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mechanism of N = 1 supersymmetric Yang-Mills theory with one compactified space-time

dimension. A deconfinement phase transition occurs for a sufficiently small compactifi-

cation radius, equivalent to a high temperature in the thermal theory where antiperiodic

fermion boundary conditions are applied. Periodic fermion boundary conditions, on the

other hand, are related to the Witten index and confinement is expected to persist inde-

pendently of the length of the compactified dimension. We study this aspect with lattice

Monte Carlo simulations for different values of the fermion mass parameter that breaks

supersymmetry softly. We find a deconfined region that shrinks when the fermion mass

is lowered. Deconfinement takes place between two confined regions at large and small

compactification radii, that would correspond to low and high temperatures in the thermal

theory. At the smallest fermion masses we find no indication of a deconfinement transi-

tion. These results are a first signal for the predicted continuity in the compactification of

supersymmetric Yang-Mills theory.
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1 Introduction

Gauge theories with adjoint fermions (adjQCD) have interesting thermodynamical prop-

erties and the study of their phase transitions provides a deeper understanding of strong

interactions at finite temperature. The N = 1 supersymmetric Yang-Mills theory (SYM)

is a special case among adjQCD theories with a different number of fermions. One main

motivation to study this theory has been its role as gauge part of extensions of the standard

model. The phase diagram of N = 1 SYM has been analysed at finite temperatures in

a previous publication [1]. Supersymmetry is broken at non-zero temperature as a conse-

quence of the different thermal statistics of fermions and bosons. In this contribution we

focus our attention on the phase transitions of the compactified SYM with periodic fermion

boundary conditions. Supersymmetry is preserved in this theory and is expected to have

a considerable influence on the phase diagram.

Confinement and fermion condensation are the two relevant phenomena of QCD-like

theories regardless of whether the fermions are in the fundamental or adjoint representation.

At low temperatures the theory is in a confined phase with colourless strongly bound

particles and unbroken centre symmetry. Chiral symmetry is broken by a non-vanishing

fermion condensate. At high temperatures there is a phase transition to a deconfined phase

with spontaneously broken centre symmetry. The chiral condensate melts away leading to

a restoration of chiral symmetry. However, the deconfinement transition is only a mild

crossover in QCD and other theories with fermions in the fundamental representation, due

to the explicit breaking of centre symmetry by the quark action. By contrast, the transition

from the confined to the deconfined phase is a true phase transition in adjQCD models for

any value of the fermion mass and in the massless limit chiral symmetry restoration defines

a second one that can have a different critical temperature.
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The picture changes completely when the boundary conditions of fermions are changed

from thermal, i.e. antiperiodic, to periodic. The path integral of the compactified theory

on R3 × S1 with periodic fermion boundary conditions (adjQCDR3×S1) corresponds to a

twisted partition function instead of the usual thermal partition function Z = tr[e−H/T ].

For SYM this twisted partition function represents the Witten index [2]

tr[(−1)F e−H/T ] =
∑
boson
states

e(−En/T ) −
∑

fermion
states

e(−En/T ) =

∫
PBC
DψDAµe−S[ψ,A] , (1.1)

where the fermion number F is odd for a fermionic state and otherwise even. If the same

periodic boundary conditions (PBC) are applied in a compactified theory for adjoint quark

and gauge fields, then an interesting interplay exists between bosonic and fermionic degrees

of freedom which avoids, in case of SYM, an explicit supersymmetry breaking in contrast

to the thermal case. The fermionic contributions can cancel the confining potential of the

gauge bosons leading to a restoration of centre symmetry. In SYM there is a cancellation

to all orders in the perturbative expansion and a centre stabilisation by non-perturbative

semi-classical contributions [3–5]. A complicated breaking pattern is obtained for general

SU(Nc) gauge groups, where additional phases appear when only parts of the ZNc centre

symmetry are broken [6]. Such phases were also found in Yang-Mills theory extended by

adjoint Polyakov loop terms, which are similar to the heavy quark limit of adjQCDR3×S1 [7].

There are different theoretical concepts related to adjQCDR3×S1 . The first of them is

the Hosotani mechanism [8], the possibility that a partial breaking of the gauge symmetry

in the compactified theory allows to interpret the gauge field of the compactified direction

as a Higgs field in a lower dimensional theory. This gauge-Higgs unification plays an

important role in extensions of the standard model with an extra dimension.

A further motivation for the investigations of adjQCDR3×S1 is the large Nc volume

independence of gauge theories, known as Eguchi-Kawai reduction [9]. This reduction

implies an equivalence between the full four-dimensional gauge theory and a simple single

site matrix model in the large Nc limit. However, volume independence is known to fail

for pure Yang-Mills due to the spontaneous breaking of centre symmetry driven by the

compactification [10, 11]. Adding adjoint fermions to the model (adjoint Eguchi-Kawai

models) can in principle resolve the centre symmetry breaking keeping the large Nc volume

independence intact [11, 12].

The dependence of the ground state on the parameters of the theory can be determined

from the effective potential. A perturbative loop expansions of the effective potential is

characterised by powers of the coupling constant g2 and a complete semi-classical expansion

adds non-perturbative contributions, that typically come with exponentials of the coupling

like e−1/g
2
. The one-loop approximation of the effective potential for pure Yang-Mills

theory (YM) predicts the deconfined phase with spontaneously broken centre symmetry

at high temperatures, and in QCD, with fermions in the fundamental representation, the

explicit breaking of centre symmetry is reproduced at one-loop order. The applicability

of semi-classical methods in QCD at lower temperatures and towards the deconfinement

transition is limited. With intact supersymmetry there is an exact cancellation between
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c

1
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c

Figure 1. The phase diagram of SYM according to the theoretical predictions [5]. In the theory

with thermal, i.e. antiperiodic, fermion boundary conditions the critical deconfinement radius R is

the inverse of the critical temperature T . The thermal theory has a larger critical deconfinement

radius than the one with periodic fermion boundary. The dark shaded part indicates the deconfined

region for both theories.

fermionic and bosonic perturbative contributions in the loop expansion of the effective

potential. The non-perturbative semi-classical effects are the dominant part of the effective

potential [4]. Compactified SYM is thus an interesting theory for the investigation of semi-

classical non-perturbative contributions.

In this work we consider compactified SU(2) SYM on R3 × S1 with periodic (PSYM)

and thermal1 (TSYM) boundary conditions and investigate different aspects of the decon-

finement transition. For the first time we perform lattice simulations of this theory that

capture in principle all perturbative and non-perturbative contributions. In particular we

are interested in the differences with respect to the thermal deconfinement transition that

we have studied in our previous investigations.

adjQCDR3×S1 was the subject of earlier investigations on the lattice in the context of

the Hosotani mechanism [13, 14]. Note also the related studies in [15]. Adjoint Eguchi-

Kawai models reduced to a single lattice site or small volume were investigated in [16–21].

Recently a method for numerical simulations based on the semi-classical analysis was tested

in [22, 23].

2 Compactified supersymmetric Yang-Mills theory

In a previous publication [1] we have analysed the thermal phase transitions of SU(2) SYM

theory. We start with a brief review of these results.

The Euclidean on-shell action in the continuum is

S(g,m) =

∫
d4x

{
1

4
(F aµνF

a
µν) +

1

2

Nf∑
nf=1

λ̄nf (γµDµ +m)λnf

}
, (2.1)

1Thermal means antiperiodic boundary conditions for fermion fields, but periodic ones for gauge fields.
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Figure 2. The same phase diagram as in figure 1 now for a larger number of Majorana fermions

(Nf > 1), but still outside the conformal window.

β

βSYM
c

κ = 1
2m+8

βYM
c

Z2,−/////,Z2,+
Z2,−/////,Z2,+/////

Z2,−,Z2,+
Figure 3. The phase diagram found in lattice simulations of SYM: Z2,+/Z2,+///// (Z2,−/Z2,+/////) stands

for confinement/deconfinement in the theory with periodic (antiperiodic) fermion boundary condi-

tions. The green lines show the scans of the parameter range performed in the simulations on an

Nτ = 4 lattice. The red dots are the position of precise checks of the phases with the histogram of

the Polyakov line at different volumes. A large value of β corresponds to a small compactification

radius R.

where Fµν is the field strength tensor and Dµ the gauge covariant derivative

Fµν = ∂µAν − ∂νAµ + ig[Aµ, Aν ]; (Dµλ)a = ∂µλ
a − gfabcAbµλc , (2.2)

with the structure constants fabc of the gauge group.
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The fields λ represent Majorana fermions in the adjoint representation of the gauge

group. There is only one Majorana fermion in SYM (Nf = 1) and it is the supersymmetric

partner of the gluon called gluino. The additional non-zero gluino mass term leads to

a soft supersymmetry breaking. Full supersymmetry is recovered in the limit where the

renormalised gluino mass vanishes.

