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Abstract K�4 decays have several features of interest: they
allow an accurate measurement of ππ -scattering lengths;
they provide the best source for the determination of some
low-energy constants of χPT; one form factor is directly
related to the chiral anomaly, which can be measured here.
We present a dispersive treatment of K�4 decays that pro-
vides a resummation of ππ - and Kπ -rescattering effects.
The free parameters of the dispersion relation are fitted to the
data of the high-statistics experiments E865 and NA48/2. The
matching to χPT at NLO and NNLO enables us to determine
the LECs Lr

1, Lr
2 and Lr

3. With recently published data from
NA48/2, the LEC Lr

9 can be determined as well. In contrast
to a pure chiral treatment, the dispersion relation describes
the observed curvature of one of the form factors, which we
understand as a rescattering effect beyond NNLO.
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1 Introduction

K�4 denotes the semileptonic decay of a kaon into two pions
and a lepton pair. Its amplitude has a similar structure to that
of Kπ scattering, with the difference that in K�4 decays one
of the axial currents couples to an external field, the W boson,
which decays into the lepton pair – the q2 of this axial current
is therefore variable rather than being stuck at M2

K as in Kπ

scattering. This difference has the important consequence
that in K�4 decays the allowed kinematical region reaches
down to lower energies, E ≤ MK , whereas in Kπ scattering
E ≥ MK +Mπ . From the point of view of chiral perturbation
theory (χPT) [1–3], the low-energy effective theory of QCD,
K�4 decays offer similar information as Kπ scattering, but
in a kinematical region where the chiral expansion is more
reliable.

Due to its two-pion final state, K�4 is also one of the clean-
est sources of information on ππ interaction [4–6].

The latest high-statistics K�4 experiments E865 at BNL
[7,8] and NA48/2 at CERN [6,9] have achieved an impres-
sive accuracy. The statistical errors of the S-wave of one
form factor reach in both experiments the sub-percent
level. Matching this precision requires a theoretical treat-
ment beyond one-loop order in the chiral expansion. A
first treatment beyond one loop, based on dispersion rela-
tions, was already done 20 years ago [10]. The full two-
loop calculation became available in 2000 [11]. How-
ever, as we will show below, even at two loops χPT is
not able to predict the curvature of one of the form fac-
tors.

Here, we present a new dispersive treatment of K�4

decays. The form of the dispersion relation we solve
is not exact, but relies on an assumption (absence of
D- and higher wave contributions to discontinuities) that
is violated only starting at O(p8) in the chiral expan-
sion. It resums two-particle rescattering effects, which we
expect to be the most important contribution beyond two

loops. Indeed, we observe that the dispersive descrip-
tion is able to reproduce the curvature of the form fac-
tor.

The dispersion relation is parameterised by subtraction
constants, which are not constrained by unitarity. These
have to be determined by theoretical input or by a fit to
data. It turns out that the available data does not con-
strain all the subtraction constants to a sufficient preci-
sion. Therefore, we use the soft-pion theorem, a low-
energy theorem for K�4 that receives only SU (2) chi-
ral corrections, as well as some chiral input to constrain
the parameters that are not well determined from data
alone.

The present treatment of K�4 decays represents an exten-
sion and a major improvement of our previous dispersive
framework [12–14]. The modifications and improvements
concern the following aspects:

• Instead of a single linear combination of form factors,
now we describe the two form factors F and G simul-
taneously. This allows us to include more experimental
data in the fits.

• The new framework is valid also for non-vanishing invari-
ant energies of the lepton pair. In the previous treatment,
we neglected the dependence on this kinematic variable.
This approximation is no longer used and the observed
dependence on the lepton invariant energy can be taken
into account.

• We apply corrections for isospin-breaking effects in the
fitted data that have not been taken into account in the
experimental analysis.

• We perform the matching to χPT directly on the level of
the subtraction constants, which avoids the mixing with
the treatment of rescattering effects.

• Besides a matching to one-loop χPT, we also study the
matching at two-loop level.

The first two points required a substantial modification
and extension of the dispersive framework from the very
start, but rendered it much more powerful. The old treat-
ment can be understood as a limiting case of the new
framework.

The outline is as follows: in Sect. 2, we derive the dis-
persion relation for the K�4 form factors, which has the
form of a set of coupled integral equations. In Sect. 3, we
describe the numerical procedure that is used to solve this
system. Section 4 is devoted to the determination of the
free parameters of the dispersion relation and the deriva-
tion of matching equations to χPT. In Sect. 5, we present
the results of the fit to data and the values of the low-energy
constants Lr

1, Lr
2 and Lr

3 obtained in the matching to χPT.
Section 6 concludes the main text. The appendices contain
several details on the kinematics, the derivation of the disper-
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sion relation and explicit expressions for the matching equa-
tions. Further details that are omitted here can be found in
[15].

2 Dispersion relation for K�4

2.1 Decay amplitude and form factors

K�4 are semileptonic decays of a kaon into two pions and a
lepton-neutrino pair:

K+(k) → π+(p1)π
−(p2)�

+(p�)ν�(pν), (1)

where � ∈ {e, μ} is either an electron or a muon. There exist
other decay modes involving neutral mesons. Their ampli-
tudes are related to the above decay by isospin symmetry –
in our dispersive treatment of K�4, we will work in the isospin
limit and could therefore describe the neutral mode as well. In
the present analysis, however, we only consider the charged
mode because it is the one which has been measured more
accurately.

In the standard model, semileptonic decays are mediated
by W bosons. After integrating out the W boson from the
standard model Lagrangian, we end up with a Fermi type
effective current–current interaction. The matrix element of
K�4 then splits up into a leptonic times a hadronic part. The
leptonic matrix element can be treated in a standard way. The
hadronic matrix element exhibits the usual V − A structure
of weak interaction:

out〈π+(p1)π
−(p2)�

+(p�)ν�(pν)
∣
∣K+(k)〉in

= i(2π)4δ(4)(k − p1 − p2 − p� − pν)T , (2)

T = GF√
2
V ∗
us ū(pν)γ

μ(1 − γ5)v(p�)

× 〈π+(p1)π
−(p2)|Vμ(0) − Aμ(0)

∣
∣K+(k)〉, (3)

where Vμ = s̄γμu and Aμ = s̄γμγ5u. Note that although we
drop the corresponding labels, the meson states are still in-
and out-states with respect to the strong interaction.

The Lorentz structure of the currents allows us to write
the two hadronic matrix elements as

V+−
μ := 〈π+(p1)π

−(p2)|Vμ(0)|K+(k)〉
= − H

M3
K

εμνρσ L
ν PρQσ , (4)

A+−
μ := 〈

π+(p1)π
−(p2)|Aμ(0)|K+(k)

〉

= −i
1

MK
(PμF + QμG + LμR), (5)

where P = p1 + p2, Q = p1 − p2, L = k − p1 − p2.
The form factors F , G, R and H are dimensionless scalar

functions of the Mandelstam variables:

s = (p1 + p2)
2 = (k − L)2,

t = (k − p1)
2 = (p2 + L)2,

u = (k − p2)
2 = (p1 + L)2. (6)

We further define the invariant squared energy of the lepton
pair s� = L2. For the hadronic matrix element, we regard s�
as a fixed external quantity.

2.2 Analytic structure

Let us first study the general properties of matrix elements
of the hadronic axial-vector current. It is instructive to draw
a Mandelstam diagram for the process (see Figs. 1, 2): since
s + t + u = M2

K + 2M2
π + s� =: �0 is constant (for a

fixed value of s�), the Mandelstam variables can be rep-
resented in one plane, using the fact that the sum of dis-
tances of a point to the sides of an equilateral triangle is
constant.

The same amplitude describes four processes:

• the decay K+(k) → π+(p1)π
−(p2)A†

μ(L),
• the s-channel scattering K+(k)Aμ(−L)→π+(p1)π

−(p2),
• the t-channel scattering K+(k)π−(−p1)→π−(p2)A†

μ(L),
• the u-channel scattering K+(k)π+(−p2)→π+(p1)A†

μ(L).

The physical region of the decay starts at s = 4M2
π and

ends at s = (

MK − √
s�
)2. The s-channel scattering starts

at s = (

MK + √
s�
)2. If s� = 0 is assumed, the two regions

touch at s = M2
K (Fig. 1).

The sub-threshold region s < s0 := 4M2
π , t < t0 :=

(MK +Mπ )2, u < u0 := (MK +Mπ )2 forms a triangle in the
Mandelstam plane where the amplitude is real. Branch cuts
of the amplitude start at each threshold s0, t0 and u0. There,
physical intermediate states are possible (ππ intermediate
states in the s-channel, Kπ states in the t- and u-channel).

2.3 Isospin decomposition

Let us study the isospin properties of the K�4 matrix element
of the hadronic axial-vector current in the different channels:
we decompose the physical amplitude into amplitudes with
definite isospin.

2.3.1 s-channel

We consider the matrix element

A+−
μ = 〈π+(p1)π

−(p2)|Aμ(0)|K+(k)〉. (7)
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s = 0

s = 4M2
π

s = M2
K

t =
0t =

(M
K −

M
π ) 2

t =
(M

K
+

M
π ) 2

u
=
0

u
=
(M

K
−M

π
)2

u
=
(M

K
+

M
π
)2

decay region

s-channel

t-channel u-channelreal amplitude

Fig. 1 Mandelstam diagram for K�4 for the case s� = 0

As the weak current satisfies �I = 1
2 , the initial and final

states can be decomposed as

Aμ(0)|K+(k)〉 = 1√
2
|1, 0〉 + 1√

2
|0, 0〉,

〈π+(p1)π
−(p2)| = 1√

6
〈2, 0| + 1√

2
〈1, 0| + 1√

3
〈0, 0|,

(8)

〈π−(p1)π
+(p2)| = 1√

6
〈2, 0| − 1√

2
〈1, 0| + 1√

3
〈0, 0|.

Hence, we can write the following decomposition of the
matrix element into pure isospin amplitudes:

A+−
μ = 1

2
A(1)

μ + 1√
6
A(0)

μ ,

A−+
μ = −1

2
A(1)

μ + 1√
6
A(0)

μ . (9)

Using A+−
μ (k,−L → p1, p2) = A−+

μ (k,−L → p2, p1),
we find the following relations:

A0
μ(k,−L → p1, p2)

=
√

3

2
(A+−

μ (k,−L→p1, p2)+A+−
μ (k,−L → p2, p1)),

A1
μ(k,−L → p1, p2)

= (A+−
μ (k,−L → p1, p2) − A+−

μ (k,−L → p2, p1)).

(10)

The pure isospin form factors are related to the physical ones
by

F (0)(s, t, u) =
√

3

2
(F(s, t, u) + F(s, u, t)),

G(0)(s, t, u) =
√

3

2
(G(s, t, u) − G(s, u, t)),

R(0)(s, t, u) =
√

3

2
(R(s, t, u) + R(s, u, t)),
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M
π

MMM
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K
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uu
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π
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Fig. 2 Mandelstam diagram for K�4 for the case s� > 0

F (1)(s, t, u) = F(s, t, u) − F(s, u, t),

G(1)(s, t, u) = G(s, t, u) + G(s, u, t),

R(1)(s, t, u) = R(s, t, u) − R(s, u, t). (11)

We further note that

A(0)
μ (k,−L → p1, p2) = A(0)

μ (k,−L → p2, p1),

A(1)
μ (k,−L → p1, p2) = −A(1)

μ (k,−L → p2, p1), (12)

and that the form factors of the pure isospin amplitudes satisfy

F (0)(s, t, u) = F (0)(s, u, t),
G(0)(s, t, u) = −G(0)(s, u, t),
R(0)(s, t, u) = R(0)(s, u, t),

F (1)(s, t, u) = −F (1)(s, u, t),
G(1)(s, t, u) = G(1)(s, u, t),
R(1)(s, t, u) = −R(1)(s, u, t).

(13)

2.3.2 t- and u-channel

In the crossed t-channel, we are concerned with the matrix
element

A+−
μ = 〈π−(p2)|Aμ(0)|K+(k)π−(−p1)〉. (14)

In the u-channel, we analogously look at

A+−
μ = 〈π+(p1)|Aμ(0)|K+(k)π+(−p2)〉. (15)

Note that, due to crossing, these matrix elements are
described by the same function – or its analytic continua-
tion – as the corresponding s-channel matrix element.

The t-channel initial and final states have the isospin
decompositions

|K+(k)π−(−p1)〉 =
√

2

3

∣
∣
∣
∣

1

2
,−1

2

〉

+
√

1

3

∣
∣
∣
∣

3

2
,−1

2

〉

,

〈π−(p2)|Aμ(0) =
√

2

3

〈
1

2
,−1

2

∣
∣
∣
∣
+
√

1

3

〈
3

2
,−1

2

∣
∣
∣
∣
, (16)
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whereas in the u-channel, we are concerned with a pure
isospin 3/2 scattering:

|K+(k)π+(−p2)〉 =
∣
∣
∣
∣

3

2
,

3

2

〉

,

〈π+(p1)|Aμ(0) =
〈

3

2
,

3

2

∣
∣
∣
∣
. (17)

We find the following isospin relation:

A(3/2)
μ (k,−p2 → L , p1) = A+−

μ (k,−L → p1, p2)

= 2

3
A(1/2)

μ (k,−p1 → L , p2)

+ 1

3
A(3/2)

μ (k,−p1 → L , p2). (18)

Note that the third component of the isospin does not alter
the amplitude: just insert an isospin rotation matrix together
with its inverse between in- and out-state to rotate the third
component.

The amplitude that describes pure isospin 1/2 scattering
in the t-channel is then

A(1/2)
μ (k,−p1 → L , p2) = 3

2
A(3/2)

μ (k,−p2 → L , p1)

− 1

2
A(3/2)

μ (k,−p1 → L , p2).

(19)

Defining analogous form factors for the isospin 1/2 ampli-
tude, we find

F (1/2)(s, t, u) = 3

2
F(s, t, u) − 1

2
F(s, u, t),

G(1/2)(s, t, u) = 3

2
G(s, t, u) + 1

2
G(s, u, t),

R(1/2)(s, t, u) = 3

2
R(s, t, u) − 1

2
R(s, u, t). (20)

In the case s� = 0, it may be convenient to look at a certain
linear combination of the form factors F and G, as we did in
[12–14]:

F1 := XF + (u − t)
PL

2X
G, (21)

where X := 1
2λ1/2(M2

K , s, s�), PL := 1
2 (M2

K − s − s�)
and λ(a, b, c) := a2 + b2 + c2 − 2(ab + bc + ca) is the
Källén triangle function. We will often use the abbrevia-
tions λK�(s) := λ(M2

K , s, s�), λKπ (t) := λ(M2
K , M2

π , t)
and λ�π (t) := λ(s�, M2

π , t).
Here, too, we can define the corresponding isospin 1/2

form factor:

F (1/2)
1 (s, t, u) := XF (1/2)(s, t, u) + (u − t)

× PL

2X
G(1/2)(s, t, u)

= 3

2

(

XF(s, t, u) + (u − t)
PL

2X
G(s, t, u)

)

− 1

2

(

XF(s, u, t)+(t − u)
PL

2X
G(s, u, t)

)

= 3

2
F1(s, t, u) − 1

2
F1(s, u, t). (22)

2.4 Unitarity and partial-wave expansion

In this section, we will investigate the unitarity relations in
the different channels and work out expansions of the form
factors into partial waves with ‘nice’ properties with respect
to unitarity and analyticity: the partial waves shall satisfy
Watson’s final-state theorem. As we will need analytic con-
tinuations of the partial waves, we must also be careful not
to introduce kinematic singularities.

The derivation of the partial-wave expansion has been
done for the s-channel in [16,17]. We now apply the same
method to all channels.

2.4.1 Helicity amplitudes

The quantities that have a simple expansion into partial waves
are not the form factors but the helicity amplitudes of the 2 →
2 scattering process [18]. However, helicity partial waves
contain kinematic singularities. In order to determine them,
we use the prescriptions of [19].

We obtain the helicity amplitudes by contracting the axial-
vector-current matrix element with the polarisation vectors
of the off-shell W boson. In the W rest frame, the polarisation
vectors are given by

ε
μ
t = (1, 0, 0, 0),

ε
μ
± = 1√

2
(0, 0,±1, i),

ε
μ
0 = (0, 1, 0, 0). (23)

They are eigenvectors of the spin matrices S2 and S1, defined
by

S1 =

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

⎞

⎟
⎟
⎠

, S2 =

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 i
0 0 0 0
0 −i 0 0

⎞

⎟
⎟
⎠

,

S3 =

⎛

⎜
⎜
⎝

0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

⎞

⎟
⎟
⎠

,

S2 = S2
1 + S2

2 + S2
3 =

⎛

⎜
⎜
⎝

0 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

⎞

⎟
⎟
⎠

.

(24)
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The eigenvalues s(s+1) and s1 of S2 and S1 are listed below:

ε
μ
t ε

μ
± ε

μ
0

s 0 1 1
s1 0 ±1 0

If we boost the polarisation vectors into the frame where
the W momentum is given by L = (L0, L1, 0, 0), L2 = s�,
we obtain

ε
μ
t = 1√

s�
(L0, L1, 0, 0),

ε
μ
± = 1√

2
(0, 0,±1, i),

ε
μ
0 = 1√

s�
(L1, L0, 0, 0). (25)

The contractions of these basis vectors with Aμ give the
different helicity amplitudes:

Ai := Aμε
μ
i . (26)

We extract the kinematic singularities by applying the
recipe of [19, chapter 7.3.5], to these helicity amplitudes.

2.4.2 Partial-wave unitarity in the s-channel

Helicity partial waves The unitarity relation for the axial-
vector current matrix element reads

Im(iA(I )
i (k,−L → p1, p2))

= 1

4

∫

d̃q1d̃q2(2π)4δ(4)(p1 + p2 − q1 − q2)

× T (I )∗(q1, q2 → p1, p2)iA(I )
i (k,−L → q1, q2), (27)

where d̃q := d3q
(2π)32q0 is the Lorentz-invariant measure and

where a symmetry factor 1/2 for the pions is included. T (I )

denotes the elastic isospin I ππ -scattering amplitude. Note
that this relation is valid in the physical region and that kine-
matic singularities have to be removed before an analytic
continuation.

We perform the integrals:

Im(iA(I )
i (k,−L → p1, p2))

= 1

16

1

(2π)2

1

2
σπ(s)

∫

d�′′ T (I )∗(s, cos θ ′)

× iA(I )
i (s, cos θ ′′, φ′′), (28)

where σπ(s) = √

1 − 4M2
π/s and of course cos θ ′ has to be

understood as a function of cos θ ′′ and φ′′ through the relation

cos θ ′ = sin θ sin θ ′′ cos φ′′ + cos θ cos θ ′′. (29)

If we expand T andAi into appropriate partial waves, we can
perform the remaining angular integrals and find the unitarity
relations for the K�4 partial waves.

We expand the ππ -scattering matrix element in the usual
way:

T (I )(s, cos θ ′) =
∞
∑

l=0

Pl(cos θ ′) t Il (s) (30)

with

t Il (s) = |t Il (s)|eiδ Il (s). (31)

The K�4 helicity amplitudes are expanded into appropriate
Wigner d-functions, which satisfy d(l)

00 (θ) = Pl(cos θ) and

d(l)
10 (θ) = −[l(l + 1)]−1/2 sin θ P ′

l (cos θ). We have to take
care of the kinematic singularities of the helicity amplitudes
[18,19]:

iA(I )
t (s, cos θ) =

∞
∑

l=0

Pl(cos θ)

(

λ
1/2
K� (s)σπ (s)

M2
K

)l

a(I )
t,l (s),

iA(I )
0 (s, cos θ) = iÃ(I )

0

λ
1/2
K� (s)

M2
K

= λ
1/2
K� (s)

M2
K

×
∞
∑

l=0

Pl(cos θ)

(

λ
1/2
K� (s)σπ (s)

M2
K

)l

a(I )
0,l (s),

iA(I )
2 (s, cos θ, φ) = iÃ(I )

2 sin θ

= sin θ

∞
∑

l=1

P ′
l (cos θ)

(

λ
1/2
K� (s)σπ (s)

M2
K

)l−1

cos φ a(I )
2,l (s),

(32)

where A(I )
2 := A(I )

+ − A(I )
− . The square roots of the Källén

function cancel exactly the square root branch cuts in the
Legendre polynomials between (MK − √

s�)2 and (MK +√
s�)2. The factor M2

K in the denominators appears only for

dimensional reasons. All the defined partial waves a(I )
i,l are

free of kinematic singularities and can be used for an analytic
continuation from the decay region through the unphysical
to the scattering region.

If we insert the partial-wave expansions into the unitarity
relation, the remaining angular integrals can be performed
and the unitarity relation for the K�4 partial waves emerges
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(i = t, 0, 2):

Im(a(I )
i,l (s)) = 1

2l + 1

1

32π
σπ(s) t Il

∗
(s) a(I )

i,l (s). (33)

In particular, we find that the phases of the K�4 s-channel
partial waves are given by the elastic ππ -scattering phases
(this is Watson’s theorem) for all s between 4M2

π and some
inelastic threshold:

a(I )
i,l (s) = |a(I )

i,l (s)|eiδ Il (s). (34)

Partial-wave expansion of the form factors in the s-channel
In order to find the partial-wave expansions of the form fac-

tors, we write explicitly the helicity amplitudes (generalised
to a generic φ):

iA(I )
t = iA(I )

μ ε
μ
t = iA(I )

μ

1√
s�
Lμ

= 1

MK
√
s�

(
1

2
(M2

K − s − s�) F (I )

+1

2
σπ(s)λ1/2

K� (s) cos θ G(I ) + s� R(I )
)

,

iA(I )
0 = iA(I )

μ ε
μ
0

= −1

MK
√
s�

(
1

2
λ

1/2
K� (s) F (I )

+1

2
(M2

K − s − s�)σπ (s) cos θ G(I )
)

,

iA(I )
2 = iA(I )

μ ε
μ
+ − iA(I )

μ ε
μ
−

= −√
2

MK

(√
sσπ(s) sin θ cos φ G(I )). (35)

Since the contribution of the form factor R to the decay
rate is suppressed by m2

� , it is invisible in the electron mode
and we do not have any data on it. We therefore look only for
linear combinations of the form factors F and G that possess
a simple partial-wave expansion. We find [16]

F (I ) + σπ(s)PL(s)

X (s)
cos θ G(I )

= F (I ) + (M2
K − s − s�)(u − t)

λK�(s)
G(I )

= −2
√
s�

MK

∞
∑

l=0

Pl(cos θ)

(

λ
1/2
K� (s)σπ (s)

M2
K

)l

a(I )
0,l (s),

G(I ) = − MK√
2sσπ(s)

∞
∑

l=1

P ′
l (cos θ)

×
(

λ
1/2
K� (s)σπ (s)

M2
K

)l−1

a(I )
2,l (s). (36)

We write the partial-wave expansions of F and G in the
form

F (I ) =
∞
∑

l=0

Pl(cos θ)

(

λ
1/2
K� (s)σπ (s)

M2
K

)l

f (I )
l (s)

− σπ PL

X
cos θ G(I ),

G(I ) =
∞
∑

l=1

P ′
l (cos θ)

(

λ
1/2
K� (s)σπ (s)

M2
K

)l−1

g(I )
l (s), (37)

where the partial waves f (I )
l and g(I )

l satisfy Watson’s theo-
rem in the region s > 4M2

π :

f (I )
l (s) = | f (I )

l (s)|eiδ Il (s), g(I )
l (s) = |g(I )

l (s)|eiδ Il (s). (38)

2.4.3 Partial-wave unitarity in the t-channel

Helicity partial waves The discussion in the crossed chan-
nels is a bit simpler because we are interested in partial-
wave expansions only in the region t > (MK + Mπ )2 or
u > (MK +Mπ )2, i.e. above all initial- and final-state thresh-
olds and pseudo-thresholds. Therefore, we do not have to
worry about kinematic singularities, since we will not per-
form analytic continuations into the critical regions.

In the crossed channels, we consider Kπ intermediate
states in the unitarity relation:

Im(iA(1/2)
i (k,−p1 → L , p2))

= 1

2

∫

˜dqK ˜dqπ (2π)4δ(4)(k − p1 − qK − qπ )

× T (1/2)∗(qK , qπ →k,−p1)iA(1/2)
i (qK , qπ → L , p2),

(39)

where T (1/2) is the isospin 1/2 elastic Kπ -scattering ampli-
tude. By performing the integrals we obtain

Im(iA(1/2)
i (k,−p1 → L , p2))

= 1

8

1

(2π)2

λ
1/2
Kπ (t)

2t

∫

d�′′
t T (1/2)∗(t, cos θ ′

t )

× iA(1/2)
i (t, cos θ ′′

t , φ′′
t ). (40)

The Kπ scattering matrix element is expanded in the usual
way:

T (1/2)(t, cos θt ) =
∞
∑

l=0

Pl(cos θt )t
1/2
l (t) (41)

with

t1/2
l (t) = |t1/2

l (t)|eiδ1/2
l (t). (42)
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We expand the K�4 helicity amplitudes as follows:

iA(1/2)
t (t, cos θt )

=
∞
∑

l=0

Pl(cos θt )

(

λ
1/2
Kπ (t)λ1/2

�π (t)

M4
K

)l

a(1/2)
t,l (t),

iA(1/2)
0 (t, cos θt )

=
∞
∑

l=0

Pl(cos θt )

(

λ
1/2
Kπ (t)λ1/2

�π (t)

M4
K

)l

a(1/2)
0,l (t),

iA(1/2)
2 (t, cos θt , φt )

= iA(1/2)
+ (t, cos θt , φt ) − iA(1/2)

− (t, cos θt , φt )

= sin θt cos φt

∞
∑

l=1

P ′
l (cos θt )

(

λ
1/2
Kπ (t)λ1/2

�π (t)

M4
K

)l−1

a(1/2)
2,l (t).

(43)

By inserting these expansions into the unitarity relation (40),
we find that all the partial waves satisfy Watson’s theorem
(i = t, 0, 2):

Im(a(1/2)
i,l (t)) = 1

2l + 1

1

16π

λ
1/2
Kπ (t)

t
t1/2
l

∗
(t)a(1/2)

i,l (t),

a(1/2)
i,l (t) = |a(1/2)

i,l (t)|eiδ1/2
l (t). (44)

Partial-wave expansion of the form factors in the t-channel
By contracting the axial-vector current matrix element in the
t-channel with the polarisation vectors, we find the helicity
amplitudes (for a generic φt ). As we are not interested in R,
we do not need the A(1/2)

t component:

iA(1/2)
0 = iA(1/2)

μ ε
μ
0 = −1

MK
√
s�

×
(

1

4t
(λ

1/2
Kπ (t)(M2

π − s� − t) cos θt

+ λ
1/2
�π (t)(M2

K − M2
π + t))F (1/2)

+ 1

4t
(λ

1/2
Kπ (t)(M2

π − s� − t) cos θt

+ λ
1/2
�π (t)(M2

K − M2
π − 3t))G(1/2)

)

,

iA(1/2)
2 = iA(1/2)

μ ε
μ
+ − iA(1/2)

μ ε
μ
−

= 1√
2MK

(

λ
1/2
Kπ (t)√

t
sin θt cos φt (F (1/2)+G(1/2))

)

.

(45)

This results in the following partial-wave expansions of the
form factors:

F (1/2) =
∞
∑

l=0

Pl(cos θt )

(

λ
1/2
Kπ (t)λ1/2

�π (t)

M4
K

)l

f (1/2)
l (t)

− 1

2t

(

M2
K − M2

π − 3t + (M2
π − s� − t)

λ
1/2
Kπ (t)

λ
1/2
�π (t)

cos θt

)

×
∞
∑

l=1

P ′
l (cos θt )

(

λ
1/2
Kπ (t)λ1/2

�π (t)

M4
K

)l−1

g(1/2)
l (t),

G(1/2) = −
∞
∑

l=0

Pl(cos θt )

(

λ
1/2
Kπ (t)λ1/2

�π (t)

M4
K

)l

f (1/2)
l (t)

+ 1

2t

(

M2
K − M2

π + t + (M2
π − s� − t)

λ
1/2
Kπ (t)

λ
1/2
�π (t)

cos θt

)

×
∞
∑

l=1

P ′
l (cos θt )

(

λ
1/2
Kπ (t)λ1/2

�π (t)

M4
K

)l−1

g(1/2)
l (t), (46)

where also the new partial waves f (1/2)
l and g(1/2)

l satisfy
Watson’s theorem in the region t > (MK + Mπ )2:

f (1/2)
l (t) = | f (1/2)

l (t)|eiδ1/2
l (t),

g(1/2)
l (t) = |g(1/2)

l (t)|eiδ1/2
l (t). (47)

2.4.4 Partial-wave unitarity in the u-channel

Helicity partial waves The u-channel (i.e. the isospin 3/2
case) can be treated in complete analogy to the t-channel.
We start with the unitarity relation:

Im(iA(3/2)
i (k,−p2 → L , p1))

= 1

2

∫

˜dqK ˜dqπ (2π)4δ(4)(k − p2 − qK−qπ )

× T (3/2)∗(qK , qπ→k,−p2) iA(3/2)
i (qK , qπ → L , p1)

= 1

8

1

(2π)2

λ
1/2
Kπ (u)

2u

×
∫

d�′′
u T (3/2)∗(u, cos θ ′

u)iA
(3/2)
i (u, cos θ ′′

u , φ′′
u ).

(48)

The Kπ -scattering matrix element is expanded as

T (3/2)(u, cos θu) =
∞
∑

l=0

Pl(cos θu)t
3/2
l (u),

t3/2
l (u) = |t3/2

l (u)|eiδ3/2
l (u) (49)
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and the K�4 helicity amplitudes according to

iA(3/2)
t (u, cos θu)

=
∞
∑

l=0

Pl(cos θu)

(

λ
1/2
Kπ (u)λ

1/2
�π (u)

M4
K

)l

a(3/2)
t,l (u),

iA(3/2)
0 (u, cos θu)

=
∞
∑

l=0

Pl(cos θu)

(

λ
1/2
Kπ (u)λ

1/2
�π (u)

M4
K

)l

a(3/2)
0,l (u),

iA(3/2)
2 (u, cos θu, φu)

= iA(3/2)
+ (u, cos θu, φu) − iA(3/2)

− (u, cos θu, φu)

= sin θu cos φu

∞
∑

l=1

P ′
l (cos θu)

×
(

λ
1/2
Kπ (u)λ

1/2
�π (u)

M4
K

)l−1

a(3/2)
2,l (u). (50)

Performing the angular integrals in the unitarity relation, we
find that the partial waves satisfy Watson’s theorem (i =
t, 0, 2):

Im(a(3/2)
i,l (u)) = 1

2l + 1

1

16π

λ
1/2
Kπ (u)

u
t3/2
l

∗
(u)a(3/2)

i,l (u),

a(3/2)
i,l (u) = |a(3/2)

i,l (u)|eiδ3/2
l (u). (51)

Partial-wave expansion of the form factors in the u-channel
The contraction of the axial-vector current matrix element

with the polarisation vectors yields

iA(3/2)
0 = iA(3/2)

μ ε
μ
0 = −1

MK
√
s�

×
(

1

4u
(λ

1/2
Kπ (u)(M2

π − s� − u) cos θu

+ λ
1/2
�π (u)(M2

K − M2
π + u))F

− 1

4u
(λ

1/2
Kπ (u)(M2

π − s� − u) cos θu

+ λ
1/2
�π (u)(M2

K − M2
π − 3u))G

)

,

iA(3/2)
2 = iA(3/2)

μ ε
μ
+ − iA(3/2)

μ ε
μ
−

= 1√
2MK

(

λ
1/2
Kπ (u)√

u
sin θu cos φu(F − G)

)

. (52)

Hence, the partial-wave expansion of the form factors is given
by

F =
∞
∑

l=0

Pl(cos θu)

(

λ
1/2
Kπ (u)λ

1/2
�π (u)

M4
K

)l

f (3/2)
l (u)

− 1

2u

(

M2
K −M2

π − 3u + (M2
π − s�−u)

λ
1/2
Kπ (u)

λ
1/2
�π (u)

cos θu

)

×
∞
∑

l=1

P ′
l (cos θu)

(

λ
1/2
Kπ (u)λ

1/2
�π (u)

M4
K

)l−1

g(3/2)
l (u),

G =
∞
∑

l=0

Pl(cos θu)

(

λ
1/2
Kπ (u)λ

1/2
�π (u)

M4
K

)l

f (3/2)
l (u)

− 1

2u

(

M2
K − M2

π + u + (M2
π − s� − u)

λ
1/2
Kπ (u)

λ
1/2
�π (u)

cos θu

)

×
∞
∑

l=1

P ′
l (cos θu)

(

λ
1/2
Kπ (u)λ

1/2
�π (u)

M4
K

)l−1

g(3/2)
l (u),

(53)

where the partial waves f (3/2)
l and g(3/2)

l satisfy Watson’s
theorem in the region u > (MK + Mπ )2:

f (3/2)
l (u) = | f (3/2)

l (u)|eiδ3/2
l (u),

g(3/2)
l (u) = |g(3/2)

l (u)|eiδ3/2
l (u). (54)

2.4.5 Projection and analytic structure of the partial waves

The several partial waves f (I )
l and g(I )

l can be calculated by
angular projections:

f (I )
l (s) =

(

M2
K

λ
1/2
K� (s)σπ (s)

)l
2l + 1

2

×
∫ 1

−1
dz Pl(z)

(

F (I )(s, z) + σπ(s)PL(s)

X (s)
zG(I )(s, z)

)

,

g(I )
l (s) =

(

M2
K

λ
1/2
K� (s)σπ (s)

)l−1

×
∫ 1

−1
dz

Pl−1(z) − Pl+1(z)

2
G(I )(s, z), (55)

where X (I )(s, z) := X (I )(s, t (s, z), u(s, z)), X ∈ {F,G},
I ∈ {0, 1} and

t (s, z) = 1

2
(�0 − s − 2Xσπ z),

u(s, z) = 1

2
(�0 − s + 2Xσπ z). (56)

Since t (s,−z) = u(s, z), the definition of the pure isospin
form factors (11) implies

f (0)
l (s) = g(0)

l (s) = 0 ∀ l odd,

f (1)
l (s) = g(1)

l (s) = 0 ∀ l even. (57)
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Hence, we can as well directly use the partial waves of the
physical form factors:

fl(s) =
(

M2
K

λ
1/2
K� (s)σπ (s)

)l
2l + 1

2

×
∫ 1

−1
dz Pl(z)

(

F(s, z) + σπ(s)PL(s)

X (s)
zG(s, z)

)

,

gl(s) =
(

M2
K

λ
1/2
K� (s)σπ (s)

)l−1∫ 1

−1
dz

Pl−1(z)−Pl+1(z)

2
G(s, z),

(58)

which still fulfil Watson’s theorem,

fl(s) = | fl(s)|eiδ Il (s), gl(s) = |gl(s)|eiδ Il (s), (59)

where I = (l mod 2).
In the crossed channels, the partial wave projections are

given by

f (1/2)
l (t) =

(

M4
K

λ
1/2
Kπ (t)λ1/2

�π (t)

)l
2l + 1

2

×
∫ 1

−1
dzt Pl(zt )

(
F (1/2)(t, zt ) − G(1/2)(t, zt )

2

+ 1

2t

(

M2
K − M2

π − t + (M2
π − s� − t)

λ
1/2
Kπ (t)

λ
1/2
�π (t)

zt

)

× F (1/2)(t, zt ) + G(1/2)(t, zt )

2

)

,

g(1/2)
l (t)=

(

M4
K

λ
1/2
Kπ (t)λ1/2

�π (t)

)l−1

×
∫ 1

−1
dzt

Pl−1(zt )−Pl+1(zt )

2

F (1/2)(t, zt )+G(1/2)(t, zt )

2
,

f (3/2)
l (u) =

(

M4
K

λ
1/2
Kπ (u)λ

1/2
�π (u)

)l
2l + 1

2

×
∫ 1

−1
dzu Pl(zu)

(
F(u, zu) + G(u, zu)

2

+ 1

2u

(

M2
K − M2

π − u + (M2
π − s� − u)

λ
1/2
Kπ (u)

λ
1/2
�π (u)

zu

)

× F(u, zu) − G(u, zu)

2

)

,

g(3/2)
l (u) =

(

M4
K

λ
1/2
Kπ (u)λ

1/2
�π (u)

)l−1

×
∫ 1

−1
dzu

Pl−1(zu) − Pl+1(zu)

2

F(u, zu) − G(u, zu)

2
,

(60)

where X (I )(t, zt ) := X (I )(s(t, zt ), t, u(t, zt )), X (I )(u, zu)
:= X (I )(s(u, zu), t (u, zu), u), X ∈ {F,G} and

s(t, zt ) = 1

2

(

�0 − t + 1

t
(zt λ

1/2
Kπ (t)λ1/2

�π (t) − �Kπ��π)

)

,

u(t, zt ) = 1

2

(

�0 − t − 1

t
(zt λ

1/2
Kπ (t)λ1/2

�π (t) − �Kπ��π)

)

,

s(u, zu) = 1

2

(

�0 − u + 1

u
(zu λ

1/2
Kπ (u)λ

1/2
�π (u)−�Kπ��π)

)

,

t (u, zu) = 1

2

(

�0−u− 1

u
(zu λ

1/2
Kπ (u)λ

1/2
�π (u)−�Kπ��π)

)

.

(61)

The construction of the partial waves has been done in a
way that excludes kinematic singularities for s > 4M2

π and
t, u > (MK + Mπ )2. There may still be kinematic singu-
larities present below these regions, but they do not bother
us. But also the analytic structure of the partial waves with
respect to dynamic singularities is not trivial.

For the s-channel partial waves, there is of course the
right-hand cut at s > 4M2

π . Further cuts can appear through
the angular integration, i.e. at points where the integration
contour in the t- or u-plane touches the crossed channel cuts.
If s lies in the physical decay region, the integration path is
just a horizontal line from one end of the decay region to
the other (see the Mandelstam diagram in Fig. 2). When we
continue analytically into the region (MK − √

s�)2 < s <

(MK +√
s�)2, the integration path moves into the complex t-

and u-plane and crosses the real Mandelstam plane at t = u:
the square root of the Källén function X = 1

2λ
1/2
K� (s) is purely

imaginary in this region. One has to know which branch of
the square root should be taken. The correct sign is found by
taking s real and shifting MK → MK + iε (see [20]). With
this prescription, the Källén function turns counterclockwise
around λK� = 0 when s runs from s < (MK − √

s�)2 to
s > (MK + √

s�)2. The square root of the Källén function
therefore takes the following values:

λ
1/2
K� (s)

=

⎧

⎪⎪⎨

⎪⎪⎩

+|λ1/2
K� (s)|, s <

(

MK − √
s�
)2

,

+i |λ1/2
K� (s)|, (MK − √

s�
)2

< s <
(

MK + √
s�
)2

,

−|λ1/2
K� (s)|, (

MK + √
s�
)2

< s.

(62)

In the region s >
(

MK + √
s�
)2, the integration path again

lies in the real Mandelstam plane from one to the other end
of the scattering region.

As we are away from the t- and u-channel unitarity cuts
at t, u > (MK + Mπ )2, this extension of the integration path
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into the complex t- and u-plane is the only subtlety that has
to be taken into account.

In the region s < 4M2
π , there is a left-hand cut at s ∈

(−∞, 0): the integration path extends again into the complex
t- and u-plane in the region 0 < s < 4M2

π (due to the second
square root). It diverges at s = 0 and returns to the real axis at
s < 0, but this time it touches the t- and u-channel unitarity
cuts at t, u > (MK + Mπ )2, which produces the left-hand
cut of the s-channel partial waves.

This left-hand cut can be most easily found by looking at
the end-points of the integration paths: solving the equation

t± = u∓ = 1

2
(�0 − s ∓ 2X (s)σπ (s)) (63)

for t± > (MK + Mπ )2 gives the left-hand cut s ∈ (−∞, 0).
Let us consider the crossed t-channel (the situation in the

u-channel is analogous). We have defined the partial-wave
expansion in the scattering region t > (MK + Mπ )2. There-
fore, we also define the square root branches of the Källén
functions λ

1/2
Kπ and λ

1/2
�π in this region. The sign of the square

root branch can be absorbed into the definition of the partial
waves.

The right-hand t-channel unitarity cut at t > (MK +Mπ )2

also shows up in the partial waves. A second possibility
for singularities in the t-channel partial waves arises when
the integration path touches the s- or u-channel unitarity
cuts. For t > (MK + Mπ )2, the integration path lies on
the negative real axis of the s- and u-planes (this can be
seen in the Mandelstam diagram in Fig. 2). In the region
(MK − Mπ )2 < t < (MK + Mπ )2, the integration path
extends into the complex s- and u-plane. For the value of
t fulfilling 1

2

(

�0 − t − 1
t �Kπ��π

) = 4M2
π , the integra-

tion path in the s-plane touches the s-channel branch cut.
From this point on towards smaller values of t , the integration
path has to be deformed in the s-plane. Since the u-channel
cut appears only at u > (MK + Mπ )2, such a deforma-
tion is not needed in the u-plane. At t = (MK − Mπ )2,
the integration path in the s-plane has then the shape of
a horseshoe wrapped around the s-channel cut. For even
smaller values of t , the path unwraps itself in a continuous
way, such that for t < 1

2 (M2
K − 2M2

π + s�), the integra-
tion path lies completely on the upper side of the s-channel
cut.

The cut structure in the t-channel partial wave is rather
complicated, at least for s� > 0: The left-hand cuts can be
found by solving the equations

s± = 1

2

(

�0 − t + 1

t
(± λ

1/2
Kπ (t)λ1/2

�π (t) − �Kπ��π)

)

,

u± = 1

2

(

�0 − t − 1

t
(± λ

1/2
Kπ (t)λ1/2

�π (t) − �Kπ��π)

)

,

(64)

Re(t)

Im(t)

R
e(

t)
=

(M
K

−
M

π
)2

Fig. 3 The left-hand cut of the t-channel partial waves (s� = 0.3M2
π )

for s± > 4M2
π and u± > (MK + Mπ )2. While the second

equation results in a cut along the real axis, the first equation
produces an egg-shaped cut structure in the complex t-plane
with Re(t) < (MK −Mπ )2, shown in Fig. 3. The exact shape
depends on the value of s�.

2.4.6 Simplifications for s� → 0

In the experiment, a dependence on s� has been observed
only in the first partial wave of the form factor F [6,9]. If we
neglect this dependence on s� and assume that s� = 0, the
treatment can be significantly simplified.

• The square root of the Källén function simplifies to

lim
s�→0

λ
1/2
K� (s) = M2

K − s,

the square root branch cut disappears. Hence, the integra-
tion path for the angular integrals in the s-channel always
lies on the real axis.

• The left-hand cut structure of t- and u-channel partial
waves simplifies to a straight line along the real axis. The
egg-shaped branch cuts disappear in the limit s� → 0.

• From (37), we see that the quantity

lim
s�→0

F (I )
1 = lim

s�→0

(
1

2
λ

1/2
K� (s)F (I )

+ 1

2

(M2
K − s − s�)(u − t)

λ
1/2
K� (s)

G(I )
)

= M2
K − s

2
F (I ) + u − t

2
G(I ) (65)
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has a simple s-channel partial-wave expansion into Leg-
endre polynomials. If we consider (46) in the limit s� →
0, we find that exactly the same linear combination of
the form factors F (1/2) and G(1/2) has a simple t-channel
partial-wave expansion into Legendre polynomials. The
same follows from (53) for the u-channel. In this limit,
the form factor F1 can therefore be treated independently
from the other form factors. This is the procedure that has
been followed in [12–14].

There are several reasons why we abstain here from taking
the limit s� → 0, which would result in a substantial sim-
plification of the whole treatment. The experiments provide
data on both form factors F and G. In order to include all the
available information, we deal with both form factors at the
same time. There is also some data available on the depen-
dence on s�, which we include in this treatment. Finally, the
matching to χPT becomes much cleaner if it is performed
with F and G directly, since these are the form factors with
the simplest chiral representation.

2.5 Reconstruction theorem

Since the form factors F and G describe a hadronic four-
‘particle’ process, they depend on the three Mandelstam vari-
ables s, t and u and therefore possess a rather complicated
analytic structure. However, it is possible to decompose the
form factors into a sum of functions that depend only on
a single Mandelstam variable. Such a decomposition pro-
vides a major simplification of the problem and leads to a
powerful dispersive description. This procedure is known
under the name of ‘reconstruction theorem’ and was first
applied to ππ -scattering [21]. For Kπ scattering, it was gen-
eralised to the case of unequal masses in [22]. In [23], it was
formulated for a general 2 → 2 scattering process of the
pseudoscalar octet mesons. We presented its first applica-
tion to a K�4 form factor in [12–14]. In [24], it was again
used for the K�4 form factors in order to study isospin-
breaking effects in the phases at two loops in a dispersive
framework.

2.5.1 Decomposition of the form factors

The explicit derivation of the decomposition of the form fac-
tors F and G into functions of a single Mandelstam vari-
able can be found in [15]. It is based on fixed-s, fixed-t and
fixed-u dispersion relations. We have to assume a certain
asymptotic behaviour of the form factors, e.g. for fixed u, we
assume

lim|s|→∞
Xu
s (s)

sn
= lim|t |→∞

Xu
t (t)

tn
= 0, (66)

where the Froissart bound [25] suggests n = 2. How-
ever, we are also interested in the case n = 3 in order
to meet the asymptotic behaviour of the NNLO χPT form
factors. We therefore write down either a twice- or thrice-
subtracted dispersion relation for the form factors. Then
we use the partial-wave expansions derived in the previ-
ous section. We neglect the imaginary parts of D- and
higher waves, an approximation that is violated only at
O(p8) in the chiral power counting. It implements the case
s� �= 0.

The result of the decomposition is the following:

F(s, t, u) = M0(s) + u − t

M2
K

M1(s)

+ 2

3
N0(t)+ 2

3

t (s − u)+�Kπ��π

M4
K

N1(t)− 2

3

�Kπ − 3t

2M2
K

Ñ1(t)

+ 1

3
R0(t)+ 1

3

t (s − u)+�Kπ��π

M4
K

R1(t)− 1

3

�Kπ − 3t

2M2
K

R̃1(t)

+R0(u)+ u(s − t)+�Kπ��π

M4
K

R1(u)− �Kπ − 3u

2M2
K

R̃1(u)

+ O(p8),

G(s, t, u) = M̃1(s)

− 2

3
N0(t)− 2

3

t (s − u)+�Kπ��π

M4
K

N1(t)+ 2

3

�Kπ + t

2M2
K

Ñ1(t)

− 1

3
R0(t)− 1

3

t (s − u)+�Kπ��π

M4
K

R1(t)+ 1

3

�Kπ + t

2M2
K

R̃1(t)

+ R0(u)+ u(s − t)+�Kπ��π

M4
K

R1(u)− �Kπ +u

2M2
K

R̃1(u)

+ O(p8). (67)

In the case n = 2, the various functions of one variable are
given by

M0(s) = m0
0 + m1

0
s

M2
K

+ s2

π

∫ ∞

s0

Im f0(s′)
(s′ − s − iε)s′2 ds′,

M1(s) = m0
1 + s

π

∫ ∞

s0

1

(s′ − s − iε)s′

×Im

(

f1(s
′) − 2PL(s′)M2

K

λK�(s′)
g1(s

′)
)

ds′,

M̃1(s) = m̃0
1 + m̃1

1
s

M2
K

+ s2

π

∫ ∞

s0

Img1(s′)
(s′ − s − iε)s′2 ds′,

N0(t) = n1
0

t

M2
K

+ t2

π

∫ ∞

t0

Im f (1/2)
0 (t ′)

(t ′ − t − iε)t ′2
dt ′,

N1(t) = 1

π

∫ ∞

t0

1

t ′ − t − iε

×Im

(

f (1/2)
1 (t ′) + (��π + t ′)M4

K

2t ′λ�π (t ′)
g(1/2)

1 (t ′)
)

dt ′,
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Ñ1(t) = t

π

∫ ∞

t0

M2
K

t ′
Img(1/2)

1 (t ′)
(t ′ − t − iε)t ′

dt ′,

R0(t) = t2

π

∫ ∞

t0

Im f (3/2)
0 (t ′)

(t ′ − t − iε)t ′2
dt ′,

R1(t) = 1

π

∫ ∞

t0

1

t ′ − t − iε

×Im

(

f (3/2)
1 (t ′) + (��π + t ′)M4

K

2t ′λ�π (t ′)
g(3/2)

1 (t ′)
)

dt ′,

R̃1(t) = t

π

∫ ∞

t0

M2
K

t ′
Img(3/2)

1 (t ′)
(t ′ − t − iε)t ′

dt ′, (68)

while for n = 3, the functions of one variable are

M0(s) = m0
0 + m1

0
s

M2
K

+ m2
0
s2

M4
K

+ s3

π

∫ ∞

s0

Im f0(s′)
(s′ − s − iε)s′3 ds′,

M1(s) = m0
1 + m1

1
s

M2
K

+ s2

π

∫ ∞

s0

1

(s′ − s − iε)s′2

×Im

(

f1(s
′) − 2PL(s′)M2

K

λK�(s′)
g1(s

′)
)

ds′,

M̃1(s) = m̃0
1 + m̃1

1
s

M2
K

+ m̃2
1
s2

M4
K

+ s3

π

∫ ∞

s0

Img1(s′)
(s′ − s − iε)s′3 ds′,

N0(t) = n1
0

t

M2
K

+ n2
0
t2

M4
K

+ t3

π

∫ ∞

t0

Im f (1/2)
0 (t ′)

(t ′ − t − iε)t ′3
dt ′,

N1(t) = n0
1 + t

π

∫ ∞

t0

1

(t ′ − t − iε)t ′

×Im

(

f (1/2)
1 (t ′) + (��π + t ′)M4

K

2t ′λ�π (t ′)
g(1/2)

1 (t ′)
)

dt ′,

Ñ1(t) = ñ1
1

t

M2
K

+ t2

π

∫ ∞

t0

M2
K

t ′
Img(1/2)

1 (t ′)
(t ′ − t − iε)t ′2

dt ′,

R0(t) = t3

π

∫ ∞

t0

Im f (3/2)
0 (t ′)

(t ′ − t − iε)t ′3
dt ′,

R1(t) = t

π

∫ ∞

t0

1

(t ′ − t − iε)t ′

×Im

(

f (3/2)
1 (t ′) + (��π + t ′)M4

K

2t ′λ�π (t ′)
g(3/2)

1 (t ′)
)

dt ′,

R̃1(t) = t2

π

∫ ∞

t0

M2
K

t ′
Img(3/2)

1 (t ′)
(t ′ − t − iε)t ′2

dt ′. (69)

Actually, since the P-wave of isospin I = 3/2 Kπ scatter-
ing is real atO(p6), so are the partial waves f (3/2)

1 and g(3/2)
1 .

Hence, the functions R1(t) and R̃1(t) could be dropped alto-

gether in the decomposition. The phase δ
3/2
1 is also known

to be tiny in phenomenology.

2.5.2 Ambiguity of the decomposition

We have decomposed the form factors F and G into func-
tions of one variable M0(s), . . .. However, while the form
factors are observable quantities, these functions are not.
It is possible to redefine the functions M0(s), . . . without
changing the form factors and hence without changing the
physics.

Therefore, let us study this ambiguity of the decom-
position of the form factors. We require the form factors
to be invariant under a change of the functions of one
variable:

M0(s) �→ M0(s) + δM0(s),

M1(s) �→ M1(s) + δM1(s),

. . . , (70)

which we call ‘gauge transformation’. The shifts have to sat-
isfy

0 = δM0(s) + u − t

M2
K

δM1(s) + 2

3
δN0(t)

+ 2

3

t (s − u) + �Kπ��π

M4
K

δN1(t)− 2

3

�Kπ − 3t

2M2
K

δ Ñ1(t)

+ 1

3
δR0(t)+ 1

3

t (s − u)+�Kπ��π

M4
K

δR1(t)

− 1

3

�Kπ − 3t

2M2
K

δ R̃1(t) + δR0(u)

+ u(s − t) + �Kπ��π

M4
K

δR1(u)− �Kπ − 3u

2M2
K

δ R̃1(u),

(71)

0 = δM̃1(s) − 2

3
δN0(t)

− 2

3

t (s − u) + �Kπ��π

M4
K

δN1(t) + 2

3

�Kπ + t

2M2
K

δ Ñ1(t)

− 1

3
δR0(t) − 1

3

t (s − u) + �Kπ��π

M4
K

δR1(t)

+ 1

3

�Kπ + t

2M2
K

δ R̃1(t) + δR0(u)

+ u(s − t) + �Kπ��π

M4
K

δR1(u) − �Kπ + u

2M2
K

δ R̃1(u).

(72)

The solution to these equations is found in the following way:
we substitute one of the three kinematic variables by means
of s + t + u = �0. Then we take the derivative with respect
to one of the two remaining variables and substitute back
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�0 = s + t + u. After four or five such differentiations, one
gets differential equations for single functions δM0, . . . with
the following solution:

δM0(s) = cM0
0 + cM0

1 s + cM0
2 s2,

δM1(s) = cM1
0 + cM1

1 s + cM1
2 s2,

δM̃1(s) = cM̃1
0 + cM̃1

1 s + cM̃1
2 s2 + cM̃1

3 s3,

δN0(t) = cN0−1t
−1 + cN0

0 + cN0
1 t + cN0

2 t2,

δN1(t) = cN1−1t
−1 + cN1

0 + cN1
1 t,

δ Ñ1(t) = cÑ1−1t
−1 + cÑ1

0 + cÑ1
1 t + cÑ1

2 t2,

δR0(t) = cR0−1t
−1 + cR0

0 + cR0
1 t + cR0

2 t2,

δR1(t) = cR1−1t
−1 + cR1

0 + cR1
1 t,

δ R̃1(t) = cR̃1−1t
−1 + cR̃1

0 + cR̃1
1 t + cR̃1

2 t2.

(73)

Inserting these solutions into the various differential equa-
tions results in algebraic equations for the diverse coeffi-
cients. In the end, there remain 13 independent parameters.
In complete generality, we therefore have a gauge freedom
of 13 parameters in the decomposition (67). The gauge can
be fixed by imposing constraints on the Taylor expansion or
the asymptotic behaviour of the functions M0(s), . . ..

First, let us restrict the gauge freedom by imposing the
same vanishing Taylor coefficients as in (68), i.e. we exclude
all the pole terms, the constants in N0, Ñ1, R0, R̃1 and even
a linear term in R0. Then we further demand that asymp-
totically the functions behave at most as in (69), i.e. like
M1(s) = O(s), M̃1(s) = O(s2), N1(t) = O(1), Ñ1(t) =
O(t), R1(t) = O(1) and R̃1(t) = O(t). After imposing these
constraints, we are left with a restricted gauge freedom of 3
parameters, which we call CR0 , AR1 and BR̃1 :

δM0(s) = (2AR1 − BR̃1 + 2CR0)
(�0 − s)2 − �Kπ��π

2M4
K

,

δM1(s) = −(AR1 + BR̃1 + 2CR0)
�0

M2
K

+ BR̃1
�Kπ

2M2
K

+ (BR̃1 + 2CR0)
s

M2
K

,

δM̃1(s) = ((BR̃1 − 2CR0)�2
0 − (2AR1 + BR̃1 − 2CR0)

× �Kπ��π + BR̃1�0�Kπ )
1

2M4
K

− (BR̃1�Kπ + (AR1 + BR̃1 − 2CR0)2�0)
s

2M4
K

+ (2AR1 + BR̃1 − 2CR0)
s2

2M4
K

,

δN0(t) = −(2AR1 − BR̃1 + 2CR0)
3t (�Kπ + 2�0)

8M4
K

+ (6AR1 − 3BR̃1 − 10CR0)
t2

8M4
K

,

δN1(t) = −1

4
(2AR1 + 3BR̃1 − 6CR0),

δ Ñ1(t) = −(6AR1 + 5BR̃1 + 6CR0)
t

4M2
K

,

δR0(t) = CR0
t2

M4
K

,

δR1(t) = AR1 ,

δ R̃1(t) = BR̃1
t

M2
K

. (74)

In order to fix the gauge completely, we have to impose fur-
ther conditions. We will use two different gauges. The first
one corresponds to the case of an asymptotic behaviour that
needs n = 2 subtractions. It is most suitable for our numer-
ical dispersive representation of the form factors and for the
NLO chiral result. In this case, the asymptotic behaviour
excludes quadratic terms in δM0(s) and δM̃1(s) or a linear
term in δM1(s). Hence, in the representation (68), the gauge
is completely fixed.

The chiral representation, being an expansion in the
masses and momenta, does not necessarily reproduce the
correct asymptotic behaviour. The O(p6) chiral expressions
show an asymptotic behaviour that needs n = 3 subtractions.
In this case, one has to fix the gauge rather with the Taylor
coefficients, e.g. by excluding a quadratic term in R0, a con-
stant term in R1 and a linear term in R̃1. Therefore, also in
the representation (69), the gauge is completely fixed.

Note that the second representation (69) makes less
restrictive assumptions as regards the asymptotic behaviour.
Therefore, the first representation (68) is a special case of the
second (69). One can easily switch from the first to the sec-
ond representation with the help of the gauge transformation
(74). In this case, the additional subtraction constants will be
given by sum rules.

2.5.3 Simplifications for s� → 0

As a test of the decomposition, let us study the linear com-
bination

F1(s, t, u) = 1

2
(M2

K − s)F(s, t, u) + 1

2
(u − t)G(s, t, u)

(75)

in the limit s� → 0. We neglect the contribution of the isospin
3/2 P-wave:

lim
s�→0

F1(s, t, u)

= lim
s�→0

(

M2
K − s

2
F(s, t, u) + u − t

2
G(s, t, u)

)
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= M2
K − s

2
M0(s)

+ u − t

2

[

M2
K − s

M2
K

M1(s) + M̃1(s)

]

+ 2

3
[(t − M2

π )N0(t)]

+ 1

3
[(t − M2

π )R0(t)] + (u − M2
π )R0(u)

− 2

3
(t (u − s) + (M2

K − M2
π )M2

π )

×
[

t − M2
π

M4
K

N1(t) − 1

2M2
K

Ñ1(t)

]

. (76)

By identifying

MF1
0 (s) = M2

K − s

2
M0(s),

MF1
1 (s) = 1

2

(

M2
K − s

M2
K

M1(s) + M̃1(s)

)

,

NF1
0 (t) = (t − M2

π )N0(t),

RF1
0 (t) = (t − M2

π )R0(t),

NF1
1 (t) = t − M2

π

M4
K

N1(t) − 1

2M2
K

Ñ1(t), (77)

we recover the decomposition of the form factor F1 used
in [12–14]. We further note that the imaginary parts of the
functions of one variable in this decomposition are given by

ImMF1
0 (s) = M2

K − s

2
Im f0(s),

ImMF1
1 (s) = M2

K − s

2M2
K

Im f1(s),

ImNF1
0 (t) = (t − M2

π )Im f (1/2)
0 (t),

ImRF1
0 (t) = (t − M2

π )Im f (3/2)
0 (t),

ImNF1
1 (t) = t − M2

π

M4
K

Im f (1/2)
1 (t),

(78)

and repeat the observation of Sect. 2.4.6 that in the limit
s� → 0, these partial waves are given by projections of F1

in all three channels. Hence, the form factor F1 decouples
in this limit and can be treated independently in the above
decomposition.

2.6 Integral equations

The decomposition of the form factors (67) signifies a major
simplification, since we only have to deal with functions of
a single Mandelstam variable. We will now derive integral
equations of the inhomogeneous Omnès type [26,27] for the

single-variable functions, which can be solved numerically
and will lead to a resummation of ππ and Kπ rescattering
effects. This is the same strategy that we used in [12–14] for
the limiting case s� → 0.

The reconstruction theorem for the K�4 form factors was
used in [24] in a different context. There a dispersive descrip-
tion was constructed that includes isospin-breaking effects
due to mass differences. While in our case, we will use the
physical phases as input to perform a resummation of rescat-
tering effects, the dispersion relation of [24] is not based on
an Omnès representation and was used to analytically calcu-
late the phases (but not the real parts) of the form factors at
two-loop level.

2.6.1 Omnès representation

The single-variable functions (68, 69) are constructed in such
a way that they only contain the right-hand cut of the cor-
responding partial wave. Their imaginary part on the upper
rim of their cut is given by

ImM0(s) = Im f0(s),

ImM1(s) = Im

(

f1(s) − 2PL(s)M2
K

λK�(s)
g1(s)

)

,

ImM̃1(s) = Img1(s),

ImN0(t) = Im f (1/2)
0 (t),

ImN1(t) = Im

(

f (1/2)
1 (t) + (��π + t)M4

K

2tλ�π (t)
g(1/2)

1 (t)

)

,

ImÑ1(t) = Im

(

M2
K

t
g(1/2)

1 (t)

)

, (79)

ImR0(t) = Im f (3/2)
0 (t),

ImR1(t) = Im

(

f (3/2)
1 (t) + (��π + t)M4

K

2tλ�π (t)
g(3/2)

1 (t)

)

,

Im R̃1(t) = Im

(

M2
K

t
g(3/2)

1 (t)

)

.

Therefore, we can write

M0(s) + M̂0(s) = f0(s),

M1(s) + M̂1(s) = f1(s) − 2PL(s)M2
K

λK�(s)
g1(s),

M̃1(s) + ˆ̃M1(s) = g1(s),

N0(t) + N̂0(t) = f (1/2)
0 (t),

N1(t) + N̂1(t) = f (1/2)
1 (t) + (��π + t)M4

K

2tλ�π (t)
g(1/2)

1 (t),
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Ñ1(t) + ˆ̃N1(t) = M2
K

t
g(1/2)

1 (t),

R0(t) + R̂0(t) = f (3/2)
0 (t),

R1(t) + R̂1(t) = f (3/2)
1 (t) + (��π + t)M4

K

2tλ�π (t)
g(3/2)

1 (t),

R̃1(t) + ˆ̃R1(t) = M2
K

t
g(3/2)

1 (t), (80)

where the ‘hat functions’ M̂0(s), . . . are real on the cut:
indeed, they do not possess a right-hand cut, but con-
tain the (possibly complicated) left-hand cut structure of
the partial waves (see Sect. 2.4.5). Writing Im f0(s) =
f0(s)e−iδ0

0(s) sin δ0
0(s), . . . leads directly to the following

equations:

ImM0(s) = (M0(s) + M̂0(s))e
−iδ0

0(s) sin δ0
0(s),

ImM1(s) = (M1(s) + M̂1(s))e
−iδ1

1(s) sin δ1
1(s),

ImM̃1(s) = (M̃1(s) + ˆ̃M1(s))e
−iδ1

1(s) sin δ1
1(s),

ImN0(t) = (N0(t) + N̂0(t))e
−iδ1/2

0 (t) sin δ
1/2
0 (t),

ImN1(t) = (N1(t) + N̂1(t))e
−iδ1/2

1 (t) sin δ
1/2
1 (t),

ImÑ1(t) = (Ñ1(t) + ˆ̃N1(t))e
−iδ1/2

1 (t) sin δ
1/2
1 (t),

ImR0(t) = (R0(t) + R̂0(t))e
−iδ3/2

0 (t) sin δ
3/2
0 (t),

ImR1(t) = (R1(t) + R̂1(t))e
−iδ3/2

1 (t) sin δ
3/2
1 (t),

Im R̃1(t) = (R̃1(t) + ˆ̃R1(t))e
−iδ3/2

1 (t) sin δ
3/2
1 (t), (81)

where, below some inelastic threshold, the phases δ Il agree
with the elastic ππ - or Kπ -scattering phase shifts. There-
fore, the functions M0, . . . are given by the solution to the
inhomogeneous Omnès problem. The minimal number of
subtractions appearing in the Omnès representation is deter-
mined by the asymptotic behaviour of the functions M0, . . .

and the phases δ Il .
Let us extend these equations even to the region above

inelastic thresholds by replacing δ �→ ω,

ImM0(s) = (M0(s) + M̂0(s))e
−iω0

0(s) sin ω0
0(s),

. . . , (82)

where ωI
l (s) = δ Il (s) + ηI

l (s) and ηI
l (s) = 0 below the

inelastic threshold s = �2.
We define the usual once-subtracted Omnès function

�(s) := exp

(
s

π

∫ ∞

s0

δ(s′)
(s′ − s − iε)s′ ds

′
)

. (83)

If the asymptotic behaviour of the phase is lim
s→∞ δ(s) = mπ ,

the Omnès function behaves asymptotically as O(s−m). Pro-
vided that the function M(s) behaves asymptotically as

O(sk), we can write a dispersion relation for M/� that leads
to a modified Omnès solution

M(s)

= �(s)

{

Pn−1(s) + sn

π

∫ �2

s0

M̂(s′) sin δ(s′)
|�(s′)|(s′ − s − iε)s′n ds′

+ sn

π

∫ ∞

�2

M̂(s′) sin δ(s′)
|�(s′)|(s′ − s − iε)s′n ds′

+ sn

π

∫ ∞

�2

(M̂(s′) + ReM(s′)) sin η(s′)
|�(s′)| cos(δ(s′) + η(s′))(s′−s − iε)s′n ds′

}

,

(84)

where the order of the subtraction polynomial is n − 1 =
k + m.

Actually, we do not know the phase δ at high ener-
gies. Inelasticities due to multi-Goldstone boson intermedi-
ate states, i.e. more than two Goldstone bosons, appear only at
O(p8) [21], hence the most important inelastic contribution
would certainly be a K K̄ intermediate state in the s-channel.
This could be included by using experimental input on η up
to s ≈ (1.4 GeV)2.

We could make a Taylor expansion of the inelasticity inte-
gral and neglect terms that only contribute at O(p8) to the
form factors by applying the power counting s

�2 ∼ p2. This
would introduce quite a lot of unknown Taylor coefficients.
Here, we follow another strategy: we set η = 0 and assign a
large error to the phases δ at high energies. We assume fur-
ther that δ reaches a multiple of π above a certain s = �2.
The two high-energy integrals in (84) drop in this case.

Assuming that the phases behave asymptotically like
δ0

0 → π , δ1
1 → π and all other δ Il → 0, we find the fol-

lowing solution for the case of n = 2 subtractions:

M0(s) = �0
0(s)

{

aM0 + bM0
s

M2
K

+ cM0
s2

M4
K

+ s3

π

∫ �2

s0

M̂0(s′) sin δ0
0(s′)

|�0
0(s

′)|(s′ − s − iε)s′3 ds′
}

,

M1(s) = �1
1(s)

{

aM1 + bM1
s

M2
K

+ s2

π

∫ �2

s0

M̂1(s′) sin δ1
1(s′)

|�1
1(s

′)|(s′ − s − iε)s′2 ds′
}

,

M̃1(s) = �1
1(s)

{

aM̃1 + bM̃1
s

M2
K

+ cM̃1
s2

M4
K

+ s3

π

∫ �2

s0

ˆ̃M1(s′) sin δ1
1(s′)

|�1
1(s

′)|(s′ − s − iε)s′3 ds′
}

,

N0(t) = �
1/2
0 (t)

{

bN0
t

M2
K

+ t2

π

∫ �2

t0

N̂0(t ′) sin δ
1/2
0 (t ′)

|�1/2
0 (t ′)|(t ′ − t − iε)t ′2

dt ′
}

,
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N1(t) = �
1/2
1 (t)

{
1

π

∫ �2

t0

N̂1(t ′) sin δ
1/2
1 (t ′)

|�1/2
1 (t ′)|(t ′ − t − iε)

dt ′
}

,

Ñ1(t) = �
1/2
1 (t)

{
t

π

∫ �2

t0

ˆ̃N1(t ′) sin δ
1/2
1 (t ′)

|�1/2
1 (t ′)|(t ′ − t − iε)t ′

dt ′
}

,

R0(t) = �
3/2
0 (t)

{
t2

π

∫ �2

t0

R̂0(t ′) sin δ
3/2
0 (t ′)

|�3/2
0 (t ′)|(t ′ − t − iε)t ′2

dt ′
}

,

R1(t) = �
3/2
1 (t)

{
1

π

∫ �2

t0

R̂1(t ′) sin δ
3/2
1 (t ′)

|�3/2
1 (t ′)|(t ′ − t − iε)

dt ′
}

,

R̃1(t) = �
3/2
1 (t)

{
t

π

∫ �2

t0

ˆ̃R1(t ′) sin δ
3/2
1 (t ′)

|�3/2
1 (t ′)|(t ′ − t − iε)t ′

dt ′
}

,

(85)

where we have fixed some of the subtraction constants in
N0, Ñ1, R0 and R̃1 to zero by imposing the same Taylor
expansion as in the defining equation (68).

Note that driving the Kπ phases to 0 is somewhat artifi-
cial. They are rather supposed to reach π at high energies.
However, this would introduce three more subtraction con-
stants in our framework. Since the high-energy behaviour
of the phases does not have an important influence on our
results, we abstain from introducing more subtractions and
take these effects into account in the systematic uncertainty.

In the case of n = 3 subtractions, six additional sub-
traction constants appear in the Omnès representation. The
conversion of a solution for n = 2 into a solution for n = 3
requires a gauge transformation in the Omnès representation,
as explained in Appendix C.1.

2.6.2 Hat functions

The hat functions appearing in the Omnès solution to the
functions of one variable (85) can be computed through
partial-wave projections of the form factors: (80) should be
understood as the defining equation of the hat functions. One
has to compute the partial-wave projections of the decom-
posed form factors F and G (67) and subtract the function
of one variable (M0, . . .). Finally, one obtains an expres-
sion for the hat functions in terms of angular averages of the
single-variable functions. The explicit expressions for the hat
functions are given in Appendix C.2.

3 Numerical solution of the dispersion relation

3.1 Iterative solution of the dispersion relation

The reconstruction theorem has allowed us to decom-
pose the form factors into functions of one variable, (67).
The nine functions of one variable are given unambigu-

ously by the Omnès solutions (85). The hat functions
appearing in the dispersive integrals are given by angu-
lar integrals of the nine functions of one variable and link
these functions together. Therefore, we face a set of cou-
pled integral equations, parameterised by the nine sub-
traction constants aM0 , bM0 , . . . as defined in (85). In
this section we discuss a method for solving these equa-
tions numerically. We will assume an asymptotic behaviour
of the form factors that requires only n = 2 subtrac-
tions.

A crucial property of this set of equations is that they
are linear in the subtraction constants. Any solution can be
written as a linear combination of nine basis solutions. Our
main task is therefore to determine numerically these nine
basis solutions.

So far, the invariant squared energy of the dilepton system,
s�, has been treated as an external parameter. On the one hand,
it appears in the definition of the hat functions. On the other
hand, the subtraction constants have an implicit dependence
on s�. To make this dependence explicit we write the form
factors as:

X (s, t, u) =
9
∑

i=1

ai (s�)Xi (s, t, u), (86)

where X ∈ {F,G}, {ai }i = {aM0 , bM0 , . . . , bN0} and where
Xi denotes the basis solution with ak = δik , k ∈ {1, . . . , 9}.
If s� is allowed to vary, the ‘functions of one variable’ become
actually functions of two variables, M0(s, s�), . . .

Our strategy is as follows. We determine the basis solu-
tions by a numerical iteration of the coupled integral equa-
tions. Each basis solution is a function of s, t and u, where
s + t + u = �0 = M2

K + 2M2
π + s�, or equivalently a

function of s, s� and cos θ . Since s� is a fixed external param-
eter in the integral equations, the iterative solution has to be
performed for each value of s� separately. Once the basis
solutions are computed, the subtraction constants (or rather
functions) have to be determined by suitable means, such as
a fit to data, the soft-pion theorem and χPT input. As the
dependence on s� has been found to be rather weak in exper-
iments, the subtraction functions can be well approximated
by a low-order polynomial in s�.

In summary, we need the nine basis solutions for a set
of values of s�, so as to allow us to calculate them for any
value of s� by interpolation. Again, since the dependence on
s� appears to be rather weak, we will need only a low number
of values of s�.

To calculate each of the basis solutions we use the follow-
ing iterative procedure:

1. set the initial value of the functions M0, . . . to Omnès
function × subtraction polynomial (the polynomial is in
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Fig. 4 ππ phase shift inputs

fact either 0 or a simple monomial with coefficient 1 for
a particular basis solution);

2. calculate the hat functions M̂0, . . . by means of angular
integrals of the functions M0, . . .;

3. calculate the new values of the functions M0, . . . as
Omnès function × (polynomial + dispersive part), where
in the dispersion integral the hat function calculated in
step 2 appears;

4. go to step 2 and iterate this procedure until convergence.

It turns out that this iteration converges quickly. After five or
six iterations, the relative changes are of order 10−6.

3.2 Phase input

3.2.1 ππ phase shifts

For the pion scattering phase shifts, we use the parameterisa-
tion of [28,29]. The solution depends on 28 parameters that
can vary within a certain range. The curve labelled as Solu-
tion 1 in Fig. 4 shows the central solution for the phase shifts
as well as the error band due to uncertainty in the parameters
(summed in quadrature).

Two aspects deserve special attention. First, the phase for
Solution 1 is just taken constant above

√
s ≈ 1.5 GeV. Our

derivation of the dispersion relation, however, relies on the
assumption that δ0

0(s) → π , δ1
1(s) → π for s → ∞. We

should therefore change the high-energy behaviour of the
phases such that they reach π at s = �2. The exact way how
this is achieved should not have influence on the result at low
energies, especially in the physical region of the decay. We
choose to interpolate smoothly between the value of Solu-
tion 1 and π :

δ0
0(s)sol.2 := (1 − fint(s1, s2, s))δ

0
0(s)sol.1 + fint(s1, s2, s)π,

δ1
1(s)sol.2 := (1 − fint(s1, s2, s))δ

1
1(s)sol.1 + fint(s1, s2, s)π,

fint(s1, s2, s) :=

⎧

⎪⎨

⎪⎩

0 if s < s1,
(s−s1)

2(3s2−2s−s1)

(s2−s1)3 if s1 ≤ s < s2,

1 if s2 ≤ s.

(87)

Figure 4 shows Solution 2 with s1 = 68M2
π and s2 = 148M2

π .
These values can be varied and should not have an important
influence.

The second subtlety is the problem of the behaviour
around the K K̄ threshold [30]: are the K�4 partial waves
expected to have a peak or a dip in the vicinity of the K K̄
threshold, i.e. do they rather behave like the strange or the
non-strange scalar form factor of the pion? The answer to this
question could be obtained from a coupled-channel analysis
of the K�4 amplitude, which, however, goes beyond the scope
of this paper. In case of a dip we have to modify the phase
such that it follows δ0

0(s) − π above the K K̄ threshold. The
third solution shown in Fig. 4 is given by

δ0
0(s)sol.3 := (1− fint(s1, s2, s))(δ

0
0(s)sol.1− fint(s̃1, s̃2, s)π)

+ fint(s1, s2, s)π, (88)

with s̃1 = 4M2
K and s̃2 = s̃1 + 8M2

π .
The solution 4 in Fig. 4 corresponds to Solution 2 but with

s1 = 4M2
K and s2 = s1 + M2

π .
As the question of the correct behaviour around the K K̄

threshold is not easy to answer, we declare Solution 3 as the
‘central’ one and use all the other solutions to determine the
systematic uncertainty.

3.2.2 Kπ phase shifts

For the crossed channels, we also need the Kπ phase shifts as
an input. We use the phase shifts and uncertainties of [31,32],
but add by hand a more conservative uncertainty that reaches
20◦ at t = 150M2

π . For the very small phase δ
3/2
1 , we just
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assume a 100 % uncertainty. These phase solutions are shown
in Figs. 5 and 6 as ‘Solution 1’.

In the derivation of the dispersion relation, we assume that
the Kπ phases go to zero at high energies. We implement this
by interpolating smoothly between Solution 1 and zero with
fint(t1, t2, t). These modified phase shifts with t1 = 150M2

π

and t2 = 250M2
π are displayed as ‘Solution 2’ in Figs. 5 and

6. The difference between ‘Solution 1’ and ‘Solution 2’ is
taken as a measure of the systematic uncertainty due to the
high-energy behaviour of the Kπ phases.

3.3 Omnès functions

In a first step, the six Omnès functions are computed, defined
by

�I
l (s) := exp

(

s

π

∫ ∞

s0

δ Il (s′)
(s′ − s − iε)s′ ds′

)

, (89)

where s0 denotes the respective threshold. We show only
the results for the ππ Omnès functions; see Figs. 7 and 8.
In the case of �0

0, the Omnès function is computed for the
phase Solution 3 – the corresponding uncertainty is obtained
by summing in quadrature the variations generated by the
uncertainties of all 28 parameters. The differences, appro-
priately weighted, are summed up in quadrature to give the
error band. For the phase Solutions 1, 2 and 4, only the central
curve is shown. Note that the differences between the various
high-energy phase solutions are much larger than the error
band due to the phase parameters. However, at low energy
these differences are well described by polynomials and can
be absorbed at low energies by the subtraction constants of
the dispersion relation. This implies that the uncertainty gen-
erated by the unknown high-energy behaviour of the phase
shifts will be moderate.

3.4 Hat functions and angular projection

During the iterative solution of the dispersion relation, the
hat functions have to be computed by means of angular aver-
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ages. Since the hat functions appear in the integrand of the
dispersive integrals, they have to be known just on the real
axis above the threshold of the respective channel.

In the s� = 0 case, the calculation of the angular inte-
grals is straightforward. The functions M0, . . . need to be
computed on the real axis, also for negative values of their
argument. As described in Sect. 2.4.5, a subtlety arises in the
case s� �= 0: in the calculation of the s-channel hat func-
tions, we have to know the angular integrals of the t- and
u-channel functions N0, . . .. In the region (MK − √

s�)2 <

s < (MK + √
s�)2, the angular integration path extends into

the complex t- or u-plane. Therefore, the t- and u-channel
functions N0, . . . have to be computed not only on the real
axis but also in the complex plane. Since the region where
this happens is much below the t- or u-channel cut, we have
two options how to perform this:

• Integrate on a straight line in the complex t- or u-plane.
The functions N0(t), . . . have to be known in an egg-
shaped region of s�-dependent size. The egg lies within
M2

π −MK
√
s� < Re(t) < M2

π +MK
√
s�. The functions

N0(t), . . . can be computed on a two-dimensional grid
covering this egg and then e.g. interpolated with a 2D
spline.

• Since the functions N0(t), . . . are analytic in the region
of the egg, the angular integration path can be deformed
to lie always on the border of the egg. Therefore, the
functions N0(t), . . . only have to be computed on points
lying on this border (in addition to the real axis) and 1D
interpolation methods can be applied.

The first method is more straightforward, the second needs
less computing time. The second one requires a change of
variable that we briefly describe.

We want to compute the angular integral

〈zn X〉ts (s) = 1

2

∫ 1

−1
dz zn X (t (s, z)), (90)

where e.g. X = N0 and

t (s, z) = 1

2
(�0 − s − λ

1/2
K� (s)σπ (s)z). (91)
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Fig. 9 Angular integration contours for s� = M2
π

The square root of the Källén function is defined by (62) and
the critical region is s− < s < s+, where we define

s± := (

MK ± √
s�
)2

. (92)

In this region, the angular integration path in the complex
t-plane runs from t− := t (s,−1) to t+ := t (s, 1). Due to
the analyticity of the function X (t), the straight contour can
be deformed along the border of the egg, either to pass t1 :=
t (s−, z) or t2 := t (s+, z); see the two plots in Fig. 9.

Defining

zs(t) = 1

λ
1/2
K� (s)σπ (s)

(�0 − s − 2t), (93)

we rewrite the angular integral as a complex integral:

〈zn X〉ts = 1

2

∫ t+

t−

dzs
dt

dt zns (t)X (t)

= − 1

λ
1/2
K� (s)σπ (s)

∫ t+

t−
dt zns (t)X (t)

= − 1

λ
1/2
K� (s)σπ (s)

×
(∫ t1

t−
dt zns (t)X (t) −

∫ t1

t+
dt zns (t)X (t)

)

,

(94)

or equivalently

〈zn X〉ts = − 1

λ
1/2
K� (s)σπ (s)

×
(∫ t2

t−
dt zns (t)X (t) −

∫ t2

t+
dt zns (t)X (t)

)

. (95)

We parametrise the border of the egg by the following curves:

t±s (ξ) := t (ξ,±1) = 1

2
(�0 − ξ ∓ λ

1/2
K� (ξ)σπ (ξ)),

ξ ∈ [s−, s+], (96)

hence

〈zn X〉ts = − 1

λ
1/2
K� (s)σπ (s)

×
(∫ s−

s
dξ

dt−s (ξ)

dξ
zns (t

−
s (ξ))X (t−s (ξ))

−
∫ s−

s
dξ

dt+s (ξ)

dξ
zns (t

+
s (ξ))X (t+s (ξ))

)

, (97)

or

〈zn X〉ts = − 1

λ
1/2
K� (s)σπ (s)

×
(∫ s+

s
dξ

dt−s (ξ)

dξ
zns (t

−
s (ξ))X (t−s (ξ))

−
∫ s+

s
dξ

dt+s (ξ)

dξ
zns (t

+
s (ξ))X (t+s (ξ))

)

, (98)

where
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dt±s (ξ)

dξ
= 1

2

(

−1 ∓ d(λ
1/2
K� (ξ)σπ (ξ))

dξ

)

= 1

2

(

−1 ∓ 2M4
K M2

π − M2
K

(

4M2
π s� + ξ2

)+ (s� − ξ)
(

2M2
π (ξ + s�) − ξ2

)

ξ2λ
1/2
K� (ξ)σπ (ξ)

)

, (99)

zs(t
±
s (ξ)) = 1

λ
1/2
K� (s)σπ (s)

(ξ − s ± λ
1/2
K� (ξ)σπ (ξ)).

Note that

zs(t
+
s (ξ)) = −zs(t

−
s (ξ))∗,

t+s (ξ) = t−s (ξ)∗, (100)

dt+s (ξ)

dξ
=
(

dt−s (ξ)

dξ

)∗

and hence, due to the Schwarz reflection principle,

X (t+s (ξ)) = X (t−s (ξ))∗. (101)

Therefore, the function X has to be computed only on the
‘upper half-egg’:

〈zn X〉ts = 1

λ
1/2
K� (s)σπ (s)

×
∫ s

s−
dξ

(
dt−s (ξ)

dξ
zns (t

−
s (ξ))X (t−s (ξ))

− (−1)n
(

dt−s (ξ)

dξ
zns (t

−
s (ξ))X (t−s (ξ))

)∗ )

(102)

or

〈zn X〉ts = − 1

λ
1/2
K� (s)σπ (s)

×
∫ s+

s
dξ

(
dt−s (ξ)

dξ
zns (t

−
s (ξ))X (t−s (ξ))

−(−1)n
(

dt−s (ξ)

dξ
zns (t

−
s (ξ))X (t−s (ξ))

)∗ )
.

(103)

Although both descriptions are valid in the range s− < s <

s+, one may choose to use the first in the region s− < s < sm
and the second in the region sm < s < s+, where sm lies
somewhere in the middle of s− and s+, e.g. sm = (s−+s+)/2.
The motivation to do so is to avoid numerical instabili-
ties: the integral from s− to s with s → s+ must tend to
zero to give a finite value for the hat function. The integral
over the whole half-egg, however, accumulates a numerical
uncertainty.

3.5 Results for the basis solutions

We have now all the ingredients to compute the nine basis
solutions of the dispersion relation. The final result will be a
linear combination thereof. In Sect. 4, we will describe how
to determine this linear combination. We will fit experimental
data on the partial waves defined by

Fs(s, s�) = (M0(s, s�) + M̂0(s, s�))e
−iδ0

0(s),

F̃p(s, s�) = (M1(s, s�) + M̂1(s, s�))e
−iδ1

1(s),

Gp(s, s�) = (M̃1(s, s�) + ˆ̃M1(s, s�))e
−iδ1

1(s). (104)

The Figs. 10 and 11 show the partial waves of the basis solu-
tions in the case s� = 0. They are computed with the phase
solutions that reach the asymptotic values of π in the case of
the ππ phases and 0 in the case of the Kπ phases. For δ0

0 ,
the solution with the drop around the K K̄ threshold is used.
The figures illustrate what can be learnt also from the defi-
nitions (85) and (104): the data on the partial wave Fs will
constrain mainly the subtraction constants appearing in M0,
the data on Fp mainly the constants in M1 and the data on
Gp mainly the constants in M̃1. An exception is the constant

F
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Fig. 10 S-wave of the form factor F for the different basis solutions
for s� = 0
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Fig. 11 P-waves of the form factors F and G for the different basis solutions for s� = 0

Table 1 Values of the two relevant combinations of the form factors F
and G at the soft-pion points, computed for the basis solutions

Basis solution (F − G)SPP1 (F + G)SPP2

aM0 1.06 1.05

bM0 0.08 0.09

cM0 0.03 −0.01

aM1 −1.03 0.93

bM1 0.05 0.11

aM̃1 −1.07 1.02

bM̃1 −0.05 0.09

cM̃1 −0.10 −0.01

bN0 1.62 −0.01

bN0 : through the hat functions, it is constrained by the data
on all partial waves.

Besides experimental data on the partial waves, we
will also use two soft-pion theorems as an additional
source of information. Table 1 shows the values of (F −
G)(M2

π , M2
K , M2

π ) and (F+G)(M2
π , M2

π , M2
K ) for the basis

solutions. The first soft-pion theorem, which implies (F −
G)(M2

π , M2
K , M2

π ) ≈ 0, constrains mainly a linear combi-

nation of aM0 , aM1 , aM̃1 and bN0 .

4 Determination of the subtraction constants

In the previous chapter, we have described how to solve
numerically the Omnès dispersion relation for the form fac-
tors F and G. The solution is parameterised in terms of the
subtraction constants aM0 , . . .. The next task is now to deter-
mine these subtraction constants in order to fix the parametric
freedom. We use three different sources of information for
the determination of the subtraction constants:

• experimental data on the K�4 form factors,
• the soft-pion theorem, providing relations between F , G

and the K�3 vector form factor,
• input from χPT.

The soft-pion theorem (SPT) is valid up to corrections
of O(M2

π ) and hence can be considered as a strong con-
straint. From the two high-statistics experiments NA48/2 and
E865 we have data on the S- and P-waves of the form fac-
tors. Although these experiments have achieved impressive
results, the data alone does not determine all the subtraction
constants with satisfactory precision. Therefore, we use chi-
ral input to fix some of the subtraction constants that are not
well determined by the fit to data.

In the following, we describe in more detail what data we
use for the fits and how these fits are performed. We were
provided with additional unpublished data from the E865
experiment and include the data sets of NA48/2 that became
available only recently as an addendum to the original pub-
lication [9]. Therefore, our fits include the maximal amount
of experimental information on the K�4 form factors F and
G that is currently available.

4.1 Experimental data

The NA48/2 experiment defines the partial wave expansion
of the form factors as

F = Fse
iδs + Fpeiδp cos θ + · · · ,

G = Gpeiδp + · · · (105)

and further defines the linear combination

G̃ p := Gp + X

σπ PL
Fp. (106)
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For us, it is convenient to define the partial wave

F̃p := M2
K

2Xσπ

Fp. (107)

In our former treatment of the form factor F1 [12–14], it
was most convenient to use the data on Fs and G̃ p (which
corresponds to the P-wave of F1). Now that we describe both
form factors F and G, we prefer to fit the three partial waves
Fs , F̃p and Gp.

The comparison with our definition of the s-channel
partial-wave expansions

F =
∞
∑

l=0

Pl(cos θ)

(

2Xσπ

M2
K

)l

fl − σπ PL

X
cos θ G,

(108)

G =
∞
∑

l=1

P ′
l (cos θ)

(

2Xσπ

M2
K

)l−1

gl ,

allows us to identify

Fse
iδs = f0,

Fpeiδp = 2Xσπ

M2
K

f1 − σπ PL

X
g1, (109)

Gpeiδp = g1.

The phase shifts are just given by the ππ phases that we use
as input. With (80), we find the fitting equations:

Fs(s, s�) = (M0(s, s�) + M̂0(s, s�))e−iδ0
0(s),

F̃p(s, s�) = (M1(s, s�) + M̂1(s, s�))e−iδ1
1(s),

Gp(s, s�) = (M̃1(s, s�) + ˆ̃M1(s, s�))e−iδ1
1(s).

(110)

The NA48/2 collaboration has performed phenomenolog-
ical fits of the form [6,9]

Fs (s,s�)
fs

= 1 + f ′
s
fs
q2 + f ′′

s
fs
q4 + f ′

e
fs

s�
4M2

π
,

Fp(s,s�)
fs

= f p
fs

,

Gp(s,s�)
fs

= gp
fs

+ g′
p
fs
q2,

(111)

where q2 = s
4M2

π
− 1. In a first step, only the normalised

coefficients were measured [6]. In a second step, the normal-
isation fs was determined from the branching ratio measure-
ment and a phase-space integration, using the parameterisa-
tion (111) and the fitted normalised coefficients [9].

However, one should note that from (109) it follows that
Fp has to vanish at the ππ threshold like ∼ √

q2. The phe-
nomenological fit (111) of [6,9], which assumes Fp to be
constant in q2, gives a wrong threshold behaviour. We have
not tried to estimate its influence on the determination of the

normalisation fs . For our purpose, we find it convenient to
work with F̃p, which does not contain kinematic prefactors.

Because all the basis solutions use the same ππ phase as
input, the real quantities Fs , F̃p and Gp are still linear com-
binations of the corresponding quantities computed with the
basis solutions. Note that the partial waves can be negative,
i.e. one really has to rotate the ππ phase away and not just
take the absolute value.

For our fits, we use the experimental values of NA48/2
[6,9] and E865 [7,8] on the partial waves. Some remarks on
these numbers are appropriate.

• Originally, the published NA48/2 data consisted of 10
bins in s-direction. Very recently, a two-dimensional data
set on Fs(s, s�) has become available (addendum to [9]):
in this set, not only a single bin but up to 10 bins are used
in s�-direction.

• The barycentre values of s� for the original 10 bins of
NA48/2 also became available in the addendum to [9].
A value of s� could also be extracted from the relation
(106) between Fp, Gp and G̃ p [33]. However, this value
does not agree with the barycentre.

• We compute the value of F̃p with (107) using the values
of Fp and the barycentre values of s and s�.

• There is a discrepancy between [6] and [9]. The statis-
tical and systematic uncertainties for Fs in the NA48/2
data have to be calculated from the normalised coeffi-
cients in [6]. The correct uncertainties are also listed in
the addendum to [9].

• The published values of Fs in the 10 bins of NA48/2 have
been normalised in such a way that a fit of the form (111)
with f ′

e = 0 results in Fs(0, 0)/ fs = 1, although a non-
zero value of f ′

e has been obtained from a fit to the two-
dimensional data set. In order to take the s�-dependence
consistently into account, we have to increase the values
of Fs by 0.77 %.

• The E865 experiment has assumed in the analysis that
the form factors do not depend on s�. The values of s� for
each bin were not published.1

• The E865 experiment only provides data on the first par-
tial waves Fs and Gp.

• The E865 papers [7,8] include the fully correlated error
of the normalisation of 1.2 % in their systematic errors
(added in quadrature).2 It needs a special treatment for
unbiased fitting.

In the data analysis of both experiments, radiative correc-
tions have been applied to some extent. More reliable radia-

1 We thank Peter Truöl and Andries van der Schaaf, who performed a
new analysis of the Brookhaven data in order to extract the barycentre
values of s�.
2 We thank Stefan Pislak and Peter Truöl for this additional unpublished
information.
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tive corrections based on a fixed-order calculation [33] can be
applied a posteriori at least to the NA48/2 data. Furthermore,
neither the E865 nor the NA48/2 experiment has corrected
the isospin-breaking effects due to the quark and meson mass
differences. The calculation of [33] also allows for their cor-
rection. The resulting numbers are given in Appendix D. We
add the uncertainties of the isospin corrections (without the
higher-order estimate) in quadrature to the systematic errors.
The one-dimensional NA48/2 values also include the men-
tioned correction of the normalisation of Fs by 0.77 % due
to the s�-dependence.

In addition to the statistical and systematic errors, we
take into account the correlations between Fp and Gp of the
NA48/2 data, which also became available with the adden-
dum to [9]. There are, however, several correlations that we
neglect, either because they are not available or because we
assume them to play a minor role. These include the bin-to-
bin correlations of the P-waves and the correlations with the
S-wave. We also neglect the correlation due to the isospin-
breaking corrections and correlations between the two exper-
iments due to external input. We do not expect any of these
neglected correlations to significantly affect our fits, but of
course it would be better to check this. If the complete set
of experimental correlations will become available, it will be
possible to do that.

4.2 Soft-pion theorem

In addition to the experimental input on the partial waves,
we use the well-known soft-pion theorem (SPT) [34–37] as
a second source of information to determine the subtraction
constants. The SPT was already employed for the determi-
nation of subtraction constants in a different context in [38].

There are two different soft-pion theorems for K�4,
depending on which pion is taken to be soft. If the momentum
p1 of the positively charged pion is sent to zero, the Mandel-
stam variables become s = M2

π , t = M2
K , u = s�. Since the

SPT is valid only at O(M2
π ), we set u = s� + M2

π , such that
the relation s + t + u = M2

K + 2M2
π + s� remains valid and

one does not need to worry about defining an off-shell form
factor.

The first SPT states [12]

F(M2
π , M2

K , M2
π + s�)−G(M2

π , M2
K , M2

π + s�)=O(M2
π ).

(112)

If the momentum p2 of the negatively charged pion is sent
to zero, the Mandelstam variables become s = M2

π , t = s�,
u = M2

K . We set t = s� + M2
π .

The second SPT gives a relation to the K�3 vector form
factor:

F(M2
π , M2

π + s�, M
2
K ) + G(M2

π , M2
π + s�, M

2
K )

−
√

2MK

Fπ

f+(M2
π + s�) = O(M2

π ). (113)

At leading order in χPT, the SPTs are fulfilled exactly,
i.e. the right-hand sides of Eqs. (112) and (113) vanish, at
NLO and NNLO, there appear O(M2

π ) corrections.
Numerically, it turns out that the first SPT is fulfilled to a

higher precision than the second SPT. At NLO, the correction
to the first SPT is about 0.4 % for s� = 0, the second SPT
gets a correction of 2.0 % if f+(M2

π ) is used. If we make the
arbitrary replacement f+(M2

π ) �→ f+(0), again an O(M2
π )

effect, the deviation in the second SPT increases to 4.9 %.
This confirms that the size of the observed deviations from
the SPT is natural.

At NNLO, the corrections become slightly larger.3 If the
O(p6) LECs Cr

i are all put to zero and s� = 0 as well,
the first SPT is fulfilled at 1.0 %, the second at 4.4 % with
f+(M2

π ) or 7.6 % with f+(0). If the Cr
i parts are replaced

by the estimates of [11,39] (resonances estimates in the case
of K�4), the accuracy of the first SPT is 1.5 %, the one of
the second SPT 5.4 % using f+(M2

π ) or again 7.6 % using
f+(0).

We use the size of the NNLO corrections to the SPT as an
estimate of the tolerance that we allow in the fits when using
the SPTs as constraints.

4.3 Fitting method

In the following, we describe how we perform the fit. Basi-
cally, we have to deal with a simple linear fit. The only sub-
tlety is the fact that the data contains a fully correlated uncer-
tainty of the normalisation, which is a multiplicative quantity.
The fact that we use two experiments with different normal-
isation errors asks for a special fitting method to avoid a bias
[40,41]. We apply the ‘t0-method’ of [41].

First, we construct a covariance matrix for the observa-
tions as follows.

• For all the partial-wave data that we want to fit we con-
struct the covariance matrix with the squared statisti-
cal errors on the diagonal and the statistical covariance
between the P-waves as off-diagonal elements.

• We add the uncorrelated systematic errors, which do not
contain the error of the normalisation, in quadrature to
the diagonal entries.

• We may or may not include the two soft-pion theorems as
additional observations. If we do so, we take e.g. F − G
at the first soft-pion point (SPP) and F +G at the second
SPP as observations. As uncertainties, we take a value
typical for the deviation in χPT at NNLO, e.g. 1 or 2 %

3 We thank Johan Bijnens and Ilaria Jemos for providing the C++
implementation of the NNLO expressions.
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of the LO value of F for the first SPT and a few percent
of

√
2MK /Fπ f+(0) for the second SPT.

• We add the errors of the normalisation to the covariance
matrix, which are in block-diagonal form for the data of
the two experiments:

(cov)i j = (rel.cov.)i j + (norm.cov.)i j ,

(norm.cov.)i j = �2
I f (si , si�) f (s

j , s j� )δIi ,I j , (114)

where �I denotes the error of the normalisation for
experiment I . Ii is the index of the experiment (1 or
2) corresponding to the data point i and f (si , si�) is the
value of the fitted partial wave. In a first step, this value
has to be computed under the assumption of some starting
values for the fit parameters.

The fit requires then an iteration. One has to minimise the
error function defined by

χ2 = vT Pv, (115)

where v is the vector of the residues, i.e. the differences
between the observations and computed values. P is the
inverse of the covariance matrix constructed above: P =
(cov)−1. The minimum of the χ2 function can be either found
with some minimisation routine or, since the fit is linear,
directly with the explicit solution

par = (AT P A)−1AT PO, (116)

where O is the vector of observations and

Ai j = ∂ f (si , si�)

∂param j
(117)

is the design matrix to be determined with the values of the
basis solutions.

With these new values for the fit parameters, one again
computes the new covariance matrix (the contribution for the
normalisation changes) and iterates this procedure. It turns
out that only very few iterations are needed to reach conver-
gence.

If we do not want to determine a parameter through the fit
but fix it beforehand to a non-zero value, we have to subtract
the fixed contribution from the observations O , such that O
is purely linear in the parameters and contains no constant
contributions.

In the above discussion, we have not specified what we
use as fit parameters. One option is to fit the subtraction
constants. Since we want to include an s�-dependence in the
subtraction constants, we write e.g.

aM0(s�) = aM0
0 + aM0

1
s�
M2

K

+ · · · , (118)

where aM0
0 , aM0

1 , . . . are now the parameters collected in the
above vector ‘par’. Another option is to use the matching
equations to χPT, which provide a linear relation between
the subtraction constants and the LECs we are interested in,
and perform the fit directly with the LECs.

4.4 Matching to χPT

The final goal of this treatment is the determination of low-
energy constants of χPT. Instead of fitting directly the K�4

data with the chiral expressions, we use the dispersive repre-
sentation as an intermediate step. The dispersion relation pro-
vides a model-independent resummation of final-state rescat-
tering effects. Therefore, we expect that even the most impor-
tant effects beyondO(p6) are included in the dispersion rela-
tion. Of course, in order to extract values for the LECs, one
has to perform a matching of the dispersive and the chiral
representations. This can be done e.g. on the level of the
form factors [12–14]. Since the dispersion relation describes
the energy dependence, the matching point can be outside
the physical region, i.e. even at lower energies, where χPT
is expected to converge better.

Here, we follow an improved strategy for the matching: we
match the dispersive and the chiral representations not on the
level of form factors but directly on the level of subtraction
constants. Since the decomposition (67) is valid up to terms
of O(p8), the one-loop and even the two-loop result can
be written in this form, which allows us to extract a chiral
representation of the subtraction constants. This procedure
has the advantage that the matching is performed for each
function of one variable M0(s), . . . at its subtraction point,
i.e. at s = 0, t = 0 and u = 0, where indeed the chiral
representation is expected to be reliable.

4.4.1 Matching equations at O(p4)

Reconstruction of the χPT form factors Let us start by
reconstructing the NLO form factors in the standard disper-
sive form (68).

The LO χPT form factors are given by

FLO = GLO = MK√
2Fπ

. (119)

With the partial wave projections (58), we find

f LO
0 (s) = MK√

2Fπ

,

f LO
1 (s) = MK√

2Fπ

M2
K PL

2X2 , (120)

gLO
1 (s) = MK√

2Fπ

.

123



172 Page 28 of 65 Eur. Phys. J. C (2015) 75 :172

The isospin 1/2 form factors (20) are given by

F (1/2)
LO = MK√

2Fπ

, G(1/2)
LO =

√
2MK

Fπ

. (121)

Hence, the partial waves in the crossed channels (60) are

f (1/2)
0,LO (t) = MK√

2Fπ

3�Kπ − 5t

4t
,

f (1/2)
1,LO (t) = MK√

2Fπ

3M4
K (M2

π − s� − t)

4tλ�π (t)
,

g(1/2)
1,LO (t) = 3MK

2
√

2Fπ

, (122)

f (3/2)
0,LO (u) = MK√

2Fπ

,

f (3/2)
1,LO (u) = 0,

g(3/2)
1,LO (u) = 0.

The ππ -scattering amplitude can be written as [2]

T (0)(s, t, u) = 3A(s, t, u) + A(t, u, s) + A(u, s, t),
T (1)(s, t, u) = A(t, u, s) − A(u, s, t),

(123)

where at LO

ALO(s, t, u) = s − M2
π

F2
π

. (124)

The Mandelstam variables for ππ scattering satisfy

s + t + u = 4M2
π ,

(125)
t = −2q2(1 − z),

where q2 = s
4 −M2

π , z = cos θ . Hence, the ππ partial waves
are

t0
0,LO(s) = 1

2

∫ 1

−1
dz T (0)

LO (s, z) = 2s − M2
π

F2
π

,

(126)

t1
1,LO(s) = 3

2

∫ 1

−1
dz zT (1)

LO (s, z) = s − 4M2
π

F2
π

.

The Kπ -scattering amplitude is given by [42]

T (1/2)(s, t, u) = 3

2
T (3/2)(u, t, s) − 1

2
T (3/2)(s, t, u),

(127)

and at LO

T (3/2)(s, t, u) = 1

2F2
π

(M2
K + M2

π − s). (128)

Of course, the Mandelstam variables satisfy here s+ t +u =
2M2

K + 2M2
π . The partial waves are given by

t1/2
0,LO(s) = 1

8sF2
π

(5s2 − 2s(M2
K + M2

π ) − 3�2
Kπ ),

t1/2
1,LO(s) = 1

8sF2
π

(3s2 − 6s(M2
K + M2

π ) + 3�2
Kπ ), (129)

t3/2
0,LO(s) = 1

2F2
π

(M2
K + M2

π − s),

t3/2
1,LO(s) = 0.

Using the unitarity relation for the K�4 partial waves, we
can now easily construct their imaginary parts at NLO:

Im f NLO
l (s) = 1

2l + 1

1

32π
σπ(s)t I∗l,LO(s) f LO

l (s),

ImgNLO
l (s) = 1

2l + 1

1

32π
σπ(s)t I∗l,LO(s)gLO

l (s),

Im f (I )
l,NLO(t) = 1

2l + 1

1

16π

λ
1/2
Kπ (t)

t
t I∗l,LO(t) f (I )

l,LO(t),

Img(I )
l,NLO(t) = 1

2l + 1

1

16π

λ
1/2
Kπ (t)

t
t I∗l,LO(t)g(I )

l,LO(t),

(130)

hence

Im f NLO
0 (s) = 1

32π
σπ(s)

MK (2s − M2
π )√

2F3
π

,

Im f NLO
1 (s) = 1

3

1

32π
σπ(s)

MK (s − 4M2
π )√

2F3
π

M2
K PL

2X2 ,

ImgNLO
1 (s) = 1

3

1

32π
σπ(s)

MK (s − 4M2
π )√

2F3
π

,

Im f (1/2)
0,NLO(t) = 1

16π

λ
1/2
Kπ (t)

t

MK

32
√

2t2F3
π

× (5t2 − 2t (M2
K + M2

π ) − 3�2
Kπ )

× (3�Kπ − 5t),

Im f (1/2)
1,NLO(t) = 1

16π

λ
1/2
Kπ (t)

t

MK

8
√

2t F3
π

× (3t2 − 6t (M2
K + M2

π ) + 3�2
Kπ )

× M4
K (M2

π − s� − t)

4tλ�π (t)
,

Img(1/2)
1,NLO(t) = 1

16π

λ
1/2
Kπ (t)

t

MK

16
√

2t F3
π

× (3t2 − 6t (M2
K + M2

π ) + 3�2
Kπ ),
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Im f (3/2)
0,NLO(u) = 1

16π

λ
1/2
Kπ (u)

u

MK

2
√

2F3
π

(M2
K + M2

π − u),

Im f (3/2)
1,NLO(u) = 0,

Img(3/2)
1,NLO(u) = 0. (131)

By inserting these imaginary parts into the dispersion inte-
grals in (68), we can reconstruct the NLO form factors.
For the comparison with the explicit loop calculation, we
rewrite the dispersive integrals in terms of loop functions
(see Appendix A):

MNLO
0 (s) = m0

0,NLO + m1
0,NLO

s

M2
K

+ MK

2
√

2F3
π

× ((2s − M2
π )(B̄ππ (s) − B̄ππ (0))

+M2
π s B̄

′
ππ (0)),

MNLO
1 (s) = m0

1,NLO,

M̃NLO
1 (s) = m̃0

1,NLO + m̃1
1,NLO

s

M2
K

+ MK

6
√

2F3
π

× ((s − 4M2
π )(B̄ππ (s) − B̄ππ (0))

+ 4M2
π s B̄

′
ππ (0)),

NNLO
0 (t) = n1

0,NLO
t

M2
K

+ MK

32
√

2F3
π

×
(

(−25t + 5(5M2
K − M2

π ))

× (B̄Kπ (t) − B̄Kπ (0))

+3�Kπ

t2 (t (3M2
K − 7M2

π ) − 3�2
Kπ )

×
(

B̄Kπ (t) − B̄Kπ (0) − t B̄ ′
Kπ (0)

− t2

2
B̄ ′′
Kπ (0)

)

− 5t (5M2
K − M2

π )B̄ ′
Kπ (0)

+3

2
t�3

Kπ B̄
′′′
Kπ (0)

)

,

NNLO
1 (t) = 0,

ÑNLO
1 (t) = 3M3

K

16
√

2F3
π

(
1

t2 (t2 − 2t (M2
K + M2

π ) + �2
Kπ )

× (B̄Kπ (t) − B̄Kπ (0)) + 1

t
(2t (M2

K + M2
π )

−�2
Kπ )B̄ ′

Kπ (0) − �2
Kπ

2
B̄ ′′
Kπ (0)

)

,

RNLO
0 (u) = MK

2
√

2F3
π

((M2
K + M2

π − u)(B̄Kπ (u) − B̄Kπ (0))

− (M2
K + M2

π )u B̄ ′
Kπ (0)),

RNLO
1 (u) = 0,

R̃NLO
1 (u) = 0. (132)

We can now compare this expression with the one-loop cal-
culation [10,43,44]. As in our dispersive treatment, we only
consider ππ intermediate states in the s-channel and Kπ

intermediate states in the crossed channels, the K K̄ and ηη

loops in the s-channel and the Kη loops in the t-channel
have to be expanded in a Taylor series and absorbed by the
subtraction polynomial. The comparison of the dispersive
representation with the loop calculation then allows for the
extraction of the O(p4) values for the subtraction constants.

Note that the only contributions that we neglect when writ-
ing the O(p4) loop calculation in the dispersive form are the
second- and higher-order Taylor coefficients of the expanded
loop functions of higher intermediate states (K K̄ , ηη and
Kη). The result for the O(p4) subtraction constants can be
found in Appendix E.1.

χPT form factors in the Omnès representation The rea-
son why we do not use the standard dispersive form (68) for
the numerical solution of the dispersion relation but rather
the Omnès representation (85) is mainly the separation of
final-state rescattering effects: the Omnès function resums
the most important rescattering effects. The remaining dis-
persive integrals take the interplay of the different channels
into account.

It is therefore desirable to perform the matching to χPT
not on the level of the standard dispersive form but directly
with the Omnès representation. This should avoid mixing the
final-state resummation with the determination of the LECs.

However, it is not possible to write directly the χPT rep-
resentation in the Omnès form, because the chiral expan-
sion of the phase shifts does not have the correct asymptotic
behaviour. At LO, the phases grow linearly, hence the Omnès
dispersion integral (83) is logarithmically divergent. There-
fore, we subtract the dispersion integral once more:

�(s) = exp

(
s

π

∫ ∞

s0

δ(s′)
(s′ − s − iε)s′ ds

′
)

= exp

(
s

π

∫ ∞

s0

δ(s′)
s′2 ds′+ s2

π

∫ ∞

s0

δ(s′)
(s′−s−iε)s′2 ds′

)

=: exp

(

ω
s

M2
K

+ s2

π

∫ ∞

s0

δ(s′)
(s′ − s − iε)s′2 ds′

)

. (133)
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ω is divergent if evaluated in χPT. Let us postpone the deter-
mination of this constant for a moment.

Let us now use the Omnès representation to reconstruct
the NLO result for the form factors. At LO, the functions of
one variable are simply given by

MLO
0 (s) = M̃LO

1 (s) = MK√
2Fπ

,

MLO
1 (s) = NLO

0 (t) = NLO
1 (t) = ÑLO

1 (t)

= RLO
0 (u) = RLO

1 (u) = R̃LO
1 (u) = 0. (134)

We start by calculating the hat functions at LO:

M̂LO
0 (s) = M̂LO

1 (s) = ˆ̃MLO
1 (s) = N̂LO

1 (t) = R̂LO
1 (u)

= ˆ̃RLO
1 (u) = 0,

N̂LO
0 (t) = MK√

2Fπ

3�Kπ − 5t

4t
,

ˆ̃NLO
1 (t) = MK√

2Fπ

3M2
K

2t
,

R̂LO
0 (u) = MK√

2Fπ

. (135)

Further, we need the phase shifts at LO:

δ0
0,LO(s) = 1

32πF2
π

(2s − M2
π )σπ (s),

δ1
1,LO(s) = 1

96πF2
π

(s − 4M2
π )σπ (s),

δ
1/2
0,LO(t) = 1

128πF2
π

(5t2−2t (M2
K +M2

π )−3�2
Kπ )

λ
1/2
Kπ (t)

t2 ,

δ
1/2
1,LO(t) = 1

384πF2
π

(3t2−6t (M2
K +M2

π )+3�2
Kπ )

λ
1/2
Kπ (t)

t2 ,

δ
3/2
0,LO(u) = 1

32πF2
π

(M2
K +M2

π −u)
λ

1/2
Kπ (u)

u
,

δ
3/2
1,LO(u) = 0. (136)

We expand the Omnès representation (85) at NLO:

MNLO
0 (s) =

(

1 + ω0
0

s

M2
K

+ s2

π

∫ ∞

s0

δ0
0,LO(s′)

(s′ − s − iε)s′2 ds′
)

×
(

aM0 + bM0
s

M2
K

+ cM0
s2

M4
K

)

,

MNLO
1 (s) =

(

1 + ω1
1

s

M2
K

+ s2

π

∫ ∞

s0

δ1
1,LO(s′)

(s′ − s − iε)s′2 ds′
)

×
(

aM1 + bM1
s

M2
K

)

,

M̃NLO
1 (s) =

(

1 + ω1
1

s

M2
K

+ s2

π

∫ ∞

s0

δ1
1,LO(s′)

(s′ − s − iε)s′2 ds′
)

×
(

aM̃1 + bM̃1
s

M2
K

+ cM̃1
s2

M4
K

)

,

NNLO
0 (t) =

(

1 + ω
1/2
0

t

M2
K

+ t2

π

∫ ∞

t0

δ
1/2
0,LO(t ′)

(t ′ − t − iