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On supergravity theories, after ∼ 40 years

Jean-Pierre Derendinger

Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics,
Bern University, Sidlerstrasse 5, 3012 Bern, Switzerland

E-mail: derendinger@itp.unibe.ch

Abstract. An introduction to and a partial review of supergravity theories is given, insisting
on concepts and on some important technical aspects. Topics covered include elements of global
supersymmetry, a derivation of the simplest N = 1 supergravity theory, a discussion of N = 1
matter–supergravity couplings, of the scalar sector and of some simple models. Space-time is
four-dimensional.

1. Foreword

Almost forty years ago, in 1974 and soon after, most of the important properties of quantum

field theories with linear supersymmetry1 were displayed in a brilliant series of papers. These

fundamental results include what is now called the Wess-Zumino model [1], super-Yang-Mills

theory [2]2, exceptional renormalization properties [4], spontaneous supersymmetry breaking

[5, 6], the current structure [7] and the development of superspace and superfield techniques

[8, 9].

Two attractive complementary aspects of supersymmetry were recognized. Firstly, it is

an extension compatible with quantum mechanics of the Poincaré algebra, the symmetry of

relativistic field theory [10, 11, 4]. Secondly, it can be implemented in the Standard Model of

particle interactions and be experimentally tested [12], leading to numerous models and analysis

and, now, to LHC (preliminary and future) results.

Almost forty years ago, in 1976, the first supergravity theory, the gauge theory of

supersymmetry, was invented by Ferrara, Freedman and van Nieuwenhuizen [13] and by Deser

and Zumino [14], opening decades of developments which installed supergravity at the meeting

point of two independent approaches to the unification program.

1 In four dimensions.
2 And later on [3].
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On the low energy side, the success of the Standard Model emphasizes the enigma of the large

hierarchical ratio MP /MW . Global supersymmetry helps with his capacity to forbid destabilizing

quantum corrections [4, 15]. But it does not spontaneously break, as observations obviously

require, and this is where supergravity helps, by proposing a source for supersymmetry breaking

effects at low energies [16, 17, 18] and also in proposing a scheme to radiatively induce a small

scale (MW ) from supersymmetry breaking at a much higher scale [19, 20, 21, 22, 23].

On the high energy scale, at present, the only concrete proposal for a coherent description

of all particle interactions including gravitation involves models based on strings with scale

close or related to the Planck scale. Coherence and stability of these models require some

amount of supersymmetry. Supergravity appears then as the natural tool to describe the light

sector of superstring theories, at energy scales where string excitations decouple and where

supersymmetry breaking should be able to generate the so-called soft breaking terms needed in

the supersymmetric Standard Model [16, 17, 18].

More pragmatically, the possible relevance of supersymmetry to particle physics, in relation

with the weak interaction scale, is concrete and testable at LHC (and some other) experiments.

This is maybe a strong enough motivation.

Over the years, supergravity theories have of course found many other more theoretical roles,

in gauge/gravity dualities, to understand the structure of gravitational scattering amplitudes, in

the description of superstring solutions and compactifications, in studies of black holes, solutions

of gravitational theories with tensor fields, attractors, in sigma models living on particular

geometries . . .

This contribution tries to provide an introduction to (four-dimensional) supergravity and

a detailed discussion of some aspects of simple theories and of their applications. It begins

with basic aspects of global supersymmetry (section 2), with a detailed discussion of the role of

auxiliary fields. The simplest N = 1 supergravity and its Anti-de Sitter deformation are then

derived (section 3). After a brief discussion of theories with extended supersymmetry, general

properties of the N = 1 supergravity–matter couplings are described (section 4), with particular

attention to the scalar potential and the gravitino sector. The examples of simple no-scale or

dilaton supergravities are the subject of section 5.

2. Elements of global supersymmetry

Relativistic quantum field theories and strong or electroweak interactions are invariant under

global transformations of the Poincaré group, i.e. under Lorentz (proper and orthochronous)

transformations and translations. In other words, there are Lorentz generators Mµν = −Mνµ

and translation generators Pµ acting on coordinates and fields and leaving the dynamical

equations unchanged. Translation generators are universal, Pµ = −i∂µ. Lorentz generators
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act on coordinates according to

δxµ =
i

2
ωρσM

ρσxµ = −ωµνxν , Mρσ = −i(xρ∂σ − xσ∂ρ). (2.1)

They act on fields with generators in representations depending on the spins of the fields. For

a set of fields Φ(x),

δΦ(x) =
i

2
ωρσΣρσΦ(x)− δxµ∂µΦ(x) =

i

2
ωρσM

ρσΦ(x) (2.2)

and the information on spins is in the choice of linear operators Σµν . These variations represent

the Poincaré Lie algebra

[Mµν ,Mρσ] = −i (ηµρMνσ + ηνσMµρ − ηµσMνρ − ηνρMµσ) ,

[Pµ,Mνρ] = i (ηµνP ρ − ηµρP ν) ,

[Pµ, P ν ] = 0.

(2.3)

2.1. The Poincaré superalgebra

Global supersymmetry is an extension compatible with quantum field theory of Poincaré

symmetry adding spin 1/2 generators, the supercharges, with an algebra of anticommutators.

The relevant algebra includes commutators

[Mµν , Qiα] = − i
4

([σµ, σν ]Qi)α, [Pµ, Q
i
α] = 0. (2.4)

The index i = 1, . . . ,N labels the supercharges and the first relation indicates that the Qiα’s

have spin 1/2. The superalgebra is completed by the anticommutators3

{Qiα, Q
j
α̇} = −2i δij(σµ)αα̇∂µ = 2 δij(σµ)αα̇Pµ. (2.5)

The representations of N–extended supersymmetry share several important properties:

• Firstly, the particle states in a supermultiplet have helicities extending from a maximal λ to

λ−N/2 (and the opposite helicities if λ−N/2 6= −λ). Since quantum field theory admits

helicities |λ| ≤ 1, it admits at most N = 4 global supersymmetries. For supergravity,

|λ| ≤ 2 and then N ≤ 8.

• Secondly, all particle states have the same mass (which can be zero) and the numbers of

fermionic and bosonic particle states are equal, nB = nF . Similarly, for representations

in terms of fields (unconstrained by a dynamical field equation) bosonic and fermionic

component fields come in equal numbers. The number of helicity zero states is then always

even.

3 We disregard the possibility of central changes for N > 1.
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• Thirdly, for a supermultiplet of fields, the allowed interactions are strongly constrained and

related.

• Finally, the divergences of supersymmetric quantum field theories are much softer than in a

generic case: quadratic divergences in the scalar sector are absent and, in particular, scalar

and Yukawa (scalar–fermion) interactions are not renormalized.

Of course, these properties immediately indicate that supersymmetry cannot be an exact

symmetry of Nature. Realistic theories with supersymmetry must include a mechanism of

supersymmetry breaking, a condition which turns out to be a challenge to model builders.

It should also be mentioned that Poincaré supersymmetry is a limiting case of the

supersymmetric extension of anti-de Sitter space-time symmetry SO(2, 3) (a contraction of the

AdS superalgebra). But it is not compatible with the de Sitter SO(1, 4) algebra. This algebraic

fact has important dynamical implications for supergravity theories, which are our main subject

of interest here.

2.2. The simplest supermultiplet and auxiliary fields

The simplest representation of N = 1 supersymmetry is the chiral multiplet, which describes

particle states with helicities ±1/2, 0, 0. It then includes a Weyl (or Majorana) spinor ψ and

a complex scalar z. But it also introduces the concept of auxiliary fields of central importance

in field representations of the supersymmetry algebra. The relevance of auxiliary fields, with

algebraic, non-propagating field equations, is related to the requirement nB = nF , and the fact

that counting degrees of freedom on-shell and off-shell gives different numbers.

To illustrate the use of auxiliary fields, consider the sum of the free massless Klein-Gordon

and Dirac lagrangians for a complex scalar and a Weyl (or Majorana) spinor:

L0 = (∂µz)(∂
µz) +

i

2
ψσµ∂µψ −

i

2
∂µψσ

µψ. (2.6)

It is a supersymmetric theory: under the variations

δz =
√

2 εψ, δψα = −
√

2i ∂µz(σ
µε)α, (2.7)

the lagrangian changes by a derivative and the action is then invariant. There is however trouble

in the algebra. Firstly,

[δ1, δ2]z = −2i(ε2σ
µε1 − ε1σµε2)∂µz, (2.8)

which is a translation δxµ = 2(ε2σ
µε1 − ε1σµε2) = 2 ε2γ

µε1 as required by the supersymmetry

algebra (2.5). But

[δ1, δ2]ψα = −2i(ε2σ
µε1 − ε1σµε2)∂µψα

+2i(∂µψσ
µε2)ε1α − 2i(∂µψσ

µε1)ε2α.
(2.9)
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The first term is as expected, but the second only vanishes if the spinor solves the Dirac

equation ∂µψσ
µ = 0 implied by the lagrangian. Hence, variations (2.7) only close the

supersymmetry algebra for on-shell fields. This is certainly a problem if one wishes to construct

more complicated, interacting lagrangians with nonlinear field equations. One must then

simultaneously invent the lagrangian and the corresponding supersymmetry variations (which

become nonlinear as well).

However, modify the variation of the spinor:

δψα = −
√

2fεα −
√

2i∂µz(σ
µε)α (2.10)

where f is a complex scalar field. The new term adds

−
√

2 δ1f ε2α +
√

2 δ2f ε1α

to [δ1, δ2]ψα and choosing then

δf = −
√

2i (∂µψσ
µε) (2.11)

leads to the expected algebra

[δ1, δ2]ψα = −2i(ε2σ
µε1 − ε1σµε2) ∂µψα,

[δ1, δ2]f = −2i(ε2σ
µε1 − ε1σµε2) ∂µf

(2.12)

for all three fields z, ψ and f . The modification of the spinor variation also adds a new

contribution to the variation of L0:

−fδf − fδf +
i√
2
∂µ[f εσµψ − f ψσµε].

This in turn imposes to modify the lagrangian to

L = (∂µz)(∂
µz) +

i

2
ψσµ∂µψ −

i

2
∂µψσ

µψ + ff, (2.13)

with field equations

2z = 0, ∂µψσ
µ = 0, f = 0 (2.14)

and the scalar f is auxiliary: it describes nB = 2 off-shell fields and nB = 0 on-shell states.

Since ψ includes nF = 4 off-shell and nF = 2 on-shell degrees of freedom while for z nB = 2

on-shell and off-shell, the equality nB = nF is verified on-shell and off-shell in the supermultiplet

(z, ψ, f). On shell, δf = 0 and one returns to the original expressions (2.6) and (2.7).

In general, the equality of the number of bosonic and fermionic physical (on-shell) degrees of

freedom is imposed by the supersymmetry algebra while a mismatch in the numbers of bosonic

and fermionic off-shell fields suggests that adding auxiliary fields is necessary to obtain an off-

shell representation, if possible at all.

4th Symposium on Prospects in the Physics of Discrete Symmetries (DISCRETE2014) IOP Publishing
Journal of Physics: Conference Series 631 (2015) 012009 doi:10.1088/1742-6596/631/1/012009

5



The canonical dimensions (in energy unit) of z, ψ and f are respectively 1, 3/2 and 2 and the

parameter ε has dimension −1/2. Hence f must transform in a field with dimension 5/2, which is

then a derivative of ψ. This suggests a method to construct supersymmetric lagrangians: starting

with an off-shell supermultiplet like (z, ψ, f), combine supermultiplets into a new supermultiplet

(tensor calculus) and take its component with the highest dimension as a lagrangian term: it

necessarily transforms as a derivative. The simplest example is

Z = z2, Ψ = 2zψ, F = 2fz + ψψ. (2.15)

One easily verifies that (Z,Ψ, F ) and (z, ψ, f) have identical transformations. Hence, since the

variation of F is a derivative,

Lm = (∂µz)(∂
µz) + i

2ψσ
µ∂µψ − i

2∂µψσ
µψ + ff

−m[fz + 1
2ψψ]−m[fz + 1

2ψψ]
(2.16)

is supersymmetric. Eliminating f with its field equation f = mz leads to

Lm = (∂µz)(∂
µz)−m2zz +

i

2
ψσµ∂µψ −

i

2
∂µψσ

µψ − m

2
[ψψ + ψψ], (2.17)

with a common mass m for z and ψ, and to the supersymmetry variations

δz =
√

2 εψ, δψα = −
√

2mz εα −
√

2i ∂µz(σ
µε)α. (2.18)

Contrary to variation (2.10), δψα now depends on the lagrangian parameter m. Note that with

Dirac equation i∂µψσ
µ = −mψ, the on-shell variation of the auxiliary field is

δf = −
√

2i (∂µψσ
µε) = m

√
2 εψ = mδz, (2.19)

as indicated by f = mz.

Similarly, a renormalizable interaction would follow from the observation that

Z = m
2 z

2 + λ
3 z

3,≡W (z), Ψα = (mz + λz2)ψα,

F = (mz + λz2)f + 1
2(m+ 2λz)ψψ

(2.20)

is a chiral multiplet. The holomorphic function W of z only is the superpotential. The

supersymmetric lagrangian

Lm,λ = (∂µz)(∂
µz) + i

2ψσ
µ∂µψ − i

2∂µψσ
µψ + ff

−(mz + λz2)f − (mz + λz2)f − m
2 [ψψ + ψψ]− λzψψ − λzψψ

= (∂µz)(∂
µz)− V (z, z)

+ i
2ψσ

µ∂µψ − i
2∂µψσ

µψ − m
2 [ψψ + ψψ]− λzψψ − λzψψ,

(2.21)

using f = mz + λz2 in the second expression, includes the scalar potential

V (z, z) = |f |2 = |mz + λz2|2 =

∣∣∣∣ ddzW (z)

∣∣∣∣2 . (2.22)
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It is a renormalizable quantum field theory, and supersymmetry holds to all orders of

perturbation theory. This result shows how supersymmetry relates all three scalar and Yukawa

interactions and how the scalar potential is related to the spinor variations

δψiα = −
√

2Ai(ϕi)εα + ∂µ(. . .) + . . . ←→ V =
∑
i

|Ai(ϕi)|2,

A = f =
dW (z)

dz
.

(2.23)

In the first line, the index i would label the various spinor and scalar fields ϕi in the theory.

The second line refers to our example of a single chiral multiplet with superpotential W . This

relation between the potential and spinor variations is a universal property, even in theories and

supermultiplets for which auxiliary fields (and then the second line) do not exist [24]. Notice

that the on-shell spinor variation is not linear in an interacting theory.

The generalization of the ”square” (2.15) of a chiral multiplet is as follows. Consider a set of

chiral multiplets (zi, ψi, f i) and an arbitrary superpotential function W (zi) of the scalar fields

zi. Then,

Z = W (zi), Ψα =
∂W

∂zi
ψiα, F =

∂W

∂zi
f i +

1

2

∂2W

∂zi∂zj
ψiψj (2.24)

are the components of a chiral multiplet. Another important chiral multiplet is called kinetic.

Its component fields are

Z = f, Ψα = i(σµ∂µψ)α, F = −2z, (2.25)

where (z, ψ, f) is a chiral multiplet. Multiplying then the kinetic multiplet with (z, ψ, f) using

the tensor product rule (2.24) leads to the kinetic lagrangian (2.13):

zF + fZ + ψΨ = −z2z + iψσµ∂µψ + ff = L+ ∂µ

[ i
2
ψσµψ − z∂µz

]
. (2.26)

The method of tensor calculus [1] can be systematically applied to construct lagrangians

invariant under global supersymmetry. It has found a beautiful synthesis, at least for the case

of N = 1 supersymmetry (in four dimensions), in superspace and superfield techniques [8, 9],

building on the idea that supersymmetry generators act like “square roots of translations”, as

suggested by the superalgebra (2.5). The operators Qα are realized in terms of derivatives (like

translations) acting in a superspace extended with fermionic, Grassmann (fictitious) coordinates.