The theory is confined at low temperature, confirmed by the linear rise of the static

quark-antiquark potential in lattice simulations. The bound state spectrum has been in-

vestigated in earlier studies of our collaboration [24, 25].

Chiral U(1)R symmetry has a non-trivial breaking pattern in this theory. This sym-

metry is broken by an anomaly as in one flavor QCD, but a discrete Z2Nc subgroup is

left intact in theories with fermions in the adjoint representation. This remaining sym-

metry is spontaneously broken down to Z2 by a non-vanishing expectation value of the

gluino condensate.

A deconfined phase with restored Z2Nc chiral symmetry is expected at sufficient high

temperatures. There are no simple theoretical connections between centre and chiral sym-

metry, therefore two phase transitions can occur independently at two different tempera-

tures in SYM and other theories with adjoint fermions. Chiral and deconfinement phase

transitions have been found to occur roughly at the same temperature in our previous

lattice simulations of SU(2) SYM within our current precision, leaving the question on

whether there exists a dynamical hidden link between them.

The present work is focused on understanding how the deconfinement phase transition

is affected by the fermion boundary conditions. According to our investigations of thermal

SYM on the lattice, the temperature of the deconfinement transition in TSYM is lower

than in pure YM.

These observations of the thermal transition are opposed to what we expect to find

in our new simulations of PSYM (see figure 1 and 2): when the gluino mass decreases the

critical compactification radius R, which can be identified with an inverse temperature,

decreases. The critical R is even expected to vanish in the supersymmetric limit (m →
0) and the deconfinement transition should completely disappear in PSYM without the

soft supersymmetry breaking of the mass term. This supersymmetric limit is approached

smoothly by the predicted transition line [5]. This implies that at very small R the theory

is confined only for very small values of the gluino mass m.

The reduced deconfined region in the phase diagram is induced by the adjoint fermions

with periodic boundary conditions. Therefore a larger Nf is expected to increase the con-

fined region even further, according to [5] the deconfinement transition completely disap-

pears already at a finite m for Nf > 1.2 In this case the confined region at large R is

connected to a confined region at small R. At very small R the theory is confined up to a

large value of m that tends to infinity as R goes to zero. At an infinite mass there is, of

course, always the deconfined region of pure YM.

The results of our lattice SYM simulations are summarised in figure 3 and repre-

sented in terms of the parameters β = 2Nc
g2

and κ = 1
2(m+4) . The scale of our simulations

2It is assumed that the theory is still outside the conformal window. Note, however, that already Nf = 2

shows signals related to (near-)conformality [26].
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depends on the gauge coupling g, in particular the lattice spacing is an exponentially de-

creasing function of β. At a fixed temporal extent Nτ of the lattice the larger critical

parameter βdecc is hence equivalent to a smaller critical compactification radius or a larger

critical temperature.

The absence of the deconfinement transition is confirmed in the supersymmetric limit.

At finite m the results are, however, in favour of the picture expected for larger values of

Nf . Within the limited volume and mass range accessible in our simulations we find no

evidence for a deconfinement transition below a certain value of the bare mass parameter

and a shrinking deconfined region at smaller values of R. Implications and limitations of

these findings are discussed in the conclusions, section 5.

After a short introduction of our methods, already applied in [1], we summarise our

numerical results providing evidence for this scenario in the following sections. We have

done scans in the bare parameter space for many different β and fixed bare mass parameters

κ. An important point in this analysis is the investigation of finite size effects. The

theory at small R has an almost flat effective potential for the Polyakov loop, leading to

large fluctuations and autocorrelations of this observable. The effect appears similar to

the broadening induced by the tunnelling between the two Z2 minima in the deconfined

phase at smaller volumes. Only in a comparison of different volumes it is possible to

discriminate the broad distribution in the confined region at small R from the broadening

of the distribution by tunnelling due to finite volume effects in the deconfined region. A

comparison of the Polyakov loop histograms for different volumes provides an estimate of

the finite volume effects. We have performed this study at certain points in the phase

diagram as sketched in figure 3.

3 Lattice simulations

In our simulations we have used a tree-level Symanzik improved gauge action and Wilson-

Dirac fermions

S =
∑
x

Re tr

[
β

Nc

∑
µ6=ν

(
5

3
Pµν(x)− 1

12
Rµν(x)

)]
+

1

2

∑
nf ;x,y

λ̄nf (y)DW [Vµ](y, x)λnf (x),

(3.1)

where Pµν(x) is the plaquette and Rµν(x) the rectangle of gauge links introduced as an

improvement of the standard Wilson gauge action. Uµ(x) and Vµ(x) denote the link vari-

ables in the fundamental and in the adjoint representation, respectively. The adjoint links

Vµ(x) are related to the fundamental links Uµ(x) through the well-known formula

Vµ(x)ab = 2 tr(Uµ(x)†τFa Uµ(x)τFb ) , (3.2)

where the generators in the fundamental representation τFa are normalised such that

tr(τFa τ
F
b ) = 1

2δab. The action of the Wilson-Dirac operator DW on the gluino field λ

is defined as

DW (x, y)λ(y) =λ(x)− κ
∑
µ

[
(1− γµ)Vµ(x)λ(x+ µ) + (1 + γµ)Vµ(x− µ)†λ(x− µ)

]
.

(3.3)
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On the lattice chiral symmetry and supersymmetry are explicitly broken with this type

of discretisation. The tuning of the bare gluino mass m is enough in SYM to recover both

symmetries in the continuum limit [27]. The chiral limit can be reached approaching the

point where the adjoint pion mass, defined in a partially quenched setup [28], vanishes.

From previous studies [29] the critical value of κ where the adjoint pion mass vanishes is

known to be 0.20300(5) at β = 1.6. At β = 1.8 it goes down to 0.1909(1).

There is a sign problem in the lattice discretised theory if the total number of Majorana

fermionsNf is odd, as in the case of SYM. Fermions are integrated out to perform numerical

simulations and the result is the Pfaffian of the Wilson-Dirac operator

Z =

∫
DU Pf(CDW )Nf exp (−Sg). (3.4)

The modulus of the Pfaffian is the square root of the determinant, leaving an additional

sign factor for odd Nf

Pf(CDW ) = sign(Pf(CDW ))
√

det(DW ). (3.5)

The sign of the Pfaffian is positive in the continuum limit, but on the lattice configurations

with negative sign can occur and the probability that the sign changes during a Monte Carlo

simulation increases at smaller gluino masses for fixed lattice spacing. In the compactified

theory with periodic boundary conditions sign changes are more likely compared to the

theory with thermal boundary conditions. In most of our current investigations we avoid

entering the region with a relevant number of sign changes by keeping the gluino mass far

enough from its critical value. This is checked by a measurement of the Pfaffian signs on

a subset of configurations for the runs with the most critical parameters using the method

introduced in [30]. Note that with periodic boundary conditions the problem becomes

already relevant at κ ≈ 0.19 for β ≈ 1.7.

As in our previous investigations [1] the simulations are done with the RHMC algo-

rithm. Towards the supersymmetric limit (vanishing renormalised gluino mass), the cost of

the RHMC trajectory increases drastically. This problem is common to all simulations with

dynamical fermions and becomes even more significant with periodic boundary conditions.

Therefore the limit of small gluino masses can only be reached at a high cost.

4 Numerical results for compactified supersymmetric Yang-Mills theory

In this section we provide numerical evidence for the following facts for the compactified

SU(2) SYM theory on R3 × S1: as expected, there is no difference between PSYM and

TSYM at small β where both are in the low temperature T (or large radius R) confined

phase. Moving towards the deconfinement transition line, we observe that the difference

in the fermion boundary conditions becomes significant even at a rather large gluino mass.

At large β and a wide range of the bare mass parameter κ we find a phase with unbroken

centre symmetry, similar to the “re-confined phase” in [14]. At larger gluino masses there is

a clear signal for spontaneously broken centre symmetry and a deconfined phase between

the re-confined phase and the confined phase at small β. The two confined phases are

– 7 –
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connected: at lower gluino masses the signal for deconfinement vanishes. The deconfined

phase close to the pure Yang-Mills limit shrinks towards larger values of β leading to a

sharp transition when κ is increased.

The volume averaged Polyakov loop,

PL =
1

V

∑
~x

Tr

{
Nτ∏
t=0

U4(~x, t)

}
, (4.1)

is an order parameter of the deconfinement transition. Note that SYM is the limit of

supersymmetric QCD with infinitely heavy quarks. The expectation value of PL is related

to the free energy of these static quarks in the fundamental representation. The constraint

effective potential of the Polyakov loop has either a minimum at zero, in the confined phase,

or two degenerate minima representing the spontaneously broken Z2 centre symmetry in

the deconfined phase. The histogram of the Polyakov loop is another representation of

the constraint effective Potential. The distribution is either centred around a maximum at

PL = 0 in the confined phase, or around two symmetric non-zero peaks in the deconfined

phase. There is a finite tunnelling rate in the deconfined phase between the two minima

corresponding to these peaks, that is suppressed in the infinite volume limit. The broad

distribution of the Polyakov loop induced by tunnelling is hard to distinguish from a signal

for confinement. To identify the different phases it is necessary to compare the histograms

of simulations at different volumes, in particular for the confined phase at large β that

is characterised by a rather broad distribution of the Polyakov loop. Due to this broad

distribution it is expected that the signal for the transition point can only be identified

at rather large volumes. In this work we study the expectation value of the modulus

of the volume averaged Polyakov loop, 〈|PL|〉, since it provides a clearer signal for the

deconfinement at finite volumes.

4.1 The three different phases at large values of the gluino mass

We begin our investigations with a scan of the relevant range of β values at fixed κ and

compare the behaviour of the order parameter PL for the two boundary conditions. As

expected at low β, corresponding to a large R or low T , the theory is confined regardless of

the boundary condition and the fermion mass. Consistent with our previous investigations

we find that a decreasing βdecc for smaller bare mass parameters, i.e. larger κ, in TSYM.

In PSYM the opposite behaviour is observed: the onset of the order parameter shifts

towards larger β values as the bare mass is decreased (see figure 4). We observe that

〈|PL|〉 reaches a maximum at intermediate β until it decreases again at large β. This is a

first indication of three different phases: a confined phase at large R connected to the low

temperature phase of the thermal theory, an intermediate deconfined phase, and a second

confined, or re-confined, phase at small R.

In the re-confined phase |PL| has a larger expectation value compared to the low

temperature confined phase. This is, however, not a signal for a deconfined phase. In a

deconfined phase the larger expectation value of the modulus of the Polyakov loop indicates

a peak of the distribution of the order parameter at PL 6= 0, that corresponds to a minimum

of the constraint effective potential at this point.
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L
|〉

β

♣❡r✐♦❞✐❝ κ = 0.16
t❤❡r♠❛❧ κ = 0.16
♣❡r✐♦❞✐❝ κ = 0.17
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t❤❡r♠❛❧ κ = 0.188

Figure 4. The measured modulus of the volume averaged Polyakov loop |PL| (eq. (4.1)) in scans

of the inverse bare coupling β at a fixed value of the bare mass parameter κ on an Nτ ×N3
s = 4×83

lattice. With thermal (antiperiodic) fermion boundary conditions the signal for the deconfinement

transition, that moves towards lower β at larger κ, is clearly visible in this picture. In the theory

with periodic boundary fermion conditions, on the other hand, the picture is completely different.

A larger 〈|PL|〉 are obtained only at intermediate values of β.

On the other hand, a small rise of the 〈|PL|〉 can also be an effect of the modulus

function induced by a broadening of the distribution of the order parameter, even though

the histogram is peaked at zero. The minimum of the constraint effective potential remains

in this case at PL = 0, but its curvature at the minimum gets smaller. We expect a

broadening of the distributions at large β due to the flat perturbative effective potential.

Different phases can hence be clearly pointed out only from a detailed investigation of the

shape of the histogram of the order parameter.

The best way to distinguish a phase transition from a broadening of the distribution

is the investigation of finite size effects. Comparing different volumes, we are able to

distinguish the broad distribution generated by tunnelling between the two Z2 symmetric

minima of the constraint effective potential in the deconfined phase and a broad distribution

peaked at zero in a confined phase. If the contributions close to zero are suppressed in the

histograms at larger volumes, the theory is in the deconfined phase.

The comparison of the histograms for κ = 0.16 and β = 1.8, 2.0, and 2.2 is shown in

figure 5. These data show a deconfined phase at β = 1.8, a transition close to β = 2.0,

and the second confined phase at β = 2.2. The suppressed tunnelling between the two

Z2 symmetric vacua for larger volumes at β = 1.8 is clearly visible. The second confined

(re-confined) phase at β = 2.2 is indicated by the distribution around a peaked maximum

value at the origin. At larger volumes the tendency towards one clear maximum at zero

is even increased. Compared to the distribution in the confined phase, the fluctuations in

this second confined phase are large, leading to a rather broad distribution. The larger

– 9 –
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(a) (b)

(c)

Figure 5. The histograms of |PL| for κ = 0.16 from simulations on 4×N3
s lattices. The different

volumes N3
s are compared to show the finite size effects. The theory changes from the deconfined

phase at β = 1.8 (a) to a confined phase at β = 2.0 (b) and β = 2.2 (c).

values of 〈|PL|〉 in the confined phase at large β are hence not a signal for deconfinement;

instead they are only indicating this broad distribution.

Different phases can be clearly separated by the peaks in the susceptibility of PL as

shown in figure 6. We have found that the separation is only possible at rather large

volumes. The first peak indicates the transition from the confined phase at small β to the

deconfined phase in correspondence to the thermal deconfinement transition. At large β

there is a second peak separating the deconfined phase from third phase with unbroken

centre symmetry. The transition is characterised by large values for the susceptibility at

the peak and in the confined region after the peak. The large susceptibility reflects the

mentioned broad distribution of the order parameter.

4.2 The transition at a small compactification radius

We now turn to the transition line at small R, i. e. large β. The best way to illustrate

the transitions in this region are scans of a range of κ values at fixed β, see figure 7.

The chosen values are all above the βdecc of SU(2) YM. The dependence of 〈|PL|〉 on κ

illustrates the drastic difference between TSYM and PSYM. While for thermal boundary
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Figure 6. The susceptibility of |PL| is shown as a function of β for κ = 0.16 from simulations

on a 4 × 163 lattice. This volume is sufficiently large to identify the transitions as peaks of the

susceptibility. The two distinct peaks indicate two transitions separating three different phases. II

has larger values of 〈|PL|〉 associated with broken Z2 centre symmetry and a deconfined phase. The

two other phases are in a confined phase with unbroken centre symmetry.
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Figure 7. Scans of a region of the bare mass parameter κ for several fixed values of β. In each

scan |PL| is measured in simulations on 4×83 lattices. Thermal (antiperiodic) and periodic fermion

boundary conditions are compared.

conditions the expectation value of the order parameter increases as the gluino mass gets

smaller, a significant decrease is observed in PSYM. This is the signal of the second confined

(re-confined) phase at larger β values.

At very heavy gluino masses the expectation value of the Polyakov loop tends to its

pure YM limit and there is always a deconfined region close to the κ = 0 axis. The
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Figure 8. The susceptibility of |PL| at β = 2.2 on a 4 × 163 lattice in a scan of the bare mass

parameter κ with periodic fermion boundary conditions. The peak corresponds to the critical κ of

the transition.

(a) (b)

Figure 9. (a) The histogram of |PL| at β = 1.70 and κ = 0.188. The chosen β corresponds to the

maximum value of 〈|PL|〉 in figure 4 at this bare gluino mass. Different volumes are compared in

simulations on 4 ×N3
s lattices, where Ns = 8, 10, and 12. (b) A comparison of the histograms at

κ = 0.188 and different values of β and Ns = 8.

boundary of that region can be identified by the steepest decrease of 〈|P |〉 as a function

of κ for each β and also from the susceptibility (figure 8). Our results depicted in figure 7

show that the deconfined region shrinks and the transition gets sharper at larger β values.

Therefore, we conjecture that the transition moves from first order at very large β towards

a crossover at β that are smaller, but still above the phase transition of YM.

4.3 Indications for a connection between the two confined phases

Our results for PSYM show only a mild change of 〈|PL|〉 between small and large values of β

at the smallest gluino mass in figure 4 (κ = 0.188). This change could indicate a transition
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to an intermediate deconfined phase, but it could also be due to a mere broadening of

the distribution of the order parameter. A closer investigation of the histograms points

towards the latter situation.

The histograms of the data from simulations on a 4 × 83 lattice at κ = 0.188 and

different β (see figure 9(b)) never show a two peak structure. We take the point with the

largest 〈|PL|〉 as a reference for the finite volume analysis. The histogram of the order

parameter for three different volumes is shown in figure 9(a). For larger volumes the

distribution tends to sharpen around the peak at zero. There is hence no indication in our

results for a transition to a deconfined phase already at κ = 0.188.

This also means that there is a connection between the low β and large β con-

fined phases. Confined and “re-confined” phase are in fact one large confined region in

phase diagram.

5 Conclusions

We have shown the results of the first lattice simulations of compactified SU(2) SYM on

R3×S1 with a soft supersymmetry breaking gluino mass term and periodic fermion bound-

ary conditions. In accordance with theoretical predictions, our results clearly point towards

the absence of the deconfinement transition in the supersymmetric limit. Already at rather

large gluino masses we have found no indications for the transition in the histograms of

the order parameter up to a very small compactification radius.

The deconfinement transition line is even more strongly influenced by the different

fermion boundary conditions than suggested by the theoretical predictions [3], that assume

a continuity (i. e. absence of deconfinement) only in the supersymmetric limit at zero

fermion mass. In addition, an intermediate deconfined phase between two confined regions

in the scans at a larger bare mass is not predicted for PSYM. These observations are more

consistent with the theoretical predictions for theories with a larger number of Majorana

fermions than with those for SYM.

Especially the results obtained with a fixed bare coupling constant (figure 7) clearly

confirm the difference between the periodic and antiperiodic fermion boundary conditions

and also indicate the connection to the the pure Yang-Mills limit, i. e. infinite gluino mass.

Close to this limit, there is always a deconfined region for β larger than βdecc of YM with

a transition to the confined phase at a certain critical gluino mass. The deconfined region

shrinks as β is increased. This fact also supports rather the scenario depicted in figure 2

than the one in figure 1 for the phase transitions in SYM on R3 × S1.
It is important to note that the finite lattice spacing leads to a breaking of super-

symmetry, that invalidates the balance between fermionic and bosonic contributions. The

breaking is induced by the Wilson mass in the Dirac operator and the violation of the

Leibniz rule on the lattice [31]. The rather flat effective potential might be sensitive even

to small perturbations by lattice artefacts. This might explain the observed difference be-

tween the measured and predicted transition lines. Therefore, an important next step is a

detailed comparison of different Nτ , that corresponds to a study of the theory with finer

lattices. We also have started investigations with a clover improved version of the SYM

– 13 –



J
H
E
P
1
2
(
2
0
1
4
)
1
3
3

lattice action. This might be relevant to reduce the lattice artefacts in the fermionic part

of the action. Nevertheless one might expect that the lattice artefacts have a small impact

on the general picture, in particular on the results at large β values.

Besides the most important investigation of the dependence on the lattice spacing,

further investigations are still required to confirm these results and there are several aspects

that we plan to consider in further, more demanding, numerical simulations. The scale

should be set by measurements of the mass ratios to change the axes of phase diagram from

bare parameters to renormalised quantities. The influence of the boundary condition on

the chiral transition line should also be investigated. On large volumes the clear separation

of the phases allows in principle an extrapolation of the transition lines. In this way the

critical bare mass for the disappearance of the deconfinement transition can be estimated

with a much better precision than in our current measurements.

A first exploratory study of our collaboration [32] considers also the compactification

of more than one space-time dimension that can relate the results to the investigation of

finite size effects [24].
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