high-quality genotypes strongly depends on
diverse parameters, including the proportion of missing
genotypes [10], the effective population size (Ne), the level
of LD [14], the number of key ancestors and relatives in
the reference population [9], and the imputation algo-
rithm applied [10,11]. Besides cattle, genotype imputation
has also been investigated in pig [15], sheep [12] and horse
[7]. So far, in horse, imputation has been performed to
combine 50 k and 65 k genotypes of various horse breeds.
Imputation accuracies ranged from 82.2% to 100% [7].
Here, we investigated the accuracy of direct imput-

ation from 50 k SNP-chip data to sequence-level geno-
types in the Franches-Montagnes (FM) horse breed. The
FM breed is the last indigenous Swiss horse breed
[16,17]. In the past, this breed was particularly used as a
working horse in agriculture and transport. Nowadays,
the main purpose of the breed includes leisure riding
and driving activities [16,17]. During their breed history,
FM horses have been crossbred and thus systematically
admixed (e.g. with Warmblood and Arabians) to en-
hance their gait and riding ability. The last introgression
with two Warmblood stallions occurred in the 1990s
and is represented today by the stallion lineages N and
Q in the studbook [18]. Shortly after this introgression,
the studbook of the FM breed was closed. Estimates of
the current Ne of the FM breed range from 29.1 to
128.1, depending on the methodology applied [19].
We have successfully identified major quantitative trait

loci (QTL) for height and maxillary prognathism in FM
horses [20,21]. However, we could not detect genome-
wide associations for many other traits. Insufficient
marker density of the applied SNP-chip (50 k) could be
a possible reason. Increasing the marker density has
been demonstrated to improve the power of genomic
prediction [10] and GWAS [6]. Therefore, the objectives
of this study were to evaluate three methods for geno-
type imputation from the 50 k SNP-chip data to se-
quence level in the FM population.

Methods
Animals
We genotyped 1077 horses of the FM horse breed with
the Illumina Equine SNP50 BeadChip® that includes 54 602
SNPs. This dataset has been previously described in
detail [20]. We then selected 20 highly informative FM
horses based on Principal Component Analysis (PCA)
information scores [22] for whole-genome sequencing.
In addition, we selected a few influential ancestors and
progeny of these horses to increase the phasing accur-
acy. In total, 30 FM horses including two trios (sire, dam
and offspring) and three duos (one parent and offspring)
were sequenced. From this dataset, 28 FM horses were
already included in the aforementioned dataset of 1077
genotyped FM horses, while the other two horses were
additionally genotyped on the 65 k SNP-chip, which
shares 40 000 SNPs with the 50 k SNP-chip.
The pedigree information of the 1079 horses revealed

that the sires and the dams were included in the geno-
typed dataset for 707 and 207 horses, respectively. We
also used pedigree information to determine the propor-
tion of admixture by calculating the pedigree-based
relatedness with crossbred horses. FM horses have expe-
rienced introgressions in the past, especially with Warm-
blood. In total, 11 of the 30 sequenced horses showed a
level of admixture greater than 10%. To account for the
effect of admixture, we included 14 unrelated Warm-
blood horses, for which NGS data were available, in our
analyses. Thus, altogether, a total of 44 horses, including
30 FM horses and 14 unrelated Warmblood horses were
included in the sequence analyses.
All animal work was conducted in accordance with the

relevant local guidelines (Swiss law on animal protection
and welfare - permit to the Swiss National Stud Farm
(no. VD 2227.1)). Blood samples were collected by state
approved veterinarians (see also [20]).