A tensor calculus also exists for conformal supersymmetry (gauge theories of the superconformal

algebra). It probably offers the most efficient procedure to construct supergravity theories, with

local supersymmetry.4

A similar discussion could be made for the supermultiplet with helicities ±1,±1/2, which is

realized by a gauge field Aµ and a Majorana spinor λα, the gaugino. Since the gaugino includes

4 See section 3.5.
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four off-shell fields while the gauge field has three, the off-shell supermultiplet includes one real

scalar auxiliary field D. Again, the Yang-Mills and Dirac lagrangians, with their non-abelian

covariantizations, provide a supersymmetric theory: the super-Yang-Mills (SYM) lagrangian is

then simply

LSYM = −1

4
FAµνF

Aµν +
i

2
λAσµDµλ

A − i

2
Dµλ

Aσµλ
a

+
1

2
DADA, (2.27)

where Dµ and F aµν are the usual covariant derivative and field-strength tensor of a non-abelian

gauge theory5, and DA = 0 by its field equation. The SYM theory can be coupled to chiral

multiplets in an anomaly-free representation of the gauge group, to give the supersymmetric

extension of gauge theories. This is the framework of the minimal supersymmetric Standard

Model (MSSM), and of its variations.

It is then not surprising that the supermultiplet with helicity states ±2,±3/2 would lead to

a field theory combining the Einstein-Hilbert lagrangian of general relativity and the Rarita-

Schwinger lagrangian for the helicities ±3/2: this leads to N = 1 supergravity.

2.3. Breaking supersymmetry

With respect to standard “bosonic” symmetries, spontaneous breaking of supersymmetry [5, 6]

is peculiar and difficult to achieve. Breaking a local or global symmetry is usually “parameter-

controlled”, in the sense that the scalar potential which defines the ground state depends on

parameters and the various possible phases correspond in general to sizeable domains in the

parameter space of the theory. Selecting values of parameters selects the phase. The spontaneous

breaking of supersymmetry is “algebra-controlled”: the scalar potential is a sum of positive

terms, each term proportional to the square of an auxiliary field, either fi for chiral superfields

or DA for gauge multiplets. In the renormalizable theory,

V =
∑
i

|fi|2 +
1

2

∑
A

DADA. (2.28)

By their algebraic field equations, the auxiliary fields are functions of the chiral scalars zi and

if equations

fi(zi) = DA(zi, zi) = 0 (2.29)

have a solution, this solution is the true ground state of the theory and supersymmetry is not

broken.6 We then have an algebraic condition for supersymmetry breaking, that these equations

cannot be solved.

Spontaneous supersymmetry breaking has two undesired consequences. Firstly, it generates

a massless spin 1/2 Goldstone particle, the Goldstino. This can be seen for instance in the

5 All fields are in the adjoint representation.
6 The potential vanishes then at a supersymmetric minimum. But since general relativity is absent, the value of
the potential at the ground state, sometimes called vacuum energy, does not have any physical significance.
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variation of ψα, eq. (2.10). If f acquires a vacuum expectation value 〈f〉

δψα =
√

2〈f〉εα + . . . (2.30)

and the inhomogeneous term is typical of Goldstone particles. Secondly, if spontaneous

supersymmetry breaking is able to lift fermion–boson mass degeneracies, it in general moves the

mass of some spin zero states below their fermionic partner, in contradiction with observations.

These obstructions can be avoided if the spontaneously broken supersymmetry is local, i.e. in

a theory with gauged supersymmetry. This is a first motivation, from a low-energy perspective,

for supergravity, with the idea that the residual, effective effects of the breaking will produce

the mass terms necessary in a realistic particle spectrum. Models realising this idea are actually

easy to construct, and they are at the origin of the various supersymmetric extensions of the

Standard Model under test at LHC experiments.

3. Supergravity

Supergravity is the theory of gauged supersymmetry. The spin 1/2 parameter εα is then

local, εα(x), and since translation generators Pµ appear in the supersymmetry algebra (2.5),

translations are local as well. This calls for coordinate diffeomorphisms (general coordinate

transformations, GCT) and then for general relativity and gravitation. The theory of gauged

supersymmetry is then a field theory of gravitation.

A local symmetry requires a gauge field (a connection) to construct tensors and invariants

involving derivatives, needed in lagrangians and dynamical field equations. Since supercharges

Qα and parameters εα are Lorentz spinors, the gauge field of supersymmetry is a vector-spinor

field, ψαµ, the gravitino, and the physical (massless) states will have helicities ±3/2. To construct

a supersymmetric lagrangian, we first need a kinetic lagrangian for the gravitino: the Rarita-

Schwinger lagrangian. We may then add this term to the Einstein-Hilbert lagrangian for the

metric tensor and maybe find supersymmetry variations leaving the action invariant and closing

the supersymmetry algebra for solutions of the field equations, on-shell.

Or we may try to directly obtain an off-shell representation of supersymmetry including the

metric tensor, the gravitino and, if needed, auxiliary fields. Let us count off-shell degrees of

freedom:

• The metric tensor gµν has ten components, four can be removed by gauge transformations

(local translations) to remain with six fields, 6B.

• The gravitino is a Majorana vector–spinor with four local gauge supersymmetries. It

includes then 4× 4− 4 = 12F component fields.7

• With 6B + 12F propagating fields, (6 + n)B + nF non-propagating auxiliary fields are then

needed to construct an off-shell representation.

7 Alternatively, the supercharge Qα includes four operators and one gauge field (3F ) is needed for each of them.
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It turns out that several possibilities exist.8 Minimal supergravities have 6B auxiliary fields

(n = 0). Old minimal supergravity [26, 27] has a complex scalar (2B) and a vector field not

associated with a gauge symmetry (4B), new minimal supergravity [28] has an antisymmetric

tensor Bµν and a vector field Aµ with gauge symmetries

δBµν = ∂µΛν − ∂νΛµ (6− 3)B, δAµ = ∂µΛ (4− 1)B. (3.1)

And there are non-minimal versions with n 6= 0, including some versions which have

supplementary propagating fields.9 In pure supergravity, with ±3/2 and ±2 physical states,

the formulation does not matter much since auxiliary fields anyway vanish. They play however

a role when coupling supergravity to other supermultiplets: they define classes of admissible

interactions which depend directly on the choice of supergravity auxiliary fields [25].

3.1. Spinors and the vierbein

From here on, xµ denotes coordinates of a space-time with metric tensor gµν(x) and line element

ds2 = gµν(x)dxµdxν .

Spinor fields live in the flat minkowskian space tangent at each point x. This tangent space

would have local coordinates ζa(x) with line element10

ds2 = ηab dζ
adζb = ηab(∂µζ

a)(∂νζ
b)dxµdxν . (3.2)

Hence, the transition from the curved space-time to the flat tangent space is given by the sixteen

fields eaµ(x) = ∂µζ
a(x), in other words, we can define a vierbein eaµ and its inverse eµa (since the

metric has an inverse) such that

gµν = ηab e
a
µe
b
ν , eµae

a
ν = δµν , eaµe

µ
b = δab . (3.3)

At each point x, a Lorentz algebra acts in the tangent space. This local Lorentz symmetry

allows to eliminate six components of the vierbein and since ds2 in (3.2) is Lorentz invariant,

the ten remaining components are the ten components of gµν . It also acts on spinors:

δψ(x) =
1

2
ωab σ

abψ(x), σab =
1

2
γab, γab =

1

2
[γa, γb]. (3.4)

Covariant derivatives of spinors are provided by the local Lorentz gauge field, the spin connection

ωµ
ab = −ωµba:

Dµψ = ∂µψ +
1

2
ωµab σ

abψ (3.5)

and the Dirac lagrangian takes then the form

e−1Lψ = iψγµDµψ (3.6)

where e =
√
| det gµν| = det eaµ and γµ = eµaγa. It is invariant under GCT and local Lorentz.

