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1 Introduction

Effective theories for black holes have been proven to be extremely useful in scanning and

probing the properties of the highly intricate non-linear dynamics of higher-dimensional

General Relativity. Amongst these are the blackfold approach [1, 2] and the large D

expansion [3], which have been used to find new black hole solutions as well as to study

some of their properties, including stability. This, together with numerical methods [4–7]

is slowly giving us a picture of the phase space of higher-dimensional black holes.

In particular, the blackfold approach has provided evidence for the existence of highly

non-trivial vacuum black hole horizon geometries and topologies in higher-dimensional
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asymptotically flat space-time [8, 9]. These include higher-dimensional (helical) black rings,

helical black strings, black cylinders, black odd-spheres, products of black odd-spheres and

higher-dimensional black helicoids. Some of these have also been generalised in the context

of gravity with a cosmological constant [10, 11], in plane wave backgrounds [9] and with

the addition of charges [12, 13].

The blackfold approach is a long-wavelength effective theory for the dynamics of black

branes, defined as a derivative expansion in the fields that characterise the brane. As

originally developed in [1, 2], it consists of wrapping neutral black branes along arbitrary

submanifolds in a background space-time. The dynamics of the brane are integrated out

along the transverse directions to the brane worldvolume, leading to an effective theory

characterised, to leading order, by a stress-energy tensor of the perfect fluid form. In this

paper, following the study of minimal surfaces in [9], we generalise this approach by further

integrating out spatial subsections of worldvolume which have the geometry of Euclidean

minimal surfaces. This allows us to construct new classes of asymptotically flat black

holes such as higher-dimensional doubly-spinning black rings, helicoidal black rings and

helicoidal black tori.

This generalised approach, which we will describe in detail in section 2, provides a

map between three different effective theories for black branes as portrayed in figure 1. The

original effective theory of [1, 2] is obtained by integrating out the transverse (n+1) angular

coordinates, that is, integrating out the subspace S(n+1). If one then considers the geometry

of a string with a transverse disc of finite radius and integrates out the disc D one obtains

the effective theory of a Myers-Perry string in the ultraspinning regime, characterised by

a stress-energy tensor and a conserved particle current J̃ a carrying the transverse angular

momentum in the plane of the disc. Instead, if one considers the geometry of the black

helicoid found in [9] and integrates out the width of the helicoid I one obtains the effective

theory of a helical black string, characterised by a stress-energy tensor and a boost vector

ṽa carrying a linear momentum density. Both these theories will be obtained and studied

in sections 3–4 and used to find new black hole geometries in sections 5–6. In particular, we

will show in section 3.4 and section 5.2 how this map between effective theories can be used

to obtain new transport coefficients for the different theories, given the transport coefficients

of the original theory or known information about the resulting effective theories.

2 Generalized blackfold approach

The blackfold approach, as introduced in [1, 2], consists of an effective theory for the

dynamics of black branes obtained by integrating out the short-wavelength degrees of

freedom of General Relativity. That is, if we associate the scales `a to short-wavelengths

and r0 to long-wavelengths, then the dynamics of the gravitational field gµν at distances

r � `a is integrated out, giving rise to a long-wavelength effective theory valid for distances

r � r0, provided r0 � `a.

For the case of neutral black branes, the effective geometry in the region r0 � r � `a
where both short- and long-wavelength degrees of freedom interact, is locally given by the

– 2 –
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(a) S(n+1)
∫
S(n+1)

(b)
∫
D J̃ a

(c)
∫
I ṽa

Figure 1. Schematic representation of integrating out degrees of freedom. In (a) we depicted the

usual blackfold approach consisting of integrating out the transverse S(n+1). In (b) we integrate out

the disc D from a black cylinder geometry and obtain a Myers-Perry string with transverse angular

momentum current. In (c) we integrate out the width I of the helicoid and obtain a helical string

with a boost vector carrying a linear momentum density.

metric,

ds2
p =

(
γab(σ

c) +
rn0 (σc)

rn
ua(σ

c)ub(σc)

)
dσadσb +

dr2

1− rn0 (σc)
rn

+ r2dΩ2
(n+1) + . . . , (2.1)

where the dots represent higher-order derivative corrections in the fields γab, r0, u
a with each

derivative order being characterised by a suitable power of ε = r0/`a. The metric (2.1)

in D = n + p + 3 dimensions is that of boosted neutral black brane of horizon radius r0

and boost velocity ua which was allowed to vary along the coordinates σc of the brane

worldvolume Wp+1. The worlvolume metric γab is the induced metric on Wp+1, given by

γab = gµν∂aX
µ∂bX

ν where Xµ(σc) is the set of mapping functions describing the position

of the worldvolume in the background space-time.

At distances r � r0, the gravitational field is sourced by the effective stress-energy

tensor obtained from the brane metric (2.1) using the Brown-York prescription [14]. In

the blackfold approach [1, 2], the dynamics in the angular directions in the (n+ 1)-sphere

are, to leading order in ε, integrated out and hence play no role.1 The resultant stress-

1At higher orders, one can also integrate the transverse sphere and this will modify the effective theory

such as to introduce elastic corrections in the stress-energy tensor [15].

– 3 –
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energy tensor is only defined along the (p+1)-worldvolume directions and takes the perfect

fluid form

T ab = Pγab + (ε+ P )uaub , uaua = −1 , (2.2)

where P is the pressure and ε the energy density given by

P = −
Ω(n+1)

16πG
rn0 , ε =

Ω(n+1)

16πG
rn0 (n+ 1) . (2.3)

These thermodynamic quantities satisfy the Gibbs-Duhem relation ε+P = T s, where s is

the local entropy density and T the local temperature and are given by

s =
Ω(n+1)

4G
rn+1

0 , T =
n

4πr0
. (2.4)

In order for gravitational objects of the form (2.1) to be consistently coupled to gravity,

and hence solve Einstein equations sourced by T ab, the following leading order constraint

equations must be satisfied [1, 2, 16–18],

∇aT ab = 0 , T abKab
i = 0 , (2.5)

where Kab
i = niµ∇aubµ is the extrinsic curvature tensor of the embedding geometry. Here

we have defined the projector ub
µ = ∂bX

µ along the (p+1)-worldvolume directions labeled

by a, b, c, . . . and the projector niµ along the (n+2)-transverse directions to the worldvolume

labeled by i, j, k, . . . . In the presence of worldvolume boundaries, though this has not been

shown directly from gravity but follows from probe brane considerations [1, 2], the blackfold

equations (2.5) must be supplemented by the boundary condition

T abηa|Wp+1 = 0 , (2.6)

where ηa is a unit normal vector to the brane boundary. Eq. (2.6) results in the requirement

r0|Wp+1 = 0.

The stationary sector. If we focus on stationary solutions to the constraint equa-

tions (2.5), then the hydrodynamic conservation equation ∇aT ab = 0 is solved if the fluid

velocity ua is aligned with a worldvolume Killing vector field ka, which we take to be of

the following general form

ka∂a = ∂τ + Ωa∂φa , (2.7)

where τ labels the time-like direction of the worldvolume and Ωa denotes the set of angular

velocities along each of the Cartan angles φa of the worldvolume geometry. Furthermore,

the local temperature T must be redshifted such that T = T/k where T is the global

temperature and k = | − γabkakb|1/2 is the modulus of the Killing vector field ka.

In this case, the blackfold equations (2.5) and the boundary condition (2.6) reduce to

T abKab
i = 0 , k|Wp+1 = 0 , (2.8)

– 4 –
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and we can integrate them to an effective free energy [2],

F [Xi] = −
∫
Bp
R0dV(p)P , (2.9)

where Bp is the spatial part of the worldvolume and we have assumed that the worldvolume

Killing vector is hypersurface orthogonal such that dp+1σ
√
−γ = R0dV(p) with R0 being

the modulus of ∂τ . The leading order free energy (2.9) is the integral over the worldvolume

of the local Gibbs free energy density G = −P . The free energy (2.9) obeys the relation

F = M − TS −
∑
a

ΩaJa , (2.10)

where M is the total mass, S is the total entropy and Ja is the angular momentum asso-

ciated with each Cartan angle φa. These can be obtained using the expressions [19],

S = −∂F
∂T

, Ja = − ∂F
∂Ωa

. (2.11)

Configurations that satisfy (2.8) also satisfy a Smarr-type relation of the form

(n+ p)M − (n+ p+ 1)(TS +
∑

ΩaJa) = T , (2.12)

where T is the total integrated tension given by

T = −
∫
Bp
dV(p)R0

(
γab + ξaξb

)
Tab , (2.13)

and ξa∂a = ∂τ . If we are dealing with compact black hole configurations in flat space-time

then we must have that T = 0.

2.1 Integrating out the worldvolume geometry

As mentioned above, in the usual blackfold approach, one integrates out the angular di-

rections in the transverse (n+ 1)-sphere since the dynamics of the brane, to leading order,

along those directions and along the worldvolume decouple from each other. However,

in certain cases, one can further integrate spatial sections of the worldvolume geometry

obtaining other effective theories and effective free energies (or effective actions).2

Consider the case in which the spatial part of the worldvolume is a product space such

that Bp = Bp−(w+m)×E
(w+m)
M with w,m > 1. In this case, the dynamics of the effective fluid

on Bp decouples and hence its motion is independent on both spaces Bp−(w+m) and E(w+m)
M

(or in an m-dimensional subspace Ẽ(m)
M of E(w+m)

M ) , if the extrinsic (elastic) equation

T âb̂Kâb̂
i = 0 , T ab̂Kab̂

i = 0 , (2.14)

along the m-directions of the space E(w+m)
M , which are labeled by the indices â, b̂, ĉ, . . .,

is satisfied together with the validity requirement r0 � `â. Then one can integrate out

2Implicitly, the idea of novel effective theories in the presence of other length scales can be found

in [20, 21].
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the dynamics on the m-dimensional subspace Ẽ(m)
M , resulting in an effective theory for the

worldvolume W̃p̃+1 and with spatial sections B̃p̃ where p̃ = p −m. The worldvolume has

(n+m+ 2)-transverse directions and lives in D = ñ+ p̃+ 3-dimensional space-time, where

n = ñ − m and ñ > m. Performing this integration directly in the leading order free

energy (2.9) leads to

F̃ [Xi] = −
∫
B̃p̃
R̃0dṼ(p̃)P̃ +O(ε) , (2.15)

where we have defined the effective pressure P̃ as

P̃ =

∫
Ẽ(m)
M

dmσ
√
γmP , (2.16)

with γm being the determinant of the metric on Ẽ(m)
M . We denote all quantities of the

resultant geometry with a tilde, and hence we have a map {γab, ua,k} → {γ̃ab, ũa, k̃, . . .},
where the dots here may contain other fields that result from the integration.

Since the resultant effective free energy (2.15) depends now on the induced metric

γ̃ab = gµν∂aX̃
µ∂bX̃

ν , one may readily obtain the effective stress-energy tensor T̃ ab using

T̃ ab =
2√
−γ̃

δF̃
δγ̃ab

, (2.17)

as well as other thermodynamic quantities/currents using (2.10)–(2.11) and corresponding

local versions. From here, and with a few educated guesses, one may deduce the leading

order effective theory, which, when restricted to the stationary sector, leads to (2.15).

Large families of product spaces Bp−(w+m) × E(w+m)
M , for which no coupling occurs

between the dynamics, exist, in particular when E(w+m)
M is a compact Euclidean minimal

surface that satisfies (2.14) along, at least, m-directions. These surfaces are characterised

by having zero mean extrinsic curvature Ki = γabKab
i = 0 and if (w+m) = 1, 2, these have

been classified in [9] and consist of discs and helicoids, while if (w+m) > 2 it was shown that

higher-dimensional versions of discs (even-balls) and helicoids also satisfy (2.14). Based

on these geometries we will give examples of two distinct worldvolume effective theories

obtained by integrating Euclidean minimal surfaces E(m)
M (in which case we set w = 0) or

subspaces Ẽ(m)
M of (w +m)-dimensional Euclidean minimal surfaces:

• In section 3 we consider the effective theory that results from integrating out discs of

finite size `â and its higher-dimensional version (even-balls). In this case the subman-

ifold E(m)
M (where we have set w = 0) is simply m-dimensional Euclidean space R(m)

with an ellipsoidal boundary where m is even dimensional. This bounded Euclidean

R(m) space can be split into a product of two-planes with a circular boundary, each

with an associated lengscale `â = ω̃−1
â . Each of these discs is characterised by a

1-parameter family of U(1) isometries with closed orbits and hence integrating them

out results in an effective theory for flat branes with induced metric γ̃ab, fluid velocity

ũa and a set of m/2 local angular velocities ω̃â associated to the corresponding set of

transverse angular momenta J̃a⊥ in the sense defined in [15, 19].

– 6 –
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• In section 4 we obtain the effective theory that results from integrating out finite

size intervals with length `â = ω̃−1
a . In this case the submanifold E(w+m)

M is an

(w+m)-dimensional helicoid geometry characterised by a 1-parameter family of U(1)

isometries whose orbits are not closed. The underlying effective theory, obtained

after integrating an (w + m − 1) section of E(w+m)
M , is that of a flat brane with

induced metric γ̃ab, fluid velocity ũa and a non-trivial boost vector ṽa carrying a

linear momentum density. If (w + m) = 2 and hence E(2)
M is a two-dimensional

helicoid geometry, we integrate out a finite line segment (the width of the helicoid)

and obtain a helical string.

2.2 The higher-order effective free energy functional

In (2.9) we have given the leading order effective free energy. However, higher-derivative

corrections can be accounted for. In general one has a series of the form

F [Xi] = F [Xi](0) + F [Xi](1) + F [Xi](2) + . . . , (2.18)

where the subscript k in the corrections F [Xi](k) indicates the order εk of the derivative

expansion. The procedure of integrating out the geometry, explained in the previous sec-

tion, is an order-by-order procedure. To order O(ε2), the effective free energy functional

for the neutral branes (2.1) is given by [15, 22]

F [Xi] = −
∫
Bp
R0dV(p)

(
P + υ1a

cac + υ2R+ υ3u
aubRab

+ λ1K
iKi + λ2K

abiKabi + λ3u
aubKa

ciKbci

)
,

(2.19)

and is valid for n > 2, as otherwise one would need to take into account backreaction

effects. In (2.19) we have introduced the fluid acceleration ac = ua∇auc, the worldvolume

Ricci scalar R and the worldvolume Ricci tensor Rab.3 The transport coefficients, λ1, λ2, λ3

were obtained in [15] via the local computations of [18, 23] and read

λ1 = −Pr2
0

3n+ 4

2n2(n+ 2)
ξ(n) , λ2 = −Pr2

0

1

2(n+ 2)
ξ(n) , λ3 = −Pr2

0ξ(n) , (2.20)

where we have defined the function ξ(n),

ξ(n) =
n tan(π/n)

π

Γ
(
n+1
n

)4
Γ
(
n+2
n

)2 , n > 2 . (2.21)

The remaining transport coefficients υ1, υ2, υ3 have not yet been determined and require

pushing the analysis of [16, 18, 23] to next order. However, as we will see below, we have

found a simpler way of obtaining υ1.

3The free energy (2.19) obtained in [15, 22], as well as other studies available in the literature for

space-filling fluids, does not deal with boundaries. In the presence of boundaries, which is the case of the

configurations we study here, the invariant ωabω
ab, where ωab is the fluid vorticity, may be independent of

the scalars acac and uaubRab and hence must be added to (2.19). However, for all cases studied in this

paper we have that ωab = 0.

– 7 –
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Performing the integration over E(m)
M leads to

F̃ [X̃i] = −
∫
B̃p̃
R̃0dṼ(p̃)

(
P̃ + υ̃1ã

cãc + υ̃2R̃+ υ̃3ũ
aũbR̃ab

+ λ̃1K̃
iK̃i + λ̃2K̃

abiK̃abi + λ̃3ũ
aũbK̃ci

a K̃bci + . . .
)
,

(2.22)

where the dots may contain terms which are interpreted as corrections P̃(2) to the leading

order pressure P̃ , or terms involving derivatives of boost vectors ṽa, or even terms which

involve couplings to currents of transverse angular momentum to first order in derivatives,

even though the free energy (2.19) originally only contained second order corrections. This

shows that this procedure allows to extract the transport coefficients υ̃i, λ̃i via a simple

integration, given υi, λi, by studying configurations with non-zero geometric invariants. As

will be explained in section 3.4, this has allowed us to determine υ1 in the form4

υ1 = −n
2
Pr2

0 , (2.23)

with n > 2, which we will use in order to asses higher-order corrections to doubly-spinning

black rings in section 5.

Validity of the approach. In [9] we have put forth an order-by-order method for

analysing the regime of validity of the blackfold approach for any given configuration based

on the effective free energy functional (2.19). Using the fact that all transport coefficients

υi, λi scale as rn+2
0 ∝ kn+2 from (2.19) we must have the requirements [9],

r0 �
(
|acac|−

1
2 , |R|−

1
2 , |uaubRab|−

1
2 , |KiKi|−

1
2 , |KabiKabi|−

1
2 , |uaubKa

ciKbci|−
1
2

)
.(2.24)

In the case of flat space-time, because of the of Gauss-Codazzi equations it is not nec-

essary to analyse the last two invariants, as they can be expressed as a combination of

the others [15]. When performing the integration as in (2.22) exactly the same type of

requirements hold, where now all quantities should have tildes. We note that, as explained

in [9], for configurations with boundaries for which k = 0 at some point in the worldvolume

due to (2.8), one can verify that |acac|−
1
2 ∝ k2 and hence it is not possible to satisfy the

requirement r0 � |acac|−
1
2 close to the boundary. As noted in [9], it is expected that the

effective theory breaks down close to the boundary and one must assume the existence of

a well defined boundary expansion that refines the approximation order-by-order. In this

paper, we will assume that this is the case and only study the validity requirements away

from the boundaries.

3 Effective theory for ultraspinning Myers-Perry branes

In this section we give an example of an effective theory obtained by integrating out the

geometry of a disc or of even-balls, for which the resulting local black brane metric is that

of ultraspinning Myers-Perry branes. This effective theory can also potentially be obtained

as a limit of the blackfold effective theory for Myers-Perry branes with arbitrary angular

momenta. In section 5 we construct doubly-spinning black rings using this effective theory.

4The result (2.23) holds when the fluid vorticity ωab vanishes.

– 8 –
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3.1 Effective theory for ultraspinning Myers-Perry strings: an example

Here we consider the simplest example of the type of construction that we have advertised

section 2.1. First we review the blackfold construction of a singly-spinning Myers-Perry

black hole in the ultraspinning regime [8]. This is described by the induced geometry,

ds2 = −dτ2 + dρ2 + ρ2dφ2 , (3.1)

where ds2 = γabdσ
adσb. The worldvolume geometry is rotating with angular velocity Ω

such that its worldvolume Killing vector field and respective modulus are given by

ka∂a = ∂τ + Ω∂φ , k2 = 1− Ω2ρ2 . (3.2)

This stationary geometry is a Lorentzian minimal surface satisfying Ki = 0 since Kab
i = 0

and hence trivially solves the blackfold equations (2.8). Furthermore, according to the

blackfold equations (2.8), the geometry acquires a boundary at ρ = ρ+ = Ω−1 where k = 0

which must satisfy r+ � ρ+ [9]. Therefore, spatial sections of the worldvolume have the

geometry of a disc of radius ρ+ while the topologies of the black hole horizons that they

give rise to are spherical S(D−2). This describes the geometry of Myers-Perry black holes

in the ultraspinning regime [8].

Clearly, we can add an extra flat direction z to the geometry (3.1) and boost it with

boost velocity β while still satisfying the blackfold equations (2.8). This is due to the fact

that the resulting geometry is still minimal and satisfies Kab
i = 0. It is, therefore, a string

of discs (a filled cylinder) with line element and Killing vector field

ds2 = −dτ2 + dρ2 + ρ2dφ2 + dz2 , ka∂a = ∂τ + Ω∂φ + β∂z , (3.3)

and describes a boosted string of ultraspinning Myers-Perry black holes with topology R×
S(D−3). Due to the presence of the non-zero boost β, the size of the disc is finite and equal to

ρ+ =
√

1− β2Ω−1 while the size of the z-direction is, obviously, infinite. Hence, the spatial

worldvolume geometry has two widely separated length scales for which the dynamics

decouple on Bp = R× E2
M , where E2

M is a two-plane with a circular boundary, hence with

the topology of a disc. Therefore, we can describe this geometry effectively by integrating

out the disc section of (3.3) and obtaining the effective geometry of a boosted string

d̃s
2

= −dτ2 + dz2 , k̃
a
∂a = ∂τ + β∂z (3.4)

together with a conserved particle current J̃ a = J̃ ũa carrying the transverse angular mo-

mentum, where J̃ is a density of transverse angular momentum. The ultraspinning Myers-

Perry string has two equivalent descriptions: either as a filled cylinder (p = 3) described

by a local boosted Schwarzschild brane metric or as a string (p = 1) with a conserved

particle current described locally by a boosted Myers-Perry brane in the ultraspinning

regime. The reason for this may be understood by looking at the spinning action [19] for

Myers-Perry p-branes with arbitrary angular momenta and then taking the ultraspinning

limit. In this limit two directions of the transverse (n+ 1)-sphere blow up and the source

can be effectively described by a p+ 2 brane.

– 9 –
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Obtaining the underlying local effective theory. The procedure of integrating out

the disc modifies the thermodynamic properties of the black brane. Since we are dealing

with stationary configurations we can obtain the properties and effective action for this

effective string by evaluating its free energy using (2.19),

F =
Ω(n+1)

16πG
rn+

∫
dz

∫ 2π

0
dφ

∫ ρ+

0
dρ ρ

(
1− Ω2ρ2 − β2

)n
2

=
Ω(n+1)

16πG
rn+

2π

(n+ 2)Ω2

∫
dz
(
1− β2

)n+2
2 .

(3.5)

Using the effective geometry (3.4) we can rewrite the free energy (3.5) as

F̃ [X̃i] =
Ω(ñ+1)

16πG

r̃ñ−2
+

Ω̃2

∫
Bp̃

√
−γ̃ k̃

ñ
, (3.6)

where, since we have integrated a disc, we have used that n = ñ − 2 and D = ñ + p̃ + 3

with ñ > 2 and p̃ = 1 in this case. We note that we must have D ≥ 7, which is consistent

with the fact that Myers-Perry black holes only exhibit ultraspinning regimes in D ≥ 6.

Furthermore, we made the following redefinitions Ω → Ω̃ and r+ → r̃+. The effective free

energy (3.6) describes the dynamics of stationary configurations composed locally of (3.3)

and can now be used to construct new geometries by wrapping the effective string on a

one-dimensional spatial submanifold.

However, one may wonder what is the underlying effective theory which, when re-

stricted to the stationary sector, gives rise to an effective free energy of the form (3.6).

There is no established procedure in order to extract the underlying theory from the free

energy (3.6) and it involves guesswork and clues that can be obtained from (3.6), such

as the stress-energy tensor. In particular, the free energy (3.5) can be interpreted as the

integral over the worldvolume of the local effective Gibbs free energy density of the string.

Therefore, consider the following local Gibbs free energy

G̃ =
Ω(ñ+1)

16πG

r̃ñ−2
0

ω̃2
, r̃0 =

(ñ− 2)

4πT̃
, (3.7)

where T̃ is the local temperature and ω̃ the local density of transverse angular velocity.

The guess (3.7) for the form of the Gibbs free energy was motivated from the form of (3.6)

in which the effective free energy functional for stationary configurations appears to be

equivalent to (3.7) when taking into account the local Lorentz factor k̃ on Wp̃+1. When

writing (3.7), we assume that ω̃r̃0 � 1 since we must preserve the original validity regime

prior to the integration of the disc. Using a local version of the thermodynamic rela-

tions (2.10)–(2.11), and furthermore that P̃ = −G̃, one finds the string effective pressure,

entropy density and particle current density

P̃ = −
Ω(ñ+1)

16πG

r̃ñ−2
0

ω̃2
, s̃ =

Ω(ñ+1)

4G

r̃ñ−1
0

ω̃2
, J̃ =

Ω(ñ+1)

8πG

r̃ñ−2
0

ω̃3
. (3.8)

In fact, these quantities can be obtained by using the results of [23] for Myers-Perry branes

with arbitrary angular momentum and then taking the ultraspinning limit. In order to
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obtain the energy density ε̃ we vary (3.6) with respect to the metric γ̃ab and obtain the

effective fluid stress-energy tensor, given by

T̃ ab = P̃ γ̃ab − ñP̃ ũaũb , ũa = k̃
a
/k̃ . (3.9)

Since the stress-tensor takes the perfect fluid form, from here we conclude that ε̃+P̃ = −nP̃ .

It is then easy to verify that that these thermodynamic densities satisfy local Euler-Gibbs-

Duhem relations for a fluid carrying particle charge

ε̃+ P̃ = T̃ s̃+ ω̃J̃ , dP̃ = s̃dT̃ + J̃ dω̃ , (3.10)

as well as the first law dε̃ = T̃ ds̃+ ω̃dJ̃ . Here, the local transverse angular velocity ω̃ plays

the role of a chemical potential. Promoting all the thermodynamic potentials T̃ , ω̃ and the

metric γ̃ab as well as the boost velocity ũa to functions of the worldvolume coordinates σa

finalises the effective theory.

If we focus on stationary configurations, then we must solve the conservation equa-

tion (2.5), assuming that both entropy and transverse angular momentum currents are

conserved. This requires, as in [12], that ũa is aligned with a Killing vector field of the

worldvolume geometry k̃
a

such that ũa = k̃
a
/k̃ and furthermore that global potentials

describing the temperature T̃ and transverse angular velocity Ω̃ are given in terms of the

local potentials such that T̃ = k̃T̃ and Ω̃ = k̃ω̃. Therefore we obtain the expression for the

brane thickness

r̃0 = r̃+k̃ , r̃+ =
(ñ− 2)

4πT̃
, (3.11)

and hence the effective action (3.6).

Even though we have derived this action for the case p̃ = 1, it is valid for all p̃ ≥ 1

since we could have added an arbitrary number of flat directions to (3.1) and proceeded

in the same way. We also note that, even though the derivation of F̃ [X̃i] was done for

flat backgrounds, it still applies to curved backgrounds for which the associated curvature

length scales are much larger than ω̃−1. Before studying some of the properties of this

effective theory, we consider branes of Myers-Perry black holes with an arbitrary number

of ultraspins.

3.2 Effective theory for Myers-Perry branes with several ultraspins

Instead of considering strings or branes of discs as in (3.3), one can consider as a start-

ing point the geometry of an even-ball instead of a disc (3.1). Even-ball geometries of

dimensionality 2k describe Myers-Perry black holes with several ultraspins [8] and have

induced metric

ds2 = −dτ2 +
k∑
a=1

(
dρ2

a + ρ2
adφ

2
a

)
. (3.12)

These geometries are also Lorentzian minimal surfaces since they are just embeddings of

R(2k) into R(D−1) and trivially satisfy the blackfold equations since Kab
i = 0. The geometry
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is rotating with angular velocity Ωa on each of the Cartan angles φa, hence, according to

the blackfold equations (2.8) its boundaries are described by the equation

k∑
a=1

(Ωa)2ρ2
a = 1 . (3.13)

Proceeding as in the previous section and adding p̃ flat directions to (3.12) one obtains a

brane of even-balls. Integrating out the 2k-dimensional even-ball geometry we obtain an

effective description in terms of a p̃-brane with k particle currents and effective free energy

F̃ [X̃i] =
Ω(ñ+1)

16πG

r̃ñ−2k
+∏k
a=1 Ω̃2

a

∫
Bp̃

√
−γ̃ k̃

ñ
. (3.14)

From here, as previously, it is possible to extract the local effective theory which, when

restricted to stationary configurations, leads to (3.14). The local thermodynamic densities

valid in the regime ω̃ar̃0 � 1, ∀a are

P̃ = −
Ω(ñ+1)

16πG

r̃ñ−2k
0∏k
a=1 ω̃

2
a

, s̃ =
Ω(ñ+1)

4G

r̃ñ−2k+1
0∏k
a=1 ω̃

2
a

, J̃(a) =
Ω(ñ+1)

8πG

r̃ñ−2k
0

ω̃a
∏k
b=1 ω̃

2
b

, (3.15)

with D = ñ+ p̃+ 3 and ñ > 2k and the local thickness is given by

r̃0 =
(ñ− 2k)

4πT̃
. (3.16)

These local thermodynamic densities satisfy the relations

ε̃+ P̃ = T̃ s̃+

k∑
a=1

ω̃aJ̃(a) , ε̃ = −(ñ+ 1)P̃ . (3.17)

Hence the effective stress-energy tensor is that of a multi-charged perfect fluid carrying a k

number of particle charges. In order to describe stationary configurations one must require

T̃ = k̃T̃ and Ω̃a = k̃ω̃a. From the effective free energy (3.14), we see that no corrections to

the equilibrium condition of black holes appear since the effective action is proportional to

k̃. In the case of doubly-spinning black rings, this is consistent with the arguments of [23]

for the absence of corrections due to intrinsic spin. The differences, to leading order, rely

on their thermodynamic properties.

3.3 Thermodynamic properties and stability

In this section we collect the thermodynamic formulae for the conserved charges obtained

using this effective theory and comment on the stability properties for this class of branes.

As mentioned, the effective theory is characterised by an entropy current Jas = s̃ua and a

k-number of particle currents J̃ a(b) = J̃(b)ũ
a. Integrating these quantities over the worldvol-

ume as in [19] leads to the total entropy S and transverse angular momenta J̃(b)⊥ given by

S̃ =
Ω(ñ+1)

4G

r̃n−2k+1
+∏k
a=1 Ω̃2

a

∫
Bp̃
dV(p̃) R̃0 k̃

ñ
, J̃(b)⊥ =

Ω(ñ+1)

8πG

r̃n−2k
+

Ω̃b
∏k
a=1 Ω̃2

a

∫
Bp̃
dV(p̃) R̃0 k̃

ñ
,(3.18)
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where we have assumed that the worldvolume time-like Killing vector field is hypersurface

orthogonal such that
√
−γdp̃+1σ̃ = R̃0dV(p̃). In turn the total mass and angular momenta

along worldvolume directions read

M̃ =
Ω(ñ+1)

16πG

r̃ñ−2k
+∏k
a=1 Ω̃2

a

∫
Bp̃
dV(p̃) R̃0 k̃

ñ

(
1 + ñ

R̃2
0

k̃
2

)
,

J̃(b) =
Ω(ñ+1)

16πG

r̃ñ−2k
+∏k
a=1 Ω̃2

a

ñΩb

∫
Bp̃
dV(p̃) R̃0 R̃

2
b k̃

ñ−2
.

(3.19)

The form of these expressions is very similar to those obtained for the usual local blackfold

effective theory for the branes (2.1). In particular we find a similar relation between the

free energy (3.14) and the entropy as the one found for charged black branes in [12], namely,

F̃ = T̃ S̃/(ñ− 2k).

Gregory-Laflamme and correlated stability. In the blackfold literature several black

branes have been shown to be unstable under long-wavelength perturbations along world-

volume directions [2, 12, 13, 24, 25]. Such instability is known as the Gregory-Laflamme

instability. In order to assess if ultraspinning Myers-Perry branes are unstable we evaluate

the speed of propagation of sound (longitudinal) and elastic (transverse) waves. For the

case of the speed of sound waves c2
s, we use the result of [24], where fluids with a particle

current were analysed, while for the speed of elastic waves c2
T , the result of [2] applies,

c2
s =

(
∂P̃

∂ε̃

)
s̃
J̃

, c2
T = − P̃

ε̃
. (3.20)

We find that c2
s = −c2

T = −(ñ + 1)−1, which is the same result as for the branes (2.1) as

shown in [2]. Therefore this class of branes is hydrodynamically unstable and elastically

stable, as expected since ultraspinning black holes are known to be unstable. This analysis

is expected to change if one considers Myers-Perry branes with arbitrary angular momen-

tum, in which case stable regimes (near extremality) are expected to appear as for fluids

carrying particle charge [12, 24]. In evaluating the speed of sound we have considered only

Myers-Perry branes with one single ultraspin, however, we expect the analysis for a single

ultraspin to extend to multi-ultraspin cases.

The existence of a Gregory-Laflamme instability is expected to be correlated with

thermodynamic instability [26–28]. In order to see that this is the case for this class of

branes we compute the specific heat capacity CJ̃ and inverse isothermal permitivity c for

Myers-Perry branes with a single ultraspin. This has to be done in the grand canonical

ensemble since the density of transverse angular momentum J̃ can be redistributed over

the worldvolume. We obtain the following results,

CJ̃ =

(
∂ε̃

∂T̃

)
J̃

= −(ñ+ 1)

3
s̃ , c =

(
∂ω̃

∂J̃

)
T̃

= − ω̃

3J̃
. (3.21)

We see that CJ̃ < 0 and c < 0 for all values of the thermodynamic variables. Note that

ω̃/J̃ ∝ ω̃4 and hence is independent of the sign of ω̃. Therefore, we conclude that for
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this class of branes, the Gregory-Laflamme instability is correlated with thermodynamic

instability. This behaviour is qualitatively different from the analysis for fluids with particle

charge carried out in [25].

3.4 Higher-order transport

As mentioned in section 2.1, the procedure of obtaining the effective free energy functional

holds to higher orders in the derivative expansion and hence it can be used to obtain higher-

order transport coefficients of other effective theories from the original ones. However,

this procedure works in both directions and hence, if one knows the transport coefficients

of the resulting effective theory, one can obtain the transport coefficients of the original

theory. In this section we give an example for each of these situations, focussing on the

hydrodynamic transport coefficient υ1 and corresponding υ̃1, while in section 5 we obtain

one contribution to the Young modulus of ultraspinning Myers-Perry branes involving the

transport coefficients λi. We will in particular show how information about the leading

order effective theory of Myers-Perry branes can give us access to second order transport

coefficients characterising the branes (2.1).

The transport coefficient υ1. We first consider the higher-order corrections that arise

for the simplest configuration (3.3). Since it is a flat worldvolume embedded into flat space-

time with vanishing extrinsic curvature tensor, the only non-zero invariant that contributes

to the second order effective free energy (2.19) is the invariant |acac|. Explicit computation

for the geometry (3.3) leads to

acac =
ρ2Ω4

k4 . (3.22)

The effective free energy functional (2.19) for this configurations is thus

F = −
∫
Wp+1

dV(p) (P + υ1a
cac) = −

Ω(ñ+1)

16πG

r̃ñ−2
+

Ω̃2

∫
B̃p̃

√
−γ̃ k̃

ñ
(
−1 +

2α

ñ− 2
r̃2

+Ω̃2

)
,(3.23)

where we have written υ1 as

υ1 =
Ω(n+1)

16πG
rn+2

0 α , (3.24)

for some constant α. Since all the second order invariants written in (2.22) vanish for the

resulting effective geometry (3.4), we interpret the resulting correction in (3.23) of order

(r+Ω̃)2 as a correction to the local effective pressure (3.8), that is, a correction of order `2

to the underlying local effective theory with scale parameter ` = r̃0ω̃. Writing it in terms

of local quantities we obtain

P̃ = −
Ω(ñ+1)

16πG

r̃ñ−2
0

ω̃2

(
1− 2α

ñ− 2
r̃2

0ω̃
2

)
. (3.25)

We see that corrections proportional to acac in the effective theory (2.19) correspond to

moving further way from the ultraspinning limit of Myers-Perry branes. Since in [23] the
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effective pressure PMP of Myers-Perry branes was obtained, we can expand it for large

rotation parameter.5 We obtain

PMP = −
Ω(ñ+1)

16πG

r̃ñ−2
0

ω̃2

(
1− r̃2

0ω̃
2 +O

(
(r̃0ω̃)4

))
. (3.26)

Comparing (3.26) with (3.25) leads to α = (ñ − 2)/2, which when written in terms of n

leads to the result claimed in (2.23). This result is valid for any configuration for which

the fluid vorticity ωab vanishes.

The transport coefficient υ̃1. Given that we have determined υ1 we can use it in order

to determine the corresponding transport coefficient for ultraspinning Myers-Perry branes.

Consider the flat embedding geometry, consisting of adding a two-plane to (3.3)

ds2 = −dτ2 + dρ2
1 + ρ2

1dφ
2
1 + dρ2

2 + ρ2
2dφ

2
2 + dz2 , (3.27)

where the Killing vector field takes the form

ka∂a = ∂τ + Ω1∂φ1 + Ω2∂φ2 + β∂z . (3.28)

For this geometry all the invariants in (2.19) vanish except for the one proportional to the

square of the acceleration, which reads

acac =
ρ2

1Ω4
1

k4 +
ρ2

2Ω4
2

k4 . (3.29)

We will integrate only over the disc spanned by (ρ1, φ1) with boundary ρ1+ =√
1− Ω2

2ρ
2
2/Ω1. In this way all the invariants in (2.22) for the resulting effective geometry

vanish except for the one proportional to the acceleration ãcãc, which reads

ãcãc =
ρ2

2Ω4
2

k̃
4 . (3.30)

The integration over the contribution (3.29) leads to one part which gives rise to the correc-

tion to the effective pressure as in (3.25), while the remaining term leads to a contribution

to the effective free energy (2.22) of the form

−
∫
B̃p̃

√
−γ̃

Ω(ñ+1)

16πG

ñ

2
r̃ñ+2

0 ãcãc . (3.31)

Therefore we obtain the transport coefficient υ̃1 for Myers-Perry branes in the ultraspinning

regime

υ̃1 =
Ω(ñ+1)

16πG

ñ

2
r̃ñ+2

0 , ñ > 4 . (3.32)

5In the notation of [23], this corresponds to expanding the pressure for large rotation parameter b.
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4 Effective theory for helicoidal black branes

In this section we construct another example of an effective theory for black branes based

on the minimal surface embedding of the helicoid and one of its higher-dimensional versions

found in [9]. The resulting effective theory is non-trivial and the end result of the process of

integrating out part of the worldvolume geometry gives rise to a local brane metric which

is not known. Before we proceed and derive the effective action for these branes we review

and present a careful study of the geometry of a black helicoid, which is a novel solution

of the blackfold equations (2.8) found in [9].

4.1 Black helicoids

Helicoid geometries are minimal surfaces in R3, which trivially solve the blackfold equa-

tions (2.8) in flat space-time, as shown in [9]. These geometries are embedded in flat

space-time with coordinates (t, xi) according to the embedding map

t = τ , X1(ρ, φ) = ρ cos(aφ) , X2(ρ, φ) = ρ sin(aφ) , X3(ρ, φ) = λφ , (4.1)

and Xi = 0 , i = 4, . . . , D− 1, where the coordinates lie within the range −∞ < ρ, φ <∞.

The ratio λ/a is the pitch of the helicoid and if λ 6= 0, the coordinate φ can always be

rescaled such that a can be set to 1. Without loss of generality, we take λ ≥ 0 and a > 0.

The induced metric then takes the form

ds2 = −dτ2 + dρ2 + (λ2 + a2ρ2)dφ2 . (4.2)

In order to make one of the directions compact, the helicoid is boosted along the φ direction

with boost velocity Ω such that

ka∂a = ∂τ + Ω∂φ , k2 = 1− Ω2(λ2 + a2ρ2) . (4.3)

From the point of view of the background space-time, this corresponds to a Killing vector

field kµ which takes the form

kµ∂µ = ∂t + aΩ (x1∂x2 − x2∂x1) + λΩ∂x3 , (4.4)

and hence it is rotating in the (x1, x2) plane with angular velocity aΩ and it is boosted along

the x3 direction with boost velocity λΩ. From eq. (4.3) and the blackfold equations (2.8)

the geometry has boundaries when k = 0, which appear at ρ±,

ρ± = ±
√

1− Ω2λ2

aΩ
, Ωλ < 1 . (4.5)

The boundary makes the helicoid compact in the ρ direction and give rise to black hole

horizons with black string topology R × S(D−3) in D ≥ 6. They can be thought as the

membrane analog of the helical strings found in [8]. The fact that these geometries have

string topology suggests that they can be bent into a helicoidal ring, in the same way that
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φ

Figure 2. Embedding of the rotating black helicoid in R3 with λ = a = Ω = 1, depicted in the

interval −3 ≤ φ ≤ 3.

helical strings can be bent into helical rings [8]. As we will show in section 6, this is indeed

the case.6 The size of the transverse sphere r0(ρ) is given by

r0(ρ) =
n

4πT

√
1− Ω2(λ2 + a2ρ2) , (4.6)

and is maximal at the origin ρ = 0 and vanishes at the boundaries ρ±. This geometry is

depicted in figure 2 and, as shown in [9], is valid in the regime r0 � λ/(
√

2a), r+ � 1/(aΩ)

and r+ � ρ+.

It is important to mention that the black helicoid is not a helical string with non-

zero transverse angular momentum, that is, it is not the geometry of a helical string

parametrised by a coordinate φ in which φ = constant slices have the geometry of a disc.

This would be a 3-brane with the worldvolume geometry of a non-compact helical cylinder.

In other words, these geometries are not described by an action of the form (3.14).7

The free energy and the Myers-Perry limit. The free energy of black helicoids can

be obtained by evaluating (2.19) to leading order, yielding

F =
Ω(n+1)

16πG
rn+

∫
dφ

∫ ρ+

ρ−

dρ
√
λ2 + a2ρ2

(
1− Ω2(λ2 + a2ρ2)

)n
2

=
V(n+2)

16πG

rn+
aΩ

∫
dφλ

(
1− λ2Ω2

)n+1
2

2F̃1

(
−1

2
,

1

2
;
n+ 3

2
; 1− 1

λ2Ω2

)
,

(4.7)

where we have defined V(n+2) = 2π
n+3
2 . The free energy is positive for all n and, since the

geometry is non-compact in the φ direction, it is obviously infinite, as expected since it has

the topology of a black string.

The geometry (4.2) as well as the free energy (4.7) admits a very well defined limit

λ→ 0 in which one recovers the disc. As explained in [9], the range of ρ lies in between ρ− ≤
ρ ≤ ρ+ instead of 0 ≤ ρ ≤ ρ+, therefore, when taking the limit λ → 0 we simultaneously

rescale F → (1/2)F . Formally, when taking the limit λ → 0 in the free energy (4.7)

we keep a fixed, make the φ-coordinate periodic with period 2π/a and integrate φ in the

6We thank Roberto Emparan for suggesting this possibility to us.
7Note that certain restrictions exist if one wants to add transverse angular momentum to a helical string

by wrapping Myers-Perry strings [8].
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interval 0 ≤ φ ≤ 2π/a. The free energy (4.7) then reduces to the result for the disc, when

setting a = 1 and rescaling F → (1/2)F , given by [8],

F =
Ω(n+1)

8G

rn+
(n+ 2)Ω2

. (4.8)

It is important to stress that the existence of this limit is non-trivial since it does not change

the dimensionality of the worldvolume neither of the space-time. It is not equivalent,

for example, to taking the string of discs (3.3) and getting rid of the extra dimension z

(for example by scaling z → λz and then taking λ → 0). This non-trivial equivalence

with the geometry and thermodynamics of the disc in the limit λ → 0 suggests that the

family of singly-spinning Myers-Perry black holes can be obtained from the family of black

helicoids, at least in the ultraspinning limit, in which the topology changes according to

R× SD−3 → SD−2 [9].

Thermodynamics. The thermodynamic properties of these geometries can be obtained

from the free energy (4.7) by taking the appropriate derivatives (2.10)–(2.11). We find the

following expressions for the mass M , angular momentum J⊥ in the (x1, x2) plane and

linear momentum P of the helicoid in the x3-direction,

M =
V(n+2)

32πG

rn+
aλΩ3

∫
dφ
(
1−λ2Ω2

)n−1
2

(
2λ2Ω2

(
n+2−λ2Ω2

)
2F̃1

(
−1

2
,
1

2
;
n+ 3

2
; 1− 1

λ2Ω2

)
+
(
1− λ2Ω2

)
2F̃1

(
1

2
,

3

2
;
n+ 5

2
; 1− 1

λ2Ω2

))
,

J⊥ =
V(n+2)

16πG

rn+
(aΩ)2

∫
dφλ

(
1− λ2Ω2

)n+1
2

2F̃1

(
−1

2
,

1

2
;
n+ 3

2
; 1− 1

λ2Ω2

)
,

(4.9)

P =
V(n+2)

32πG

rn+
aλ3Ω4

∫
dφ
(
1−λ2Ω2

)n−1
2

( (
1− λ2Ω2

)
2F̃1

(
1

2
,
3

2
;
n+ 5

2
; 1− 1

λ2Ω2

)
+ 2(λΩ)4(n+ 1) 2F̃1

(
−1

2
,
1

2
;
n+ 3

2
; 1− 1

λ2Ω2

))
,

(4.10)

where we have used that J⊥ = ∂F/∂(aΩ) and P = ∂F/∂(λΩ). The entropy is given by

S = (n/T )F . These expressions satisfy the relation F = M − TS − aΩJ⊥ − λΩP. In the

limit λ→ 0 as explained above, they also reduce to those of the disc obtained in [8].

These geometries, because they are non-compact in the φ direction, do not in general

satisfy the Smarr relation (2.12) in global asymptotically flat space-time. Therefore they

have a non-zero tension (2.13) given by

T = −
V(n+2)

32πG

rn+
(
1−λ2Ω2

)n−1
2

aλΩ3

∫
dφ
(

(1− λ2Ω2) 2F̃1

(
1

2
,

3

2
;
n+ 5

2
; 1− 1

λ2Ω2

)
− 2λ2Ω2(1− (n+ 2)λ2Ω2) 2F̃1

(
−1

2
,

1

2
;
n+ 3

2
; 1− 1

λ2Ω2

))
.

(4.11)

In the limit λ → 0 this becomes the disc and hence T → 0 and the Smarr relation (2.12)

for compact black holes in flat space-time is satisfied. We note, however, that there is a
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specific value of Ω for each n that leads to a vanishing integrand in the tension (4.11).

This specific value is the one required to balance helicoidal black rings, as we will see in

section 6.

Saturating the rigidity theorem. Black helicoids can be seen as the membrane gen-

eralisation of the helical strings found in [8]. In particular, their worldvolume geometry

both preserve one U(1) family of spatial isometries whose orbits are not closed. In this

case, this is given by the spatial part of the Killing vector (4.4) associated with the total

conserved momentum (aJ⊥ + λP). Therefore, some of the considerations of [8] for helical

strings also apply to the case of black helicoids. Namely, if the helicoid geometry winds all

the [(D − 1)/2] planes of the background space-time then the resulting configuration will

break the spherical symmetries of the transverse space and can at most preserve one family

of spatial isometries. Hence, it constitutes another example of a black hole which saturates

the rigidity theorem [29]. The form of the embedding in (4.1) is only winding around one

plane but it is trivial to extend the embedding map to the case where it is winding an

arbitrary number of planes. This implies that the helicoidal black rings constructed in

section 6 can also saturate the rigidity theorem.

4.2 Black helicoid p-branes

In this section we review the higher-dimensional analogue of the black helicoids of the

previous section as in [9]. These helicoids, also known as the Barbosa-Dajczer-Jorge heli-

coids [30], can be explicitly embedded into a subspace R2k+1, where k ≥ 1 is an integer, of

R(D−1) according to [31]

Xq(ρq, φ) = ρq cos(aqφ) if q is odd and 1 ≤ q ≤ 2k ,

Xq(ρq, φ) = ρq−1 sin(aq−1φ) if q is even and 1 ≤ q ≤ 2k ,

Xq(ρq, φ) = λ φ if q = 2k + 1 ,

(4.12)

and t = τ ,X i = 0 , i = 2k + 2, . . . , D − 1. Here aq, λ are constants which without loss of

generality we require to satisfy aq > 0 and λ > 0. Note that k and p are related such that

p = k + 1. The coordinates lie within the range −∞ < ρq, φ < ∞. For k = 1 we obtain

the two dimensional helicoid of the previous section. In general we can rescale φ such that

φ → λ−1φ and aq → λ−1aq and hence set λ = 1. The case λ = 0 represents a minimal

cone, which has a conical singularity at the origin and therefore we do not consider it. The

induced metric on the worldvolume takes the form

ds2 = −dτ2 +

k∑
a=1

dρ2
a +

(
λ2 +

k∑
a=1

a2
aρ

2
a

)
dφ2 , (4.13)

and it has boost velocity Ω along the φ-direction such that ka∂a = ∂τ + Ω∂φ. This maps

onto the vector field in the background space-time

kµ∂µ = ∂t + Ω
k∑
a=1

aa
(
x2a−1∂x2a − x2a∂x2a−1

)
+ λΩ∂x2k+1

. (4.14)
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According to the blackfold equations (2.8), the boundaries of the worldvolume geometry

are defined by the equation

k∑
a=1

a2
aρ

2
a =

1− Ω2R2

Ω2
. (4.15)

These configurations in D ≥ 6 with D − p − 3 ≥ 1 can be though of as p-brane version

of the helical strings found in [8]. They again have the topology of a black string, that is,

R × S(D−3) and are valid in the regime r0 � λ√∑N
a=1 a

2
a

, r+(aaΩ) � 1 and r+ � ρ+
a [9].

Their free energy can be easily evaluated using (2.19)

F =
V(n+p)

16πG

λrn+

Ωp−1
∏p−1
a=1 aa

∫
dφ
(
1−λ2Ω2

)n+p−1
2

2F̃1

(
−1

2
,
(p−1)

2
;
n+p+1

2
;1− 1

λ2Ω2

)
,(4.16)

where V(n+p) = 2π
n+3
2 if p = 2 and V(n+p) = 4π

n+p+1
2 if p > 2. From here as in the p = 2

case of the previous section, we can obtain all thermodynamic properties as we will show

explicitly in the next section.

4.3 Effective theory for helicoidal black p-branes

The helicoid p-branes of the previous section have topology R × S(D−3) and therefore we

refer to them as helicoidal black strings. The induced spatial geometry (4.13) is of the form

E(p)
M = R × I(p−1), where I denotes the topology associated with each finite interval ρq.

Therefore, the worldvolume has several distinct length scales `â: the ones associated with

the (p− 1)-worldvolume directions of the helicoidal brane and the one associated with the

infinitely extended φ-coordinate. The dynamics of the fluid decouples on the two spaces

R and I(p−1), hence we can integrate out the (p − 1) spatial sections of the worldvolume

geometry (4.13) and obtain the effective geometry of a boosted helical string

d̃s
2

= −dτ2 + λ2dφ2 , k̃
a
∂a = ∂τ + Ω∂φ , k̃

2
= 1− λ2Ω2 . (4.17)

This results in an effective theory of a boosted string with a nontrivial boost vector ṽa.

Since we have integrated out k = p− 1 spatial dimensions, we parametrise the number of

space-time dimensions as D = ñ+ p̃+ 3 where p̃ = 1 and n = ñ− k with ñ > k. With this

we then write the effective action for helicoidal black strings (4.16) as

F̃ [X̃i] =
V(ñ+1)

16πG

r̃ñ−k+∏k
a=1 Ω̃a

∫
Bp̃

√
−γ̃ k̃

ñ
2F̃1

(
−1

2
,
k

2
;
ñ+ 2

2
;− k̃

2

ṽ2

)
, (4.18)

where we have defined r̃+ = (ñ − k)/4πT , Ω̃ = aaΩ and also introduced the vector

ṽa∂a = Ω∂φ with ṽ = |γabṽaṽb|1/2 being its modulus. As we shall see below, the ef-

fective action (4.18) also holds for a particular case of helicoidal branes. In the case p̃ = 1

we note that we can also write ṽ2 = 1−k̃
2
. The vector ṽa is an example of the type of boost

vectors, discussed in section 2.1, which can appear in effective theories after integrating

out specific degrees of freedom.
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A proposal for the underlying local effective theory. The appearance of the mod-

ulus of the vector ṽa∂a in the effective action suggests that the underlying theory does not

have a rest frame as the limit ṽ → 0 leads to a divergent free energy. We now proceed

and make a proposal for the local effective theory which leads to (4.18) when restricted

to its stationary sector. Using several clues, such as the stress-energy tensor that can be

derived from (4.18), and a bit of guesswork leads us to consider the following local Gibbs

free energy

G̃ =
V(ñ+1)

16πG

r̃ñ−k0∏k
a=1 ω̃a

f

(
− 1

2
, k, ñ,Ξ

)
, (4.19)

valid in the regime ω̃ar̃0 � 1, or alternatively r̃0 � `â with `â = ω̃−1
a , where we have

defined the local brane thickness

r̃0 =
(ñ− k)

4πT̃
(4.20)

and also defined for convenience

f

(
− 1

2
, k, ñ,Ξ

)
= 2F̃1

(
−1

2
,
k

2
;
ñ+2

2
;− 1

Ξ2

)
. (4.21)

We assume that every scalar characterising the fluid can be expressed as a function of k+2

fluid dynamical variables, namely, the thermodynamic potentials T̃ , ω̃a and Ξ. Using a

local version of (2.11) we extract from (4.19) the corresponding conjugate thermodynamic

variables, namely, the entropy density s̃, the particle densities of transverse angular momen-

tum J̃(a) and a particle current density of linear momentum P̃Ξ, for which its interpretation

will be clearer below. These are given by,

s̃ =
(ñ− k)

T̃
G̃ , J̃(a) =

1

ω̃a
G̃ , P̃Ξ =

k

2Ξ3

f(1
2 , k + 2, ñ+ 2,Ξ)

f(−1
2 , k, ñ,Ξ)

G̃ , (4.22)

where the momentum density is defined as P̃Ξ = −∂G̃/∂Ξ. The free energy (4.19) should

be interpreted as the free energy characterising a black brane with k transverse angular

momenta J̃(a) and another conserved charge P̃Ξ, which cannot be boosted away via a local

Lorentz transformation.

From (4.18) we can obtain the stress-energy tensor T̃ ab for stationary configurations.

Based on that we consider the following form for the stress-energy tensor, written in terms

of local quantities,

T̃ ab = P̃ γ̃ab +

(
T̃ s̃+

k∑
a=1

ω̃aJ̃(a) + ΞP̃Ξ

)
ũaũb − ΞP̃Ξṽ

aṽb , (4.23)

where we have defined the unit normalised spatial vector ṽa such that ũaṽa = Ξ and used

that P̃ = −G̃. The vector ũa is normalised such that ũaũa = −1 while the vector ṽa

is normalised such that ṽaṽa = 1. We further assume that ṽa only has a non-vanishing

component in the spatial helicoidal direction which we denote by φ. From these definitions
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we see that Ξ parametrises the necessary non-zero boost along the helicoidal direction and

hence its conjugate variable P̃Ξ can be interpreted as a momentum density along that

direction carried by the non-vanishing vector ṽa. The stress-energy tensor (4.23) is thus

written in a (non-standard) boosted frame due to the fact that the limit ṽ → 0 in the

effective action (4.18) leads to a divergent result.

Counting the total number of fluid dynamical variables, we see that we have p̃ − 1

independent components of ũa (the normalisation condition ũaũa = −1 and condition

ũaṽa = Ξ eliminate two possibly independent components), and k + 2 thermodynamic

potentials associated with T̃ , ω̃a and Ξ. We note that there are no independent components

of ṽa since it is completely fixed by its normalisation. Therefore, there is a total of p̃+k+1

fluid dynamical variables. Their evolution is determined by the conservation of the stress-

energy tensor and conservation of transverse angular momentum currents,

∇aT̃ ab = 0 , ∇a
(
J̃(a)ũ

a
)

= 0 . (4.24)

Hence there is a total of p̃ + k + 1 independent equations which completely specify the

evolution of the system. The requirement for the conservation of stress-energy tensor comes

from the probe equations (2.5) while the requirement for the conservation of transverse

angular momenta can be derived for any fluid rotating in transverse directions to the

worldvolume [15, 19]. In terms of symmetries, the fluid is characterised by a set of k U(1)

symmetries associated with the conserved transverse angular momenta and a maximum of

p̃ + 1 worldvolume translations associated with mass and momentum along worldvolume

directions. The currents which correspond to these translations are simply given by T̃ abk̃b,

for any worldvolume Killing vector field k̃
b
, and are conserved due to the symmetry of

the stress-energy tensor. Some of these k transverse rotations and p̃ + 1 worldvolume

translations can be broken globally depending on the fluid configuration.

The remaining thermodynamic properties of the fluid, such as the effective energy

density ε̃, can be obtained by performing the Legendre transform in the local Gibbs free

energy density (4.19), giving rise to

ε̃ = −(ñ+ 1)P̃ +

k∑
a=1

ω̃aJ̃(a) + ΞP̃Ξ , (4.25)

and hence to the Euler-Gibbs-Duhem relation

(ε̃+ P̃ ) = T̃ s̃+
k∑
a=1

ω̃aJ̃(a) + ΞP̃Ξ . (4.26)

We note that ũa is not an eigenvector of the stress-energy tensor (4.23) and hence ε̃ cannot

be associated to its eigenvalue as for usual neutral fluids. However, it can be defined by

subtracting the boost vector such that (T̃ ab+ΞP̃Ξṽ
aṽb)ũb = −ε̃ũa. Given these definitions,

the boosted fluid satisfies the expected local thermodynamic relations consistent with the

first law,

dP̃ = s̃dT̃ +
k∑
a=1

J̃(a)dω̃a + P̃ΞdΞ , dε̃ = T̃ ds̃+
k∑
a=1

ω̃adJ̃(a) + ΞdP̃Ξ . (4.27)
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We now focus on stationary configurations and solve the conservation equation (2.6)

using (4.26)–(4.27). It is easy to see that if the boost velocities ũa are aligned with a

worldvolume Killing vector field k̃
a

and the local temperature and angular velocities satisfy

T̃ = T̃ /k̃ and ω̃a = Ω̃a/k̃ then the conservation equations reduce to

P̃Ξ∇bΞ + ΞP̃Ξã
b −∇a

(
ΞP̃Ξṽ

aṽb
)

= 0 . (4.28)

Moreover, we take ṽa to be proportional to the spatial worldvolume Killing vector field and

we parametrize it such that ṽa = ṽa/ṽ. Then the choice Ξ = ṽ/k̃ solves (4.28) together

with the form of the vector ṽa,

ṽa∂a = Ω∂φ . (4.29)

This gives rise to the effective action (4.18). It is worth mentioning that (4.29) is valid

for curved backgrounds for which R0 6= 1 as well as the effective action (4.18) as long as

the length scales associated with background curvatures are much larger than ω̃−1
a . As

mentioned previously, this underlying theory does not have a rest frame and hence the

vector ṽa must always be non-zero and take components in the helicoidal direction φ.

As mentioned above, configurations built from this local effective theory with local

Gibbs free energy (4.19) may in principle preserve k U(1) symmetries associated with

each of the transverse angular momenta and a set of p̃ spatial translations associated with

the currents T̃ abk̃b. However, the effective geometry (4.17) obtained from the helicoid by

integrating out the finite interval I only preserves a U(1) family of spatial isometries whose

orbits are not closed. From the point of view of the effective theory, this means that only

a linear combination of the translational symmetries and the set of k U(1) symmetries is

preserved. In order to obtain the effective theory that leads to the helicoid geometry (4.17)

we need to break the symmetries of the underlying effective theory by making the following

global identification

Ω̃a =
ṽ

R̃φ
, (4.30)

where R̃φ is the modulus of the Killing vector field ∂φ along the helicoidal direction φ. In

practice, the requirement (4.30) implies that Ω̃a = Ω. This means that a helical string

can be seen as a boosted straight string with transverse angular momenta in which the

transverse angular velocities and the boost velocity are related to each other.

As we do not have a first principle derivation of the underlying effective theory after

integrating out the degrees of freedom, since we do not know at the moment how to

implement the procedure of section 2.1 directly in the metric (2.1), we are not able to

extract with certainty all the information regarding the local effective theory of helicoidal

branes. Therefore, wether or not the effective theory presented here holds when (4.30) is

not imposed is an open question, which would be worthwhile exploring.

Effective theory for helicoidal p-branes. The effective free energy functional (4.18)

was derived for p̃ = 1. However, there are several ways in which we can generalise it
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for p̃ ≥ 1. We focus first on the simplest one, which is to add l flat directions to the

geometry (4.13) and boost them with boost velocities βa , a = 1, . . . , l along the flat xa-

directions. The resulting effective geometry is

d̃s
2

= −dτ2 + λ2dφ2 +

l∑
a=1

dx2
a , k̃

a
∂a = ∂τ + Ω∂φ +

l∑
a=1

βa∂xa , (4.31)

and has topology Rl+1 × SD−l−3. Therefore we refer to these configurations as helicoidal

black p-branes. The resultant effective theory, which was described in the previous section

for p̃ = 1 and holds for all p̃ ≥ 1, is not spatially isotropic because the helicoidal direction

φ is genuinely different from the remaining worldvolume directions since in that direction

we cannot take the boost to be zero. The resultant effective free energy functional takes

the same form of (4.18) with the same vector (4.29).

Another generalisation of the effective theory described above can be obtained by

introducing more helicoidal directions [9]. Consider, for example, embedding an l number of

the two-dimensional helicoids of section 4.1 in R3l. These configurations solve the blackfold

equations (2.6) and have induced geometry and Killing vector field given by

ds2 = −dτ2 +

l∑
a=1

(
dρ2

a + (λ2
a + a2

aρ
2
a)dφ

2
a

)
, ka∂a = ∂τ +

l∑
a=1

Ωa∂φa . (4.32)

Therefore, boundaries appear when
∑l

a=1 Ω2
a(λ

2
a + a2

aρ
2
a) = 1. The free energy func-

tional (2.19) takes the form

F =
Ω(n+1)

16πG
rn+

∫
dφ

∫
dρ

(
l∏

a=1

√
λ2
a + a2

aρ
2
a

)(
1−

l∑
a=1

Ω2
a(λ

2
a + a2

aρ
2
a)

)n
2

, (4.33)

where dφ =
∏l
a=1 dφa and dρ =

∏l
a=1 dρa. Adding extra flat directions to (4.32) and

integrating the free energy (4.33) gives rise to an effective action for helicoidal branes with

l helicoidal directions and with topology R(l) × S(D−2−l). The limit λa → 0, ∀a leads to

a 2l even-ball geometry which describes Myers-Perry black holes with several ultraspins.

While such generalisation would certainly be of interest, we leave the specific details for

future work.

4.4 Thermodynamic properties and stability

In this section we collect the thermodynamic formulae for the conserved charges of sta-

tionary configurations constructed from helicoidal black branes and analyse the stability

properties of these branes under perturbations along transverse directions. Prior to impos-

ing (4.30), the effective theory is characterised by k conserved particle currents of transverse

angular momentum. Furthermore, as we are dealing with stationary fluid configurations

the entropy current J̃s = s̃ua must also be conserved. Integrating these currents leads to
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the total entropy S̃ and transverse angular momenta J̃(b)⊥, given by

S̃ =
V(ñ+1)

4G

r̃ñ−k+∏k
a=1 Ω̃a

∫
Bp̃
dV(p̃) R̃0 k̃

ñ
f ,

J̃(b)⊥ =
V(ñ+1)

16πG

r̃ñ−k+

Ω̃b
∏k
a=1 Ω̃a

∫
Bp̃
dV(p̃) R̃0 k̃

ñ
f ,

(4.34)

where we have again assumed that
√
−γdp̃+1σ̃ = R̃0dV(p̃) and introduced the short notation

f = f(−1
2 , k, ñ,

k̃
2

ṽ2 ). Furthermore, we also have the total mass M of the system, angular

momenta J̃(b) along worldvolume directions (which are not helicoidal) and the angular

momentum J̃φ along the helicoidal direction φ associated with the currents T̃ abk̃b. These

are given by,

M̃ =
V(ñ+1)

16πG

r̃ñ−k+∏k
a=1 Ω̃a

∫
Bp̃
dV(p̃) R̃0 k̃

ñ
f

(
1 +

R̃2
0

k̃
2

(
ñ+ k

k̃
2

2ṽ2

f ′

f

))
,

J̃(b) =
V(ñ+1)

16πG

r̃ñ−k+ Ωb∏k
a=1 Ω̃a

∫
Bp̃
dV(p̃) R̃0 R̃

2
b k̃

ñ−2
f

(
ñ+ k

k̃
2

2ṽ2

f ′

f

)
,

J̃φ =
V(ñ+1)

16πG

r̃ñ−k+ Ω∏k
a=1 Ω̃a

∫
Bp̃
dV(p̃) R̃0 R̃

2
φk̃

ñ−2
f

(
ñ+ k

k̃
2

2ṽ2

f ′

f

)
,

(4.35)

where we have defined f ′ = f(1
2 , k + 2, ñ + 2, k̃

2

ṽ2 ). The angular velocities Ωb are the

angular velocities along non-helicoidal worldvolume directions and R̃b the modulus of the

corresponding Killing vector fields χ̃(b) while Ω is the angular velocity along the helicoidal

direction and R̃φ is the modulus of the associated Killing vector field χ̃φ = ∂φ. When

imposing condition (4.30), the charges J̃(b)⊥ and J̃φ are not independently conserved but

instead the linear combination J̃φ +
∑k

b=1 J̃(b)⊥ is conserved. However, they still retain

their original physical meaning, namely, they quantify the angular momentum on each of

the background two-planes where the configuration is rotating.

The speed of elastic waves. Here we study the stability properties of this class of

branes restricting the analysis to transverse long-wavelength perturbations. We focus on

the case of a two-dimensional worldvolume geometry, so that spatial anisotropic effects

are not present. We consider a brane trivially embedded into flat space-time such that its

induced metric is the two-dimensional Minkowski metric η̃ab. Since the fluid does not have

a rest frame, we consider a fluid velocity of the form ũa∂a = (∂τ +β∂φ)/(
√

1− β2). Hence

we have that ṽa∂a = ∂φ. We then perform small perturbations in the local thermodynamic

potentials and in the boost velocity β and deform the embedding geometry by a small

amount X̃i → X̃i + ε̃i. The extrinsic curvature in turn changes to K̃i
ab → K̃i

ab + ∂a∂bε̃
i.

Considering a long-wavelength perturbation of the form ε̃i = Ãiei(wτ+κφ), the extrinsic

equation of motion takes the form(
(ε̃+ β2P̃ )w2 + (P̃ + β2ε̃− ΞP̃β(1− β2))κ2 + 2wκ(ε̃+ P̃ )β

)
ε̃i = 0 . (4.36)
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Figure 3. The speed of elastic waves for ñ = 2 and k = 1. The upper branch (dashed gray)

corresponds to c+T and the lower branch (solid black) corresponds to c−T .

The resultant dispersion relation can be expressed as w = c±T κ, that is, there are two

branches with different speeds of propagation of elastic waves. In general c±T is always real

and has no imaginary part. In figure 3 we show the behaviour of these two branches as a

function of β for ñ = 2 and k = 1. The behaviour is generic for all values of ñ and k. We

therefore see that these branes are elastically stable under small perturbations. In practice,

this means that the helicoidal black rings which we will construct in section 6 are stable

under small extrinsic perturbations.

5 Doubly-spinning black rings from black toroids

In this section we apply the effective theory of ultraspining Myers-Perry branes of section 3

to the case of doubly-spinning black rings, which can be easily generalised to the case of

several transverse angular momenta. We analyse higher-order corrections to the thermo-

dynamics, by obtaining a linear combination of the coefficients λ̃i for this class of branes.

In the end, we depict its phase diagram.

5.1 Leading order doubly-spinning black rings

Since we have the effective action (3.6) we can readily use it and embed it into a ring

geometry. Instead, we will show, for the purpose of exemplification, how the effective action

arises for this particular case. For that purpose, consider a black toroid geometry, obtained

by revolving the disc geometry (3.1) around the x2-axis with a radius R. Explicitly, we

can embedded the black toroid in flat space-time with coordinates (t, xi) by choosing t = τ

and the mapping functions

X1(ρ, φ1)=ρ cosφ1, X
2(ρ, φ1)=ρ sinφ1, X

3(R,φ)=R sinφ, X4(R,φ)=R sinφ , (5.1)

leading to the induced p = 3 worldvolume geometry

ds2 = −dτ2 + dρ2 + ρ2dφ2
1 +R2dφ2 , (5.2)

where ρ ≥ 0 and 0 ≤ φ1, φ ≤ 2π. We set the geometry to rotate with angular velocities Ω̃

and Ω on each of the Cartan angles such that

ka∂a = ∂τ + Ω̃∂φ1 + Ω∂φ , k2 = 1− Ω̃2ρ2 − Ω2R2 . (5.3)
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The geometry acquires a boundary at k = 0 which is somewhat modified compared to the

disc, namely, the boundary is at

ρ+ =

√
1− Ω2R2

Ω̃
, (5.4)

and hence requires that Ω2R2 < 1. The brane thickness r0 varies according to

r0 = r+

√
1− Ω̃2ρ2 − Ω2R2 , (5.5)

and thus takes a maximum value at the origin ρ = 0 and shrinks to zero at the boundary ρ =

ρ+. It is clear from the geometry (5.2) that (τ, φ) = constant sections have the geometry of

a disc. The topology of these configurations, valid in the regime r+ � ρ+, Ω̃r+ � 1, r0 �
R, is therefore S1 × S(D−3) in D ≥ 7, where R measures the size of the S1 and r0 the

size of the S(D−3). In particular, we see that when the size of the disc R shrinks to zero,

there is a topology-changing transition from S1×S(D−3) → S(D−2) and we recover the disc.

However, at the level of the free energies, as we shall see, the limit R→ 0 does not lead to

the free energy of Myers-Perry black holes (4.8). On the other hand, the limit R→∞ and

ΩR → 0, while introducing a new coordinate z = Rφ leads to a Myers-Perry string with

topology R× S(D−3) and induced worldvolume metric (3.3).

Indeed, the black toroid constructed here is nothing more than the outcome of taking

a string of ultraspinning Myers-Perry black holes with a single spin and bending it into a

ring of radius R. These geometries, therefore, describe doubly-spinning black rings with

two angular momenta in D ≥ 7 in the ultraspinning regime and hence are captured by the

effective free energy (3.6).

Equilibrium condition and physical properties. We now integrate out the disc ge-

ometry (ρ, φ1) and obtain an effective two-dimensional string geometry bent over a circle

of radius R with a conserved transverse angular momentum current,

d̃s
2

= −dτ2 +R2dφ2 , k̃
a
∂a = ∂τ + Ω∂φ , (5.6)

and effective free energy

F̃ [R] =
Ω(ñ+1)

8G

r̃ñ−2
+

Ω̃2
R
(
1− Ω2R2

) ñ
2 , (5.7)

where we have used that n = ñ− 2 since we have integrated out a two-plane. Varying this

free energy with respect to R and solving the resulting equation of motion we find

ΩR =
1√
ñ+ 1

. (5.8)

This condition is independent of Ω̃, which can be freely chosen as long as it satisfies the

validity requirements of the underlying effective theory, which translate into Ω̃r̃+ � 1. The

equilibrium condition (5.8) is the same as that for singly-spinning black rings in D ≥ 7 [8]

and can be expressed as ΩR = 1/
√
D − 3. Therefore, we see that in the ultraspinning
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regime in D ≥ 7, the equilibrium condition for doubly-spinning black rings does not receive

any corrections due to an extra angular momentum, in agreement with the arguments

in [23]. The thermodynamic properties, which can now be derived from the free energy read

M̃ =
Ω(ñ+1)

8G

rñ−2
+

Ω̃2
R(n+ 2)

(
ñ

ñ+1

) ñ
2

, S̃ =
Ω(ñ+1)π

2G
R
rñ−2

+

Ω̃2

(
ñ

ñ+ 1

) ñ
2

(5.9)

J̃⊥ =
Ω(ñ+1)

4G

rñ−2
+

Ω̃3
R

(
ñ

ñ+ 1

) ñ
2

, J̃ =
Ω(ñ+1)

4G

rñ−2
+

Ω̃2
R2

(
ñ

ñ+1

) ñ
2√

ñ+1 . (5.10)

Clearly, by taking the limit R→ 0 in these conserved quantities leads to vanishing results.

While the limit R → 0 in (5.2) leads to a disc geometry, the physical properties in this

limit do not correspond to those of Myers-Perry black holes in the ultraspinning limit. As

we will see in section 6, this is not the case for helicoidal rings for which such limit exists

off-shell. These geometries have also a vanishing tension, as expected, and hence satisfy

the Smarr relation (2.12) in asymptotically flat space-time.

We have mentioned that these geometries describe the ultraspinning limit of doubly-

spinning black rings with two ultraspins. Therefore, one might be tempted to take the

limit Ω̃→ 0 which supposedly would describe a singly-spinning black ring. This, however,

is not correct. In fact, by looking at the thermodynamic properties above we see that

J̃⊥/M̃ ∝ Ω̃−1 and hence Ω̃ → 0 describes a ring with large angular momentum in the

direction φ1. Therefore the size of the boundary is pushed to arbitrary large values of ρ

and the ring is effectively described by a p = 3 toroidal geometry.

In order to obtain the limit in which the ring is not rotating in the φ1-direction one

has to take Ω̃→∞ leading to J̃⊥/M̃ → 0. However, this violates the validity requirement

of the underlying effective theory r̃+Ω̃ � 1 and r̃+ � R and hence it is not possible to

send Ω̃ → ∞ while satisfying r̃+Ω̃ � 1 and simultaneously demanding finite and non-

zero conserved charges. That is, the doubly-spinning black ring must be ultraspinning in

the φ1-direction for the approximation to be valid. In order to overcome this one has to

consider Myers-Perry branes with arbitrary angular momentum, seen as an internal spin

in the effective action [19].

5.2 Higher-order corrections

We now analyse higher-order corrections to this configuration using the methods of [15,

19, 22, 32] to order (r̃0/R)2. It was shown in [15] that black rings embedded in flat space-

time are described by a single transport coefficient to second order, which is the linear

combination λ1 = λ1 + λ2 + (1/n)λ3, appearing in the effective free energy in the manner∫
Bp

√
−γλ1K

iKi . (5.11)

Since the effective description of doubly-spinning black rings is in terms of a flat two-

dimensional worldvolume (5.6), these are also only characterised by one single transport

coefficient to second order. Taking the original toroid configuration (5.2), we have that the
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only non-vanishing component of the extrinsic curvature tensor is Kφφ
i = −R and hence

Ki = −1/R. Integrating out the two-plane we find∫
Bp

√
−γλ1K

iKi = −
∫
Bp̃

√
−γ̃
(
P̃ r̃2

0

(ñ− 1)(3ñ− 2)

(ñ+ 2)(ñ− 2)2
ξ(ñ− 2)

)
K̃iK̃i , (5.12)

where P̃ is given in (3.8) and K̃ab
i

= Kab
i since the two-plane did not contribute to the

extrinsic curvature tensor. Therefore we read off

λ̃1 = −P̃ r̃2
0

(ñ− 1)(3ñ− 2)

(ñ+ 2)(ñ− 2)2
ξ(ñ− 2) , ñ > 4 , (5.13)

which, using the map given in [15], constitutes a prediction for the Young modulus of

ultraspinning Myers-Perry branes. Note that this transport coefficient is only valid for

ñ > 4. This is due to the fact that originally λ1 was valid for n > 2 and afterwards we

performed the integration over the two-plane.

The effective free energy (2.19), including the second order corrections, is therefore

F̃ [R] = −
∫
Bp

√
−γ
(
P + υ1a

cac + λ1K
iKi

)
= −2πR

(
P̃ +

λ̃1

R2

)
, (5.14)

where P̃ is the corrected pressure obtained in (3.25). Varying it with respect to R we find

the corrected equilibrium condition

ΩR =
1√
ñ+ 1

(
1 + ξ̃(ñ− 2)

ε̃2

1− `2

)
+O

(
ε̃4
)
, (5.15)

where we have introduced the length scale associated with the underlying effective theory

` = r̃+Ω̃ and also ε̃ = r̃0/R, which is the parameter controlling the order of the extrinsic

derivative expansion. We have also defined for convenience the function ξ̃(ñ− 2) as

ξ̃(ñ− 2) =
(ñ− 1)(3ñ− 2)

(ñ+ 2)(ñ− 2)2
ξ(ñ− 2) . (5.16)

From here we see that, at second order in derivatives, the intrinsic angular momentum

affects the equilibrium condition of doubly-spinning black rings.

5.3 Phase diagram

Using the thermodynamic relations (2.10)–(2.11) we can extract, from the free en-

ergy (5.14), all the corrections to the conserved charges (5.9)–(5.10). With these conserved

charges we can obtain the phase structure of ultraspinning doubly-spinning back rings in

D ≥ 9 by introducing the dimensionless reduced quantities aH, j and j⊥ as in [16]. The

analytic expressions read

aH =
4

1
ñ+1

ñ− 2
ε̃

1
ñ+1 `

2
ñ+1

(
1− `2

)− ñ+2
ñ+1

(
(ñ− 2)− ñ`2

+
ñ
(
ñ2 + ((ñ− 1)ñ− 4)`2 + 7ñ+ 4

)
− 8

ñ(ñ+ 1)2
ξ̃(ñ− 2)

ε̃2

1− `2
)
, (5.17)

j = 2−
ñ+2
ñ+1 ε̃−

ñ
ñ+1 `

2
ñ+1 (1− `2)−

1
ñ+1

(
1 +O

(
ε̃4
))

, (5.18)

j⊥ =
2−

1
n+1

√
ñ

ε̃
1

ñ+1 `−
(ñ−1)
ñ+1 (1− `2)−

ñ+2
ñ+1

(
1 +

3ñ+ 4 + ñ(ñ+ 1)`2

ñ2(ñ+ 1)(1− `2)2
ξ̃(ñ− 2)

ε̃2

1− `2

)
, (5.19)
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j

j⊥

Figure 4. Phase diagram (j, j⊥) for doubly-spinning black rings in D = 9 including second order

corrections in ` and ε̃. We have rescaled both axes such that the range of reduced angular momenta

lies within 0 ≤ j, j⊥ ≤ 1.

where we have made use the freedom to perform field redefinitions [15, 22] of the form

R→ R+ αRε̃2, for some constant α, in order to remove the order ε̃2 correction from j.

In figure 4 we plot the phase diagram (j, j⊥) for the range 10−3 ≤ ε̃, ` ≤ 10−1 in D = 9.

Since we have integrated out a two-plane, the second order transport coefficients are only

valid for D ≥ 9. The higher-order corrections in ε̃2 do not affect significantly the phase

diagram (j, j⊥), in stark contrast to the diagram aH(j, j⊥), where aH is the reduced area, as

in the case of the singly-spinning black ring [32]. This is due to the fact that j⊥ is not very

sensitive to elastic corrections, instead, corrections in the effective theory, controlled by

the parameter ` contribute in a significant way since these are associated to the transverse

angular momentum j⊥.

6 Helicoidal black holes

In this section we use the effective theory of section 4 in order to construct several new

classes of black hole geometries which have not previously been considered in the literature.

We begin with the simplest case of helicoidal black rings and then move on to the case of

helicoidal black tori.

6.1 Helicoidal black rings

In this section we consider helicoidal black rings in D ≥ 6 with topology S1 × S(D−3). We

begin by analysing the case k = 1, that is, helicoidal black rings, which are locally black

helicoids, and hence for which the effective theory, prior to imposing (4.30), is described

by only one single transverse angular momentum. At the end of this section we study the

cases k > 1.

Consider writing a four-dimensional subspace of the background flat space-time as the

product of two 2-planes,

dE2
(4) = dr2

1 + r2
1dψ

2
1 + dr2

2 + r2
2dψ

2
2 , (6.1)
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and embed the the helicoidal ring by choosing t = τ , r1 = R, r2 = 0 and ψ1 = φ. The

effective string geometry bent over a ring of radius R with Killing vector field k̃
a

and boost

vector ṽa along the helicoidal direction φ is thus,

d̃s
2

= −dτ2 +R2dφ2 , k̃
a
∂a = ∂τ + Ω∂φ , ṽa∂a = Ω∂φ . (6.2)

Imposing (4.30) and since we have k = 1, this corresponds to a black hole horizon geometry

with background Killing vector field

kµ∂µ = ∂t + Ω∂ψ1 + Ω∂ψ2 , (6.3)

The direction φ is the helicoidal direction which is associated with the background two-

plane with angular coordinate ψ1. The rotation on the transverse two-plane (with respect

to the effective geometry (6.2)) associated with the angular coordinate ψ2 is related to

the local angular velocity ω̃a of the underlying effective theory. Therefore, helicoidal rings

preserve only a linear combination of the two rotational Killing vector fields and in D = 6

they saturate the rigidity theory (with the present embedding). It is clear that in the

regime r̃0 � R the geometry (6.2) is locally a black helicoid, since by sending R→∞ and

introducing a non-compact coordinate λφ̃ = Rφ one obtains the effective geometry of a

helicoid (4.17).

Using (4.18), we obtain the free energy

F̃ [R] =
V(ñ+1)

8G

r̃ñ−1
+

Ω
R
(
1− Ω2R2

) ñ
2

2F̃1

(
−1

2
,
1

2
;
ñ+ 2

2
;−1− Ω2R2

Ω2R2

)
. (6.4)

We can now vary this free energy with respect to R in order to obtain the equilibrium

condition

1− (ñ+ 1)Ω2R2

(1− Ω2R2)
−

2F̃1

(
1
2 ,

3
2 ; ñ+4

2 ;−1−Ω2R2

Ω2R2

)
2Ω2R2

2F̃1

(
−1

2 ,
1
2 ; ñ+2

2 ;−1−Ω2R2

Ω2R2

) = 0 . (6.5)

Comparison of this condition with the tension (4.11) leads to the conclusion that balanced

helicoidal rings have a vanishing tension, as they constitute examples of compact asymptot-

ically flat black holes. It is worth mentioning that condition (6.5) differs from that obtained

for the usual black rings due to the existence of the second term involving the hypergeo-

metric functions. The transcendental eq. (6.5) does not admit a solution in closed form so

it has to be solved numerically. Since eq. (6.5) only depends on the combination ΩR we

present its solution (gray line) in figure 5 as a function of the space-time dimension D, valid

in the regime Ωr̃+ � 1 and r̃0 � R, along with the balance condition ΩR = 1/
√
D − 3 for

black rings (black line) [16]. We see that for a given radius R and dimension D, helicoidal

rings need to rotate slower in order to reach equilibrium.

The Myers-Perry limit. The thermodynamic properties of these configurations can be

obtained using eqs. (2.10)–(2.11). Alternatively, they can be obtained using (4.9)–(4.10)

by setting λ = R and integrating over φ in the range 0 ≤ φ ≤ 2π/a and setting a = 1.

– 31 –



J
H
E
P
0
7
(
2
0
1
5
)
0
4
8

10 15 20 25
0.1

0.2

0.3

0.4

0.5

0.6

ΩR

D
1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8
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j

Figure 5. On the left we give the balance condition ΩR for helicoidal rings (gray line) as a function

of the space-time dimension D for D ≥ 6 while the black line represents the balance condition for

black rings. On the right we have plotted the reduced area aH as a function of the reduced total

angular momentum j for helicoidal rings in D = 6 (gray line) as well as the corresponding curve

for singly-spinning Myers-Perry black holes (black line).

As in the case of the black helicoids, the free energy (6.4) reduces to the singly-spinning

Myers-Perry black hole when taking R→ 0. This however, for the case of helicoidal black

rings, is only true off-shell, that is, without imposing the balancing condition (6.5). In

order to see that this is indeed the case, we have evaluated the reduced quantities aH and

j, where j is the total angular momentum of the helicoidal black ring, and compared it in

figure 5 to singly-spinning Myers-Perry black holes in D = 6. The blackfold approximation

is expected to hold, in this case, in the regime r̃+Ω � 1 and r̃0 � R, which is equivalent

to j � 1. In figure 5 we have extrapolated the curve aH(j) to values of j ∼ O(1). We note

that we have rescaled the free energy such that F̃ → (1/2)F̃ , as explained in section 4.1,

in order to compare with the limit R→ 0. The actual curve aH(j), without the rescaling,

is placed in a slightly lower position compared to the phase diagram of Myers-Perry black

holes in figure 5.

As it can be seen from figure 5, the curve aH(j) for helicoidal rings does not cross the

corresponding curve for singly-spinning Myers-Perry black holes. However, if one holds

the angular velocity Ω fixed and takes the limit R → 0, this results in the Myers-Perry

geometry in the ultraspinning regime. This indicates that it would be necessary to move

along a curve of unbalanced helicoidal rings. It would be interesting to understand the role

of these solutions in the phase structure of higher-dimensional black holes with one single

angular momentum.

Higher-order corrections. As in the case of doubly-spinning black rings, one may con-

sider refining the approximation by taking into account higher-order corrections. However,

in this case we do not have enough information regarding the necessary transport coeffi-

cients. In particular, we find the non-vanishing contribution to the effective free energy∫
Bp

√
−γυ2R ∝

∫
Bp̃

√
−γαK̃iK̃i , (6.6)

for some α, where we have only used the fact that υ2 ∝ rn+2
0 by dimensional analysis.

Since this gives a non-vanishing contribution and we do not have information about υ2, we

cannot study higher-order corrections in this case.
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No helicoidal black rings with k > 1. Helical black rings (locally helical black strings)

were constructed in [8] and we have shown above that helicoidal rings (locally black heli-

coids) are also possible geometries for black hole horizons. We now test if helicoidal rings,

locally black helicoid k-branes, can be found. In this case the effective theory is that of a

helicoidal string with a k number of particle currents. Using (4.18) for arbitrary k and vary-

ing it with respect to R we obtain a simple modification of the equilibrium condition (6.5),

namely,

1− (ñ+ 1)Ω2R2

(1− Ω2R2)
−

k 2F̃1

(
1
2 ,

k+2
2 ; ñ+4

2 ;−1−Ω2R2

Ω2R2

)
2Ω2R2

2F̃1

(
−1

2 ,
k
2 ; ñ+2

2 ;−1−Ω2R2

Ω2R2

) = 0 . (6.7)

We have explicitly checked that this condition has no solution for the range of parameters

2 ≤ ñ − k ≤ 100 and 2 ≤ k ≤ 100. This means that for k ≥ 2 the centrifugal repulsion,

induced by rotation, cannot compensate the gravitational tension of the k-helicoid.

6.2 Helicoidal black tori

In this section we construct helicoidal black tori. This is an anisotropic solution, in which

one direction of the torus is helicoidal and the other is not. Black tori, using the blackfold

effective theory (2.2)–(2.4), have been constructed in [8] and exist for all values of their

codimension. The case of helicoidal black tori is rather different and in fact we were only

able to find a specific codimension, namely ñ = 2, which solves the blackfold equations.

We write a six-dimensional subspace of the background flat space-time as the product

of three 2-planes,

dE2
(6) = dr2

1 + r2
1dψ

2
1 + dr2

2 + r2
2dψ

2
2 + dr2

3 + r2
3dψ

2
3 , (6.8)

and embed the black tori by choosing t = τ , r1 = Rφ, r2 = R2, r3 = 0 and (ψ1, ψ2) = (φ, φ2)

such that the resulting worldvolume geometry is given by

d̃s
2

= −dτ2 +R2
φdφ

2 +R2
2dφ

2
2 , (6.9)

where 0 ≤ φ, φ2 ≤ 2π. This is the standard embedding of the Clifford torus. We set it

to rotate with angular velocities Ω and Ω2 and choose the direction φ to be the helicoidal

direction. Therefore,

k̃
a
∂a = ∂τ + Ω∂φ + Ω2∂φ2 , ṽa∂a = Ω∂φ . (6.10)

This corresponds to a background Killing vector field of the form

kµ∂µ = ∂t + Ω∂ψ1 + Ω2∂ψ2 + Ω∂ψ3 , (6.11)

where we have imposed (4.30). Here, ψ3 is the angular coordinate on the transverse two-

plane associated with ω̃a in the effective theory. The free energy (4.18) becomes

F̃ [R1, R2] =
V(ñ+1)

16πG

r̃ñ−k+

Ωk
4π2 RφR2 k̃

ñ
2F̃1

(
−1

2
,
k

2
;
ñ+ 2

2
;− k̃

2

ṽ2

)
. (6.12)
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Upon variation with respect to R1 and R2 we obtain a set of two coupled equations,

1− nṽ2

k̃
2 −

k(1− ṽ2)

2ṽ2

2F̃1

(
1
2 ,
k+2

2 ; ñ+4
2 ;− k̃

2

ṽ2

)
2F̃1

(
−1

2 ,
k
2 ; ñ+2

2 ;− k̃
2

ṽ2

) = 0 , (6.13)

1− nΩ2
2R

2
2

k̃
2 − kΩ2

2R
2
2

2ṽ2

2F̃1

(
1
2 ,
k+2

2 ; ñ+4
2 ;− k̃

2

ṽ2

)
2F̃1

(
−1

2 ,
k
2 ; ñ+2

2 ;− k̃
2

ṽ2

) = 0 . (6.14)

We have not been able to find solutions with ñ > 2 and k > 1. We have only found a

numerical solution for the case ñ = 2 and k = 1 for which we need

RφΩ ∼ 9

25
, R2Ω2 =

1

2
. (6.15)

Therefore these helicoidal black tori are possible black hole solutions with horizon topology

S1 × S1 × S(D−4) in D = 7. The fact that these geometries are difficult to balance is most

likely due to the anisotropy of the configuration. Developing an effective theory where all

directions are helicoidal, by considering the geometry (4.31), would most likely allow us to

find helicoidal tori in any dimension.

7 Discussion

In this paper we have presented two different classes of worldvolume effective theories for

black branes and their respective effective actions when restricting to stationary configura-

tions. Our work generalises the blackfold approach for higher-dimensional black holes [1, 2]

in which the dynamics of the fluid is integrated out in certain spatial sections of the world-

volume geometry.

One of the worldvolume effective theories that we have obtained by integrating out

disc sections turned out to describe the dynamics of the effective fluid living on a Myers-

Perry brane in the ultraspinning regime. However, the second effective theory that we

studied, obtained by integrating out finite line segments, is that of an effective fluid living

on a helicoidal black brane - a solution of Einstein vacuum equations which is not known

analytically and its existence was recently predicted in [9].

We have used these effective theories to study and construct new black hole geometries

such as doubly-spinning black rings in D ≥ 7 and helicoidal black rings in D ≥ 6 as well

as helicoidal black tori in D ≥ 7 in asymptotically flat space-time. Considering other

background space-times such as (Anti)-de Sitter and plane-waves would certainly be of

interest. A preliminary study lead us to the conclusion that helicoidal black rings exist in

(Anti)-de Sitter and plane-wave backgrounds and can in certain cases be static.

It is likely that more effective theories can be built by integrating other sections of

the worldvolume geometry which we did not consider here. We have noticed that if these

sections are Euclidean minimal surfaces such as planes and helicoids, the dynamics of the
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fluid decouple and suitable compact spaces can be integrated out. Other interesting effec-

tive theories could potentially be obtained if more minimal surfaces in higher-dimensional

Euclidean space were known.

In general, the method developed here provides a map between, at least, three different

linearised solutions of Einstein equations: the black brane (2.1), the Myers-Perry brane and

the helicoidal black brane. This map we exploited here and showed that it could be used to

find relations between transport coefficients in the different effective theories. In this way,

we were able to obtain the hydrodynamic transport coefficient υ1 for the black branes (2.1)

via a simple integration, which would otherwise require perturbing the black brane (2.1)

to second order in derivatives and solve Einstein equations. We were also able to make

predictions regarding the coefficient υ̃1 for Myers-Perry branes as well as a contribution to

the Young modulus for this class of branes.

It would be interesting to understand how this map between solutions works directly

at the level of the metric (2.1) and how the integration can/should be performed. One

then may wonder if these ideas can be applied in a time-dependent setting, hence allowing

for a map between dissipative transport coefficients. Finally, one may explore whether or

not this map works at the non-linear level and hence if it provides a solution generating

technique. These directions are currently under investigation.
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