Next-generation sequencing and variant calling
We prepared fragment libraries with 300 bp insert size
and collected one lane of Illumina HiSeq2000 paired-
end reads (2 × 100 bp) for each horse.
The fastq sequence reads were subjected to initial

quality checks (average read length, average read quality,
average read quality per position, distribution of bases
along the sequence length) using FastQC [23]. Se-
quences of average length of 100 nucleotides were
aligned against the reference genome EquCab2.0 using
the Burrows-Wheeler Alignment tool (BWA) version
0.5.9. [24] with default parameters. The aligned data
were processed with SAMtools [25] and picard [26] to
sort them by chromosome coordinates and to mark
duplicates. The Genome Analysis Toolkit (GATK) [27]
was used for indel realignment, SNP calling, and SNP fil-
tering. Reads marked as duplicates and with a mapping
quality less than 30 were excluded for variant calling.
Raw variant data in variant call format (version 4.0) were
flagged for low quality and unreliable variants using the
variant filtration module of GATK. Variant filtration was
defined according to the GATK recommended best
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practices documentation [28]. Analysis parameters like
variant confidence (from the QUAL field) divided by the
unfiltered depth of non-reference samples, Fisher's exact
test to detect strand bias, HaplotypeScore, Ranksum test
score for read mapping quality and the distance of the
allele from the end of the read were used to filter SNPs
as specified in the document. SNPs that did not match
any of these conditions were considered good and
marked PASS in the output VCF file.

Genotype concordance of sequenced horses
We compared the array-derived genotypes with the
sequence-derived genotypes for the 30 sequenced FM
horses. Genotype concordance of sequenced horses is
defined as the ratio of identical genotypes and the total
number of common SNPs typed with both methods. We
had two horses with less than 95% genotype concord-
ance, which were excluded from further analysis.

Genotype imputation
We compared three commonly used imputation pro-
grams, including two population-based methods, Beagle
[29] and Impute2 [30], and one method that combines
LD and pedigree information, FImpute [31]. Methods
were evaluated for two equine chromosomes (ECA),
ECA16 and ECA31. All programs were run with default
parameters, except where noted.
The imputation software package Beagle uses a so-called

“localized haplotype-cluster model” to reconstruct haplo-
types that are present in the reference population and a
hidden Markov model (HMM) to calculate missing geno-
types. In order to investigate the impact of different param-
eter settings using Beagle, we performed three imputation
scenarios based on (i) un-phased genotypes, (ii) pre-phased
genotypes (pre-phasing also with Beagle) and (iii) pre-
phased genotypes including information of duos and trios
of the reference population.
Impute2 is also based on a HMM, but reconstructs

haplotypes that are present in the reference and test
population. For the final genotype imputation, the haplo-
type structure of the reference population is used. In
addition, we used the program SHAPEIT [32] to pre-
phase the genotypes of the data, since this program also
includes first-generation family information (duos and
trios) for haplotype reconstruction. We set Ne equal to
100 for SHAPEIT and Impute2, which is a reliable esti-
mate of the current Ne of the FM breed [19]. In Impute2,
imputation was performed for fragments of 6 Mb. Output
files of Impute2 were converted into ped and map files
using GTOOL v0.7.5 [33]. GTOOL by default only con-
verts SNP genotypes that have a genotype probability
greater than 0.9, while genotypes below this threshold are
set as missing. To provide an overall comparison between
the three applied imputation methods, we set this
threshold to 0, such that all genotypes were called. For all
other analyses the default setting was used.
The third method that we used was FImpute, which

reconstructs haplotypes using family and pedigree infor-
mation and performs imputation based on haplotype
consistency of overlapping sliding windows [31].

Accuracy of imputation methods
We applied a cross-validation scheme to measure the ac-
curacy of genotype imputation. Accuracy was defined as
genotype concordance between the genotypes from NGS
and the genotypes obtained by imputation. We had 28 FM
horses with genome sequence and either 50 k SNP-chip
genotypes (n = 26) or 65 k SNP-chip genotypes (n = 2).
We split these horses into a test population of four horses
and a reference population of 24 horses. We repeated this
procedure seven times, such that each horse with genome
sequence and 50 k SNP-chip genotypes was represented
once in the test group. The horses with 65 k SNP-chip
information were only used in the reference group. The
duos and trios were equally distributed over all groups.
We included all 1077 FM horses with 50 k SNP-chip
genotypes for the haplotype reconstruction. Imputation
from 50 k to sequence level genotypes was performed
seven times, each time using a different group as test and
reference population.
After imputation, we determined the genotype con-