8 For a review and a comparison of different choices in the superconformal approach, see [25].
9 “16B + 16F ” supergravity [29, 30, 31] for instance is related to string theory compactifications [32], or to
supercurrent structures [33, 34].
10 ηab = diag(1,−1,−1,−1) is the flat Minkowski metric.
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3.2. The gravitino and the Rarita-Schwinger action

The Rarita-Schwinger action describes the propagation of a vector-spinor field ψαµ in the

background defined by the vierbein eaµ and the spin connection ωµ
ab. Its form is dictated

by invariance requirements and reduction to the relevant helicity components only. Under

the Lorentz algebra, the field ψαa = eµaψαµ (α is a spinor index) transforms in the reducible

representation

spinor ⊗ vector = gravitino ⊕ spinor ,
[(2, 1)⊕ (1, 2)] ⊗ (2, 2) = [(3, 2)⊕ (2, 3)] ⊕ [(1, 2)⊕ (2, 1)] .

The second equation indicates the representations of the Lorentz algebra SO(1, 3) ∼ Sl(2,C),

the numbers are the dimensions of Sl(2,R) representations. The spinor part of ψαa is γaψαa

and the gravitino part is then isolated by the condition

(γaψa)α = (γµψµ)α = 0 =⇒ ψ̃αa = ψαa −
1

4
(γaγ

bψb)α. (3.7)

An action for the gravitino should in principle include this projection condition in its field

equations.

Consider then the following free lagrangian density, in Minkowski space (coordinates ζa and

metric ηab):

L0 =
1

2κ2
ψaγ

abc∂bψc (3.8)

where κ is a constant with dimension (mass)−1 and γabc = γ[aγbγc] = 1
6γ

aγbγc ± 5 terms. The

gravitino ψa is Majorana and L0 is hermitian. It implies the field equation

γabc∂bψc = 0. (3.9)

Invariance under the gauge transformation δψa = ∂aλ, with an arbitrary Majorana spinor λ,

can be used to impose the projection condition (3.7) by solving γa∂aλ = −γaψa. This leaves a

residual gauge symmetry δψa = ∂aλ̃ with λ̃ solution of the massless Dirac equation γa∂aλ̃ = 0.

In the gauge γaψa = 0, the field equation reduces to

γa∂bψ
b = γb∂bψ

a (3.10)

and multiplication by γa leads to

γaψa = 0 (gauge choice), ∂bψ
b = 0, γb∂bψa = 0 (Dirac). (3.11)

The Dirac equation indicates that the field is massless and the count of physical degrees of

freedom is as follows. Starting with 16F fields, the gauge choice and ∂aψa = 0 remove two

spinors (8F ), the massless Dirac equation removes four of the 8F remaining fields and finally

the residual gauge symmetry eliminates one of the massless Dirac spinor (2F ) to leave only two

degrees of freedom, which turn out to have helicities ±3/2. 11

11 Plane waves εαa(k)e−ikx can be used to see this.
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Coupling theory (3.8) to the background described by the vierbein eaν leads to the Rarita-

Schwinger lagrangian

e−1LRS =
1

2κ2
ψµγ

µνρD̃νψρ, (3.12)

where γµνρ = eµaeνb e
ρ
cγabc. In principle, since the gravitino field ψαµ is a space-time vector (index

µ), its covariant derivative should be

Dµψαρ = ∂µψαρ − Γσµρ(g)ψασ +
1

2
ωµ

ab(σabψρ)α (3.13)

with affine connection

Γµνρ(g) =
1

2
gµσ[∂νgρσ + ∂ρgνσ − ∂σgνρ]. (3.14)

But the antisymmetry of γµνρ removes the symmetric affine connection and

D̃µψν = ∂µψν +
1

2
ωµ

ab σabψν (3.15)

appears in the Rarita-Schwinger lagrangian (3.12).

3.3. Simple N = 1 supergravity

The need for spinor fields imposes a formulation of general relativity in terms of the vierbein.

Since the Rarita-Schwinger also uses the spin connection, it is natural to use the first order

(or Palatini) formalism in which eaµ and ωµ
ab are independent fields, their relation being a field

equation. One then introduces the curvature tensor of the spin connection,

Rµν
ab = ∂µων

ab − ∂νωµab + ωµ
acων c

b − ωνacωµ cb = −Rνµab = −Rµνba , (3.16)

the curvature scalar

R = Rµν
abeµae

ν
b , (3.17)

and the gravity lagrangian

Lgrav. =
1

2κ2
eR . (3.18)

All quantities are diffeomorphism and Lorentz tensors or scalars and the gravitational coupling

constant is κ =
√

8πM−1P in terms of the Planck scale MP ' 1.2× 1019 GeV. Under a variation

of the vierbein,

δeµa
δ

δeµa
Lgrav. =

1

κ2
e

[
Rµν

abeνb −
1

2
eaµR

]
δeµa (3.19)

leads to Einstein equation, after the elimination of the spin connection.

Since the action (3.18) is quadratic in the spin connection and linear in its first derivative,

the Euler-Lagrange equation for ωµ
ab is algebraic only. To calculate this field equation, rewrite

eR = e(eµaeνb − e
µ
b e
ν
a)
(
∂µων

ab + ωµ
acωνc

b
)

= −ωνab∂µ[e(eµaeνb − e
µ
b e
ν
a)] + e(eµaeνb − e

µ
b e
ν
a)ωµ

acωνc
b + derivative

(3.20)
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and the field equation leads to

ωµ cd = −1
2(∂µeνc − ∂νeµc)eνd + 1

2(∂µeνd − ∂νeµd)eνc − 1
2e
ρ
ceνd(∂ρeνa − ∂νeρa)eaµ

≡ ωµ cd(e).
(3.21)

In terms of gµν and of the symmetric Γλµν(g) (3.14), the Ricci tensor Rµν corresponding to

definitions (3.16) and (3.17) is

Rµν = ∂ρΓ
ρ
µν(g)− ∂νΓρρµ(g)− Γρσµ(g)Γσρν(g) + Γρµν(g)Γσρσ(g) = Rνµ (3.22)

and R = gµνRµν .

Next, we combine the gravity and Rarita-Schwinger lagrangians:

LERS(eaµ, ψαµ, ωµab) =
1

2κ2
e
(
R+ ψµγ

µνρD̃νψρ

)
. (3.23)

After elimination of the spin connection, using its algebraic field equation, we will obtain an

interacting theory for the propagating vierbein and gravitino. Since the gravitino lagrangian

also includes a term linear in ωµ
ab in the Lorentz covariant derivative D̃µ, its field equation and

its solution are modified. As a consequence, the spin connection acquires contorsion,

ωµ
ab = ωµ

ab(e) + κµ
ab, (3.24)

and the contorsion tensor is quadratic in the gravitino field:

κµab = −1

4

[
ψµγaψb − ψµγbψa + ψaγµψb

]
= −κµ ba. (3.25)

In the Rarita-Schwinger lagrangian,

D̃µψν − D̃νψµ = D̂µψν − D̂νψµ + 2Sλµνψλ, D̂µψν = ∂µψν +
1

2
ωµ

ab(e)σabψν , (3.26)

with torsion tensor

Sλµν = −1

4
ψµγ

λψν (3.27)

defined as the antisymmetric part of the affine connection Γµνρ = Γµνρ(g) + Sµνρ, S
µ
νρ = −Sµρν .

Useful formulas are obtained by inserting the decomposition (3.24) into the gravity lagrangian,

after some partial integrations:

eR = eR (ω(e))− e[κaacκbbc − κabcκcba] + derivative ,

eR (ω(e)) = e[ωaac(e)ωb
bc(e)− ωabc(e)ωcba(e)] + derivative ,

(3.28)

where ωabc(e) = eµa ωµ bc(e) and κabc = eµa κµ bc and the derivatives can be dropped in the

lagrangian.
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Inserting the spin connection (3.24) with contorsion (3.25) in LERS leads to the lagrangian

density of N = 1 pure supergravity, as a function of eaµ and ψµ only (second order formalism):

L =
1

2κ2
eR (ω(e)) +

1

2κ2
eψµγ

µνρD̂νψρ

+
e

32κ2

[
4(ψ

µ
γµψρ)(ψ

ν
γνψ

ρ)− (ψµγνψρ)(ψ
µ
γνψρ)− 2(ψµγνψρ)(ψ

µ
γρψν)

]
,

(3.29)

with now D̂νψρ = ∂νψρ + 1
2ων ab(e)σ

abψρ.

With some efforts,12 one can show that L transforms with a derivative under the local

supersymmetry variations

δeaµ = −1
2εγ

aψµ , δeµa = 1
2εγ

µψa ,

δψµ = Dµε = ∂µε+ 1
2ωµab σ

abε , δψµ = Dµε = ∂µε− 1
2ωµab εσ

ab ,
(3.30)

in the first-order formalism. Using eqs. (3.24) and (3.25), the gravitino supersymmetry variation

acquires a fermionic nonlinear contribution through the contorsion tensor:

δψµ = D̂µε−
1

8

(
2ψµγaψb + ψaγµψb

)
σabε , D̂µε = ∂µε+

1

2
ωµab(e)σ

abε. (3.31)

The gravitino transforms as the gauge field of supersymmetry: the first term is the derivative

of the transformation parameter ε.

One easily obtains the algebra

[δ1, δ2] e
a
µ = δ1[−

1

2
ε2γ

aψµ]− δ2[−
1

2
ε1γ

aψµ] = −1

2
Dµ(ε2γ

aε1) , (3.32)

the covariant derivative acting on the Lorentz vector ε2γ
aε1:

Dµ(ε2γ
aε1) = ∂µ(ε2γ

aε1) + ωµ
ab(ε2γbε1) .

The quantity ξµ = eµa(ε2γ
aε1) is then the parameter of the infinitesimal coordinate transfor-

mation predicted by the supersymmetry algebra. But as earlier mentioned, we do not expect

with 6B + 12F off-shell fields that the supersymmetry algebra closes without the field equations.

Auxiliary fields would be needed and, in the case of N = 1 supergravity, exist and are not

unique.

3.4. Anti-de Sitter supergravity: the cosmological constant

The natural background geometry of the supergravity lagrangian (3.29) is flat Minkowski space.

Since the matter energy-momentum tensor is entirely generated by the gravitino, it vanishes in

a Lorentz-invariant background.13 But we know that Poincaré supersymmetry is a limit case

12 Using properties of Majorana spinors, Fierz rearrangements and partial integrations.
13 There could be gravitino condensates [35], recently reviewed in [36].
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of the more general supersymmetry in anti-de Sitter (AdS) space-time. A supergravity theory

with natural AdS background geometry should then exist.

We use the following standard definition of the cosmological constant Λ: it should contribute

to Einstein equations as

Rabµνe
ν
b −

1
2e
a
µR = −Λeaµ + contributions from other fields,

R = 4Λ + contributions from other fields.
(3.33)

A positive (negative) Λ leads to de Sitter (anti-de Sitter) space-time. The field equation (3.33)

follows from the lagrangian density
e

κ2

[1

2
R− Λ

]
. (3.34)

The situation is somewhat similar to the introduction of mass in the chiral supermultiplet

theory discussed in section 2.2. Keeping the supersymmetry variation δeaµ unchanged, the

gravitino variation is modified to

δψµ = Dµε−
1

2
M γµε , (3.35)

with a real number M .14 The modified variation of the gravitino kinetic term requires the

presence in L of a quadratic, mass-like term for the gravitino, and the variation of this term

implies the existence of a negative cosmological constant proportional to M2. The resulting

lagrangian is then:15

LAdS =
e

κ2

[
1

2
R+

1

2
ψµγ

µνρD̃νψρ +
M

2
ψµγ

µνψν + 3M2

]
. (3.36)

The gravitino mass-like term in the lagrangian density (3.36) does not mean that the gravitino

is massive: the theory is supersymmetric, the graviton is massless, the gravitino must then be

massless. Actually, the cosmological constant Λ = −3M2 in Einstein equation (3.33) propagates

graviton waves along light-like curves in the anti-de Sitter geometry. Similarly, the gravitino

mass-like term is precisely the contribution required to propagate gravitino waves on light-like

curves in this geometry. Again, we find that a positive cosmological constant is not compatible

with supersymmetry, as the basic superalgebra already indicates.

3.5. The superconformal derivation, old minimal supergravity

In section 2.2, we have constructed the (globally) supersymmetric theory of a chiral multiplet

(z, ψ, f), to illustrate the role of auxiliary fields. In this paragraph, we outline a similar approach,

in the context of superconformal symmetry, to construct N = 1 supergravity with the old

minimal set of auxiliary fields. The reason to consider this construction here is that this

14 Reality follows from the Majorana property of ψµ.
15 In terms of ωµ

ab = ωµ
ab(e) + κµ

ab.
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procedure generalizes very well to theories describing generic N = 1 supersymmetric gauge

theories coupled to supergravity [37, 38], however at the price of a considerable increase in

technical complexity.

The Poincaré and Anti-de Sitter N = 1 superalgebras are subalgebras of the N = 1

superconformal algebra SU(2, 2|1). Its bosonic sector SU(2, 2)× U(1)R includes the conformal

algebra SU(2, 2) ∼ SO(2, 4) and U(1)R symmetry, and SO(2, 4) ⊃ SO(1, 3) × SO(1, 1), where

SO(1, 3) is Lorentz algebra and SO(1, 1) generates dilatation or scale or Weyl transformations. A

supermultiplet of Poincaré supersymmetry is also a representation of the superconformal algebra

once a SO(1, 1) Weyl weight w and a U(1)R chiral charge q have been assigned to all fields and

with the appropriate symmetry and supersymmetry variations. There are restrictions on these

quantum numbers. For instance w = q for (the lowest component of) a chiral multiplet.16

To construct N = 1 Poincaré supergravity, one uses a chiral supermultiplet S0 with Weyl and

U(1)R weights w = q = 1 and component fields z0 (w = q = 1), ψα (w = 3/2, q = −1/2) and

f0 (w = 2, q = −2).17 Its conjugate antichiral S0, with weights w = −q = 1 has components z0

(w = −q = 1), ψα̇ (w = 3/2, q = 1/2) and f0 (w = 2, q = 2). The chiral kinetic multiplet of S0,

denoted by T (S0), analogous to expressions (2.25), has components

Z0 = f0 (w = q = 2),

Ψ0α = i(σµDCµ ψ0)α (w = 5/2, q = 1/2),

F0 = −2Cz0 (w = 3, q = −1).

(3.37)

The derivatives DCµ and 2C are covariant under the full local superconformal algebra. Gauge

fields are:

eaµ (vierbein, translations), ωµ
ab (spin connection, Lorentz),

ψαµ (gravitino, supersymmetry),

faµ (conformal boosts), φαµ (special supersymmetry),

bµ (dilatation), Aµ (U(1)R).

(3.38)

Constraints lead to algebraic expressions for ωµ
ab (as earlier), φαµ and faµ , leaving bosonic gauge

fields eaµ, bµ, Aµ (6 + 3 + 3 = 12B) and the gravitino ψαµ (12F ). The idea is then to write a

superconformal lagrangian for the chiral multiplet S0 and then to reduce the symmetry to local

Poincaré symmetries, by applying appropriate gauge fixing conditions for conformal boosts,

16 Two conventions, different by the normalization of U(1)R, exist in the literature: either w = q as used here, or
q = 2

3
w.

17 The weights of a supermultiplet are the weights of its “lowest” component, in our cse z0. Apart from minor
differences (metric sign, two-component spinors), we use the notation of ref. [39].
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dilatation, U(1)R and special supersymmetry. These conditions assign values to

z0 : dilatation and U(1)R, (modulus and phase of z0),

ψ0 : special supersymmetry,

bµ : conformal boosts.

(3.39)

We are then left with the propagating fields of Poincaré supergravity, eaµ and ψαµ and the

auxiliary field Aµ (the gauge field of gauge-fixed U(1)R) and f0 (in S0).

In global supersymmetry, we obtain invariant lagrangians by combining supermultiplets into

other supermultiplets (tensor calculus), or by multiplying superfields, and by selecting the

highest-dimensional component which transforms with a derivative. In the superconformal case,

there are two (related) possibilities to produce invariant action terms. Firstly, we can combine

supermultiplets to obtain a real supermultiplet with weights w = 2, q = 0 and take the D–density

formula. For instance, symbolically, [
S0S0

]
D
.

Secondly, we can combine chiral multiplets into another chiral multiplet with weights w = q = 3

and use the F–density formula. In our case,[
S0 T (S0)

]
F

or
[
S3
0

]
F
.

Up to conventions (and partial integration), [S0S0]D and [S0T (S0)]F are equivalent.

To obtain the N = 1 Poincaré supergravity, start then with the superconformal lagrangian

L = −3

2

[
S0S0

]
D

+ λ
[
S3
0

]
F

(3.40)

calculated using superconformal tensor calculus and the density formulas [39]. Applying the

gauge fixing conditions

bµ = 0, ψ0 = 0, (3.41)

but retaining z0 for a moment, the superconformal lagrangian reads

e−1L = 1
2z0z0

[
R (ω(e)) + ψµγ

µνρD̂νψρ

]
−3

2

[
2(Dµz0)(D

µz0) + 2f0f0

]
+ λ

[
3z20f0 + 3z20f0

]
+ . . .

(3.42)

The covariant derivative is Dµz0 = ∂µz0 − i
2qAµz0 (q = 1) and some gravitino interactions have

been omitted. With the dilatation and U(1)R gauge choice z0 = κ−1,

e−1L =
1

2κ2

[
R (ω(e)) + ψµγ

µνρD̂νψρ

]
− 3

4κ2
AµA

µ − 3f0f0

+λ
[
3z20f0 + 3z20f0

]
+ . . .

(3.43)
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The first line displays the auxiliary fields Aµ and f0 of old minimal supergravity. Eliminating

them leads finally to

e−1L =
1

κ2

[
1

2
R (ω(e)) +

1

2
ψµγ

µνρD̂νψρ + 3
λ2

κ2

]
+ . . . , (3.44)

with an Anti-de Sitter cosmological constant Λ = −3λ2κ−2 induced by the F–density. The

related gravitino mass-like term required by supersymmetry18 is actually generated by the

omitted gravitino term
λ

4
z30 ψµγ

µνψν + h.c.

omitted in the F–density λ[S3
0 ]F .

3.6. Four-dimensional supergravities for all N

Massless supermultiplets of N–extended supersymmetry fall in three categories: matter

multiplets with |helicities| ≤ 1/2, gauge or Yang-Mills multiplets with |helicities| ≤ 1 and

supergravity multiplets with |helicities| ≤ 2. The following table indicates, as a function of the

number N of supersymmetries:19

• The number of (on-shell) helicity states in supergravity, gauge and matter multiplets.

• Supermultiplets with scalar fields. These theories are potentially able, at ground states with

nonzero scalar expectation values, to offer various patterns of symmetry and supersymmetry

breakings (indicated by ∗).

• That while Yang-Mills multiplets can gauge all symmetry groups, chirality of the

fermion representation can only be obtained in the matter (chiral) multiplet of N = 1

supersymmetry.

SUSY Supergravity |Hel.|≤ 1 |Hel.| ≤ 1/2 Chirality
N = 1 2B + 2F 2B + 2F 2B + 2F

∗ X
N = 2 4B + 4F 4B + 4F

∗ 4B + 4F
∗ -

N = 3 8B + 8F 8B + 8F
∗ - -

N = 4 16B + 16F
∗ 8B + 8F

∗ - -
N = 5 32B + 32F

∗ - - -
N = 6 64B + 64F

∗ - - -
N = 8 128B + 128F

∗ - - -

Supergravity field theories with N > 1 are much harder to construct. The number of fields

of all helicities increases fast with N and off-shell representations do not exist in general. The

flexibility in the choice of gauge group and matter representation decreases fast with increasing

N . Arbitrary representations are allowed with N = 1 only, arbitrary non-chiral representations

with N ≤ 2, and for N ≥ 3, only the adjoint representation is admitted. Arbitrary gauge

18 As in eq. (3.36).
19 The N = 7 theory does not exist: the eighth supersymmetry arises automatically and cannot be decoupled.
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groups are allowed for N ≤ 4, while for higher N , gauged supergravities exclusively depend on

the vector fields present in the supergravity multiplet.

The number of vector fields in the supergravity multiplet is N (N − 1)/2. The choice of

possible gaugings increases then rapidly with N , and also taking advantage of electric-magnetic

duality. These gauged algebras cannot be identified with the compact Lie algebras used in

the Standard Model or its extensions, but their breaking patterns is a subject of interest due to

relations with properties found in superstrings. This is an area where fundamental developments

of supergravity theories is a subject of present researches.

Chirality of the SU(3)c × SU(2)L × U(1)Y fermion representation in the Standard Model,

associated with parity violation by weak interactions, appears to be a fundamental property.

This has given a particular importance to N = 1 supergravity coupled to a Yang-Mills multiplet

gauging any symmetry algebra, and allowing any anomaly-free representation of this gauged

symmetry. The most general form of this theory has been derived in 1982 [37, 17].

4. N = 1 supergravity–matter couplings

The most general interaction of chiral, gauge and supergravity N = 1 multiplets is defined by

two ingredients. Firstly, the choice of a gauge group G and of the representation R of chiral

supermultiplets. The only constraint would be the absence of chiral anomaly, even if supergravity

is not a quantum field theory. The representation can be chiral and one can then couple the

Standard Model to N = 1 supergravity, adding only a sector in which local supersymmetry

is spontaneously broken (the super-higgs mechanism [40, 41, 42]20) which should also mediate

breaking contributions into the supersymmetric Standard Model (generation of soft breaking

terms). Secondly, the choice of three gauge-invariant (or gauge-covariant) functions of the scalar

fields in chiral supermultiplets. The first function, the real Kähler potential K, defines the kinetic

lagrangian of chiral superfields. The holomorphic superpotential W defines the interactions

of chiral supermultiplets and the holomorphic F defines the gauge kinetic (super-Yang-Mills)

lagrangian.

These ingredients are known from Poincaré global supersymmetry: the most general gauged

nonlinear supersymmetric sigma model is defined in terms of identical ingredients. There is

however a subtlety related to the AdS case. In global supersymmetry in an AdS space-time

with cosmological constant −3M2, the theory depends on the combination MK+W +W [43].

Then, since supergravity naturally describes AdS and the limiting Minkowski case, a similar

phenomenon would not be a surprise: one actually finds that the supergravity theory depends

on21

G = K + ln(WW ), (4.1)

20 I use the lower case “higgs” for Higgs-Brout-Englert . . .
21 This combination always used in recent literature corresponds to −G in ref. [37].
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and of its derivatives (if the superpotential does not vanish). This fact can be loosely traced

to the fact that Kähler (or R) and dilatation symmetries in the superconformal algebra are not

compatible (do not commute) with the AdS superalgebra.

The best procedure to derive the lagrangian is probably22 to start from the observation

that all supermultiplets of N = 1 Poincaré or AdS supersymmetry are also representations

of the N = 1 superconformal symmetry. The method is described in full detail in the book

recently published by Dan Freedman and Toine Van Proeyen [38]. We only give here a symbolic

explanation and focus on the gravitino and scalar sectors. Very schematically, it is as follows:

• Consider all supermultiplets denoted as Φi (chiral, helicities ±1/2, 0, 0) and Wα (gauge,

helicities ±1,±1/2) as representations of the superconforma algebra. A Weyl weight and a

U(1)R charge are then associated with each supermultiplet. Supergravity fields eaµ and ψαµ

are part of superconformal gauge fields.

• Add a compensating supermultiplet which is used to gauge fix the unwanted superconformal

symmetries. Here: we symbolically describe old minimal supergravity with a chiral

compensating multiplet S0. It provides the most general coupling (up to two derivatives

and up to some generalizations of minor importance) to supergravity [25].

• Use tensor calculus methods, as explained in [38, 39], to generate the locally superconformal

lagrangian.

• Gauge fix superconformal symmetries absent in the Poincaré or AdS symmetries and

eliminate all auxiliary fields. In this step, a gravity frame (Einstein, Jordan, string) is

chosen, see below.

• Identify the ground state(s) of the theory from the analysis of the scalar potential. It

defines the background geometry (the cosmological constant) and decides if supersymmetry

or symmetries in general are spontaneously broken.

Symbolically, the superconformal lagrangian is represented by

L = −3

2

[
S0S0 exp

{
−1

3
K(Φi,Φie

A)
}]

D
+
[
S3
0W (Φi) +

1

4
F(Φi)WW

]
F

(4.2)

where [. . .]D and [. . .]F denote the real and chiral invariant densities expressed in terms of the

supermultiplet components and the superconformal gauge fields [38, 39]. The Weyl weights

(scale dimensions) of the supermultiplets are w = 1, 0, 3/2 for S0, Φi, W respectively and the D

and F densities apply to supermultiplets with weights 2 and 3: this (with reality and chirality)

dictates the occurences of S0.

22 I.e. in my opinion.
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4.1. The scalar sector

The bosonic part of the lagrangian density (4.2) also depends on the bosonic gauge fields of the

superconformal algebra, some of them being algebraic (like the spin connection) or gauge-fixed

(the dilatation gauge field for instance). The Poincaré theory retains the vierbein eaµ or metric

tensor gµν , the gravitino ψµ and 6B auxiliary fields: the gauge field Aµ of the (gauge-fixed)

U(1)R superconformal symmetry and the complex scalar f0 in the chiral compensator S0.

After the elimination of all auxiliary fields, a convenient expression for the scalar part of this

theory is

e−1Lscalar. =
1

2
(z0z0H)R− 3

4
(z0z0H) [∂µlog(z0z0H)]2 + (z0z0H)Kij(∂µzj)(∂µzi)− V0 (4.3)

with H = exp[−K/3] a function of the scalar fields zi, zi and with

Kij =
∂2

∂zj∂zi
K. (4.4)

We have kept the complex compensating scalar z0 with scale dimension w = 1: its value fixes

the dilatation and U(1)R gauges. As we can see in the first term, z0z0H defines the gravity

frame, and the Einstein frame is the gauge condition

1

κ2
= z0z0H = z0z0 exp[−K/3]. (4.5)

In the Einstein frame,

e−1Lscalar. =
1

2κ2
R+

1

κ2
Kij(∂µzj)(∂µzi)− V0. (4.6)

The scalar fields zi are then Kähler coordinates: their kinetic metric Kij derives from the Kähler

potential K. Notice that this is only true in the Einstein frame.

The scalar potential is generated by the elimination of auxiliary fields f i (chiral), DA (gauge)

and f0 (in compensator S0). The auxiliary fields are: 23

f i = −(z0z0H)−1 z30 (K−1)ij
[
W

j
(zi) +KjW (zi)

]
, Wi = ∂W

∂zi
,

DA = −[ReF(zi)]−1(z0z0H) zi(T
A
R )ijK

j ,

f̃ = f0 − 1
3z0Ki f

i = eK/3 z20W (zi).

(4.7)

And the scalar potential reads

V0 = (z0z0H)Ki
jf if

j +
1

2
ReFDADA − 3Hf̃∗f̃ . (4.8)

As in global supersymmetry, each auxiliary field f i of a chiral or DA of a gauge multiplet

produces a positive contribution. A nonzero value at the vacuum state of the potential would

23 TAR : generators of the representation R of chiral multiplets. Possible Fayet-Ilopoulos terms are omitted.
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spontaneously break supersymmetry. But, in contrary to the case of global supersymmetry,

the supergravity auxiliary field f0 produces, via f̃ , a negative contribution which drives the

theory into Anti-de Sitter space. It is then much easier to create a potential with a ground

state breaking supersymmetry, and even at zero cosmological constant. Notice once again that

unbroken supersymmetry is always associated with either Minkowski or AdS geometry.

The final form of the scalar potential, before fixing the gravity frame is

V0 = (z0z0H)2
{
eKKij [Wi +KiW ][W

j
+KjW ] +

1

2 ReF
∑
A

[zi(T
A
R )ijK

j ]2

−3 eKWW
}
,

(4.9)

inserting expressions (4.7) into the original form (4.8). In the Einstein frame (4.5), the prefactor

(z0z0H)2 is simply κ−4.

But we may as well choose another gravity (Jordan) frame with

e−2ϕ

κ2
= z0z0H = z0z0 exp[−K/3]. (4.10)

One should understand ϕ as one of the scalar fields in the theory. The supergravity lagrangian

reads then

L =
e−2ϕ

κ2
e
[1

2
R− 3(∂µϕ)(∂µϕ) +Kij(∂µzj)(∂µzi)

]
−e
−4ϕ

κ4
e
[
eKKij [Wi +KiW ][W

j
+KjW ]− 3eKWW

+
1

2 ReF
∑
A

[zi(T
A
R )ijK

j ]2
]

+ gauge and fermion contributions.

(4.11)

Obviously, different frames are related by rescalings of the vierbein field.

In general, one can show that if the scalar potential has a supersymmetric stationary point,

with values 〈f i〉 = 〈DA〉 = 0 at this point, it is then stable under small field fluctuations: a

supersymmetric vacuum is stable. This does not apply to non supersymmetric stationary points.

We will briefly consider some examples with spontaneously broken supersymmetry below.

4.2. The gravitino sector

In the case of pure N = 1 supergravity, we found that a deformation of the Poincaré theory leads

to a negative cosmological constant term associated with an arbitrary energy scale parameter

M . These are eqs. (3.36) and (3.35).

Let us write these gravitino terms as

e−1L3/2 =
1

κ2

[
1

2
ψµγ

µνρD̃νψρ +
1

2
m3/2 ψµγ

µνψν + 3m2
3/2

]
, (4.12)
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where m3/2 is the quantity appearing in the mass-like term and in the negative or zero

cosmological constant

Λ = −3m2
3/2. (4.13)

As explained earlier, the relative coefficient 3 is imposed by supersymmetry and ensures that

gravitino waves have “light-like” propagation in the AdS geometry. In simple Anti-de Sitter

supergravity, m3/2 is the constant M appearing in the variation δψµ = −1
2Mγµε+ . . .

The supergravity theory coupled to gauge and matter multiplets considered previously and

defined by the superconformal expression (4.2) actually contains a mass-like term for the

gravitino with a field-dependent

m3/2 = κ2|z0|3W =
1

κ
eK/2W, (4.14)

if the theory is formulated in the Einstein frame. For a supersymmetric ground state, the

expectation value of the scalar potential and the induced cosmological constants are then

〈V 〉 = − 3

κ4
eKWW Λ = −κ2〈e−1L〉 = κ2〈V 〉 = −3〈|m3/2|2〉, (4.15)

as required. A violation at the vacuum state of these relations would indicate spontaneous

supersymmetry breaking, and generate a physical mass for the gravitino.

5. A no-scale model, dilaton supergravity

Breaking spontaneously supersymmetry in supergravity is easy. A superpotential is first of all

needed. Here is an example taken in the class of “no-scale” models [44, 45]. Consider a theory

describing two chiral supermultiplets with scalar fields S and T , defined by

K = −n ln(T + T ) + K̂(S, S) Kähler potential,

W = W (S) Superpotential.
(5.16)

The scalar potential reads (using κ = 1 in Einstein frame)

V = (T + T )−n eK̂
[
K̂−1
SS
|WS + K̂SW |2 + (n− 3)WW

]
. (5.17)

The value n = 3 is particular: the scalar potential is positive or zero, a solution of

WS + K̂SW = 0, (5.18)

if it exists, is an absolute minimum and a stable ground state in Minkowski geometry.

This minimum condition fixes in general the value of 〈S〉 and cancels the auxiliary field fS :

supersymmetry is not broken by S. But the value of 〈T 〉 remains arbitrary and the auxiliary

field

fT = (T + T )−1/2eK̂/2W (5.19)

4th Symposium on Prospects in the Physics of Discrete Symmetries (DISCRETE2014) IOP Publishing
Journal of Physics: Conference Series 631 (2015) 012009 doi:10.1088/1742-6596/631/1/012009

23



does not vanish if the superpotential is not zero at the ground state. In this case, supersymmetry

is broken by T and, since the value of 〈T 〉 is not fixed by the potential, the scale of supersymmetry

breaking is arbitrary and unrelated to any fixed scale of the theory. The gravitino mass

m3/2 = 〈eK/2W 〉 = 〈(T + T )−3/2eK̂/2W 〉 (5.20)

is the order parameter of supersymmetry breaking. Since supersymmetry is broken with zero

cosmological constant, m3/2 is the true gravitino mass.

The Kähler potential −3 ln(T + T ) commonly appears in compactifications from ten

dimensions, T being the volume modulus of the compact space. The S field in a superstring

context could arise from the dilaton scalar (the string coupling field) partner of the metric gµν

and of an antisymmetric tensor Bµν . In this case however, the superpotential does not depend on

S and eq. (5.18) cannot be solved. The consequence is in general the absence of a ground state.

Non-perturbative corrections are necessary to create the dependence on S and a minkowskian

ground state.

It is maybe of interest to examine “dilaton supergravity” more precisely. In four space-time

dimensions, an antisymmetric tensor Bµν with gauge invariance and (free) wave equation

δBµν = ∂µΛν − ∂νΛµ, ∂µHµνρ = 0, Hµνρ = 3 ∂[µBνρ] (5.21)

describes 3B off-shell (since gauge invariance removes three fields) and 1B on-shell states. The

single massless on-shell state has of course helicity zero. Combined with a real scalar C and a

Majorana spinor χα, the three fields form an off-shell representation of supersymmetry without

any auxiliary field. Actually, at the level of global N = 1 supersymmetry, the variations

δC = iεχ− iεχ, δBµν = i
2
√
2

(
ε[σµ, σν ]χ− ε[σµ, σν ]χ

)
,

δχα = −i(σµε)α
(

1√
2
εµνρσH

νρσ − i∂µC
) (5.22)

close the supersymmetry algebra without using field equations. This linear multiplet can

be coupled to supergravity and is also a representation of the superconformal algebra with

Weyl weight w = 2 for C. The variations (5.22) indicate that a constant C does not break

supersymmetry and that the spinor χ cannot be a Goldstino spinor. Hence a linear multiplet is

not a source for supersymmetry breaking and it does not contribute to the scalar potential.

A duality transformation can always, in principle, transform the antisymmetric tensor with

gauge symmetry into a real scalar τ with shift symmetry. Schematically,

Hµνρ = 3 ∂[µBνρ] ←→ εµνρσ∂
στ (5.23)

with symmetry δτ = constant. In other words, the dual chiral theory has a Kähler potential

K(S + S), τ = ImS.
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On one side of the duality, the linear L does not have an auxiliary field and cannot break

supersymmetry. On the other side, the chiral dual S has an auxiliary fS in principle able to

induce supersymmetry breaking. In global supersymmetry, what happens is that either fS is

identically zero or, if other chiral multiplets are present, fS is a linear combination of the other

auxiliary fields f i. In any case, fS does not provide an independent source of supersymmetry

breaking. Hence, models with supersymmetry breaking induced exclusively by the chiral S dual

to the string dilaton and the antisymmetric tensor Bµν do not exist.

In supergravity with a linear multiplet, the situation is different. If the superpotential

is constant (this is meaningless in global supersymmetry), there is always a scalar potential

generated by the supergravity auxiliary field f0 (which however cannot break supersymmetry).

In the dual version with the chiral S, the auxiliary field fS is proportional to f0, but fS is

now in principle able to break supersymmetry, since fS ∼ KTW is not zero in general. What

happens now if that the potential is in general unstable if W 6= 0: this is the runaway behaviour

naturally expected from the dilaton, which in turn raises the problem of its stabilisation. Notice

that supergravity with the Kähler potential −3 ln(T + T ), which has identically zero potential

and broken supersymmetry if W 6= 0, cannot be transformed into a linear superfield: the

supersymmetric duality transformation between S and L does not exist for precisely this Kähler

potential. If other chiral multiplets are present, fS is a linear combination of the chiral auxiliary

fields f i and of the supergravity f0. Again, fS is not an independent source of breaking. But

stability remains a non simple issue.

The simplest Calabi-Yau compactifications of heterotic superstrings with N = 1 four-

dimensional supersymmetry provide a concrete realization of the mechanisms described in this

section. Retaining the overall (complex) volume modulus T in a chiral multiplet and the dilaton–

antisymmetric tensor supermultiplet, we have two dual descriptions,

L (linear) and T ⇐⇒ S (chiral) and T.

In the chiral version, at lowest order of string perturbation theory, the Kähler potential defining

the effective supergravity is of no-scale type [46, 47, 48, 49],

K = − ln(S + S)− 3 ln(T + T ). (5.24)

There are two primary sources for a superpotential [46, 48]. Firstly, at the perturbative level,

ten-dimensional sixteen-supercharge supergravity has a gauge-invariant three-form HMNP . It

generates Hµνρ = 3 ∂[µBνρ] in the dilaton sector and an order parameter Hijk, leading to a

constant superpotential W = 〈H〉, since the Calabi-Yau space has a holomorphic three-form.

At this stage, the minimum equation (5.18) cannot be solved and the potentiel

V = (T + T )−3(S + S)WW (5.25)
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is unstable (“run-away behaviour”), as expected from dilaton supergravity. The second source

of superpotential is nonperturbative gaugino condensation in a hidden gauge sector, and it is

described to a good approximation by the addition to the constant 〈H〉 of a term of the form

aebS :

W (S) = 〈H〉+ aebS . (5.26)

The equation fS = 0 can now be solved and supersymmetry breaks in the T sector, with

Minkowski geometry and order parameter (4.14) controlled by the arbitrary value of T + T .

It should however be observed that heterotic string perturbation theory is organized in powers

of the linear supermultiplet L [50], with its scalar C directly related to the string dilaton, and not

as an expansion in S. Since the superpotential cannot depend on L, the description of gaugino

condensation uses then a different effective lagrangian, with almost identical phenomenology as

long as supersymmetry breaking and scales are concerned [51]. In any case, the S ∼ L duality

is a useful tool in the effective description of the universal string dilaton sector.

6. Final words

After (almost) forty years, supergravity has certainly found its way into the toolbox of

theoretical physicists. Its development is far from complete and gauge-gravity dualities, in

particular, have recently suggested new directions and research projects. In the context

of superstring compactifications, finding methods to classify supergravity gaugings, and

the corresponding symmetry and supersymmetry breaking patterns would allow a better

control of flux compactifications, with supergravity providing in this case the “bottom-up”

approach to select candidate fluxes from specific low-energy properties. In the unification

programme, supergravity cannot claim to be the fundamental theory. But it is certainly on

the “supersymmetric path” to quantum gravity. And there are open questions concerning the

quantum status of the maximal N = 8 supergravity. Supersymmetric theories have exceptional

ultraviolet properties. The maximal (N = 4) super-Yang-Mills theory is known to be finite.

Brilliant works have shown that divergences plausible in N = 8 arise in perturbation theory

at higher orders than expected. This suggests that the N = 8 theory could maybe display

ingredients of a consistent quantum gravity, in a much simpler theoretical framework than

superstrings.
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