cordance rate between true and imputed genotypes of
the 26 sequenced horses, to evaluate the accuracy of im-
putation. For Beagle and Impute2, accuracy was assessed
using the commands merge and merge-mode 7, as im-
plemented in Plink [34]. For FImpute an R-code [35]
was applied. Using Plink, the concordance genotype rate
was calculated based on the ratio of identical genotypes
between sequenced and imputed loci, while genotype
errors based on allelic state (homozygous vs. heterozy-
gous) and origin (homozygous reference vs. homozygous
alternative) were not differentiated.
After the evaluation of the three imputation methods, all

chromosomes were imputed with Impute2. Accuracy was
assessed for each chromosome by the same cross-
validation scheme as described above. Furthermore, we cal-
culated the ratio between correctly imputed SNP genotypes
and the number of non-missing genotypes for each
chromosome using the “diff” and “lmiss” files implemented
in Plink.

Results
Whole-genome sequencing and SNP calling of the 44
horse genomes
We sequenced the genomes of 30 FM horses and 14
Warmblood horses. On average, we obtained 384 767 951
reads per animal, of which 94% mapped to the reference
genome Equcab2.0. On average, there were 348 621 822
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uniquely mapped reads per horse. The depth of coverage
ranged from 2.66x to 25.27x [See Additional file 1]. On
average, 8.66% of the mapped reads were marked as dupli-
cate reads that aligned with identical start and end posi-
tions on the reference genome. We then called SNPs of the
sequenced horses with respect to the reference genome
and used 13 127 080 informative SNPs with a minor allelic
frequency (MAF) greater than 1.5% and marked PASS for
subsequent genotype imputation analyses.

Genotype concordance of the 30 sequenced FM horses
We compared the concordance between SNP-chip-
derived genotypes and sequence-derived genotypes as a
quality control. The mean overall concordance per horse
was 98.5% (Figure 1A). The genotype concordance of
two horses was very low compared to all other horses,
with 85 and 91%, respectively. These two horses also
had the lowest sequence coverage, which is the most
likely explanation for the low genotyping concordance.
They were excluded from further analyses. The genotype
concordance for each of the remaining 28 FM horses
was greater than 97%.
We also analyzed the genotype concordance per

chromosome (Figure 1B). ECA8, ECA12, and ECA13
had concordance values between 98% and 99%. All other
chromosomes had a mean concordance greater than
99% across all horses. After these quality control steps,
we retained 42 sequenced horses and 1077 horses with
SNP-chip genotypes for the final genotype imputation.

Genotype imputation accuracy of three software
programs
We imputed all SNPs of ECA16 and ECA31 for the se-
quenced horses in a cross-validation experiment. In this
Figure 1 Concordance between sequence-derived and SNP-chip-deriv
distribution of the values for each chromosome within each of the 30 sequence
0.95 were excluded from subsequent analyses. (B) Concordance per chromosom
note that there are two outliers for each chromosome that are below the thres
subsequently excluded.
experiment, we had a total of 26 FM horses with both
50 k SNP-chip data and whole-genome sequence data.
We analyzed the accuracy of imputation using three
software programs (Table 1). With all three programs,
we found only very small differences in accuracy between
the two chromosomes. Impute2 outperformed the two
other programs and yielded a mean accuracy of ~92%.
The two other programs had accuracies of ~77%
(FImpute) and ~75% (Beagle). FImpute was computa-
tionally the most efficient program, yielding results
within 15 minutes for ECA16, which included 470 000
SNPs, on an Intel Core2, 2.8 GHz CPU with 98 GB of
RAM. Running time increased to 6 and more than
48 hours for Impute2 and Beagle, respectively. For the
shorter chromosome i.e. ECA31, with about 150 000 SNPs,
a complete run with FImpute was finished after 7 minutes,
compared to 1 and 4 hours with Impute2 and Beagle.
For the two programs that use population-wide LD,

Beagle and Impute2, we further evaluated various imput-
ation scenarios using different parameters settings on
ECA31. For Beagle, we found that pre-phasing led to an
increase in accuracy of about 3 percentage points, while
addition of first-generation family information increased
the accuracy only by 1 percentage point (Table 2). For
Impute2, alternative settings of the SHAPEIT parame-
ters were tested to identify optimal parameter settings
for imputation of the whole genome (Table 3). Apart
from accuracy, we also evaluated the number of imputed
SNPs per individual that passed the genotype probability
of 0.9. The tested parameters for SHAPEIT included
pedigree information, recombination rate (rho), window-
size, and Ne. For Impute2, we also tested the length of
the imputed interval, Ne, and the impact of pre-phasing.
Most of these changes did not have a major influence on
ed genotypes. (A) Concordance per horse: the boxplots illustrate the
d FM horses; two horses that had genotype concordances smaller than
e: the boxplots illustrate the values for each horse within each autosome;

hold of 0.95; these two outliers correspond to the two horses that were



Table 1 Imputation accuracies on two chromosomes with
three software programs

Software ECA16 ECA31

Impute2 0.927 0.920

Beagle 0.750 0.743

FImpute 0.774 0.772

The values indicate the concordance between true and imputed genotypes for
two different chromosomes.
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imputation accuracy or the number of imputed SNPs
passing the probability threshold (Table 3). Only the use
of the default value for Ne (which is 15 000 for SHA-
PEIT and 20 000 for Impute2) increased the genotype
accuracy from ~95% to ~97% but simultaneously
decreased the number of SNPs passing the probability
threshold from 130 000 to about 54 000 per individual.
Based on these findings and the required time for file
preparation and computation, we decided to use the de-
fault parameter settings, except for the use of a smaller
Ne (=100) for imputation of the full genome datasets.
Genome-wide genotype imputation accuracy with Impute2
We then performed imputation for each chromosome
separately in the 26 FM horses, using the same cross-
validation design as before. We attempted to impute 13
127 080 SNPs in total. On average, 11 770 355 SNPs per
horse passed the probability threshold of 0.9.
The overall genotype accuracy between experimental

(determined by NGS) and imputed genotypes was 95.3%.
The lowest accuracy (91.9%) was found for ECA12. All
other chromosomes had imputation accuracies greater
than 94.0%. Chromosome ECA14 had the highest accur-
acy, at 96.2% [See Additional file 2].
Around 50% of the SNPs were accurately imputed

(meaning an accuracy of 100%) for each animal and the
vast majority of the SNPs were correctly imputed in at
least 80% of the horses (Figure 2).
Individual imputation accuracy per horse
The individual imputation accuracy was estimated based
on results from imputing with Impute2 on ECA31. The
accuracies per horse ranged from 85% to 99%. No
Table 2 Imputation accuracies on chromosome ECA31
using Beagle with different parameter settings

Accuracy Prephasing Pedigree

0.717 no no

0.743 yes no

0.753 yes yes

Three different parameter settings for Beagle were evaluated; pre-phasing of
the reference population was optionally performed in a separate step using
Beagle; the accuracy was also determined with and without feeding pedigree
data (duos and trios) into the program.
difference in mean accuracy was found between males
and females, while the level of admixture of the horses
was highly correlated with the individual imputation ac-
curacy (r2 = −0.84) (Figure 3).
To account for the effect of admixture and to improve

the overall imputation accuracy, we added genome se-
quence data of 14 Warmblood horses to our initial refer-
ence population of 28 FM horses. This led to an increase
in the mean imputation accuracy from 95.3 to 96.8%. In-
dividual accuracies increased for 24 of the 26 tested FM
horses and ranged from 91% to 99% (Figure 3).

Discussion
In this study, we evaluated the feasibility of imputing
from 50 k SNP-chip data to almost 13 million SNPs in
the FM horse breed. Initially, we obtained 50 k SNP-
chip data on 1077 FM horses and genome sequences on
30 FM horses. The comparison of SNP-chip-derived ge-
notypes versus sequence-derived genotypes provided an
objective quality measurement for the NGS experiment
and the variant calling pipeline. This comparison re-
vealed that two horses had a poor genotype concordance
between SNP-chip- and sequence-derived genotypes,
which led to their exclusion from the analyses. The most
probable reason why these two horses had such a low
concordance was their low sequencing coverage. Subse-
quently, additional sequence reads for these horses were
collected, which brought their genotype concordance to
the same level as for all the others (data not shown), but
these data were not used in the analyses presented here.
We selected a total of 30 representative FM horses for

re-sequencing. These horses explain a large fraction of
the genetic variance of the population and therefore
maximize the correct imputation of causal variant [9,14].
Thus, we can expect to obtain most of the common var-
iants but also variants that differ between the different
stallion lineages. In addition, several phenotypes (e.g. lin-
ear description and conformation traits) of interest are
covered by the sequenced animals, so that causal variant
for these traits should be included in our data. However,
despite the optimal selection of representative individ-
uals, it is possible that recent and very rare mutations
are not contained in our limited dataset.
We evaluated imputation accuracy using three software

programs. We found that Impute2 had the highest imput-
ation accuracy. This software has also been found to out-
perform Beagle, fastPhase, and FImpute in cattle [10,11].
Several factors may explain the difference in performance
between imputation softwares, including method- and
population-based differences (e.g. the reconstruction of
haplotypes, the extent of LD and the size of the reference
population). The greater accuracy of Impute2 in our data-
set might be due to the extended LD that is present in the
FM breed [36], which allows for a better definition of



Table 3 Imputation accuracies on chromosome ECA31 using Impute 2 with different parameter settings

Concordance SNP number Ne SHAPEIT Ne Impute2 Pedigree rho Window size Prephasing with SHAPEIT Imputation intervall

0.954 129 985 100 100 yes 0.00042 2 Mb2 all horses 6 Mb2

0.950 128 845 100 100 yes1 0.00042 2 Mb2 all horses 6 Mb2

0.953 130 103 100 100 yes1 0.00042 2 Mb2 all horses 6 Mb2

0.950 128 501 100 100 no 0.00042 2 Mb2 all horses 6 Mb2

0.954 130 422 100 100 yes 0.00042 2 Mb2 all horses whole ECA31

0.953 130 001 100 100 yes 0.00042 0.5 Mb all horses 6 Mb2

0.952 129 511 100 100 yes 0.01 2 Mb2 all horses 6 Mb2

0.953 129 544 15 0002 100 yes 0.00042 2 Mb2 all horses 6 Mb2

0.971 54 295 100 20 0002 yes 0.00042 2 Mb2 all horses 6 Mb2

0.956 128 135 100 100 yes 0.00042 2 Mb2 test pop. only 6 Mb2

The concordance of true and imputed genotypes was calculated with different parameter settings for ECA31; the number of SNPs passing the probability
threshold of 0.9 on average per animal is indicated in the second column; Rho: recombination rate in SHAPEIT; the parameters in the first row are the same
parameters as in Table 1, except for the quality threshold of 0.9 which was set to 0; 1only in reference population; 2default value of the software.
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long-range haplotypes. As mentioned before, Impute2
reconstructs haplotypes based on SNP information of the
reference and test population, which becomes especially
useful for small reference populations. Therefore, the
difference between the two population-based methods
(Impute2 and Beagle) is likely a result of the small reference
population used [9]. Increasing the size of the reference
population should result in the convergence of the accur-
acies of these two methods [9]. Although we assumed that
all discrepancies between the imputed and sequenced-
derived genotypes were due to imputation errors, it is
clear that discrepancies could also be caused by sequen-
cing errors.
Imputation with different parameter settings for Beagle

showed that pre-phasing and inclusion of first-generation
pedigree information (duos and trios) increased the
Figure 2 Concordance between true and imputed genotypes. The con
FM horses for which 50 k SNP-chip and genome sequence data were available
proportion of horses, which had correctly imputed genotypes. Roughly half of
imputed genotypes and only very few SNPs had incorrect genotypes in more
SNPs on ECA12.
accuracy of genotype imputation, with pre-phasing having
a greater impact than including the pedigree information.
Using Impute2, pre-phasing the test population only
slightly improved the genotype accuracies (Table 3). Never-
theless, we recommend the data to be pre-phased and to
include first-generation pedigree information in order to
increase computational efficiency and haplotype recon-
struction. We also explored the effect of different Ne set-
tings in more detail. Using the default setting (Ne = 20 000)
resulted in highly accurate genotypes but more than 60% of
the SNPs did not pass the probability threshold of 0.9.
Therefore, we used current Ne estimates for the FM breed
(Ne = 100) in the final genotype imputation.
We showed that 50 k genotypes could be directly

imputed to sequence level genotypes. In cattle, SNP im-
putation is usually performed in multiple steps. 50 k SNP-
cordance was calculated in a cross-validation experiment comprising 26
. The SNPs were divided into six concordance classes depending on the
the SNPs showed perfect concordance between experimental and
than 20% of the horses. Note the lower concordance of true and imputed



Figure 3 Accuracy and admixture per horse. The grey shaded bars show the accuracy per individual when only 28 FM horses were used as
reference, the green bars show the accuracy when 14 Warmblood horses were added to the reference population and the blue dots show the
Warmblood admixture of each evaluated FM horse.
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chip data are imputed to HD data and then to sequence
level [10]. The low Ne and the high genetic relatedness
between FM horses also allow low-frequency alleles to be
directly imputed from 50 k to sequence level genotypes
with reasonable accuracy. However, with the upcoming re-
lease of an HD SNP-chip for horses, we expect that the
imputation accuracy for our FM horse population can be
further improved, by using HD genotypes for intermediate
genotype imputation [37].
Most of the SNPs had a high accuracy. Compared to the

other chromosomes, the accuracy was markedly reduced
for ECA12. We suspect that SNPs on this chromosome
may have incorrect positions in the reference genome
EquCab2.0 or contain errors in sequencing calls, since this
chromosome also showed a low concordance between
SNP-chip- and sequence-derived genotypes.
In this study, the number of animals in the reference

population was small. Thus, we designed a cross-
validation scheme to measure the imputation accuracy
for each horse. Despite the optimal choice of represen-
tative horses and the high level of LD within the FM
breed, we observed high variations in genotype imput-
ation accuracies between horses. We showed that the
major factor causing the variation between horses was
the level of admixture with introgressed Warmblood
horses. Therefore, we expect that sequence level geno-
type imputation will result in greater imputation ac-
curacies in closed populations than in highly admixed
populations, especially when the number of sequenced
animals and relatives is limited [9]. For the FM breed, we
increased the genotype accuracy per horse by including
Warmblood horses in the reference population.
Conclusions
Our data show that imputation from 50 k SNP-chip data
to 13 million SNPs with 95% accuracy is feasible in the
FM horse breed. Impute2 was the best software for
imputation in our dataset and the inclusion of additional
Warmblood reference sequences increased the accuracy
of imputation furthermore.

Additional files

Additional file 1: Summary statistics of next-generation sequencing. In
this file, some basic summary statistics of NGS and genotype concordance with
the SNP-chip data per horse are provided.

Additional file 2. Number of SNPs used for imputation. For each
chromosome, the number of SNPs and the concordance of imputation
are listed in this table.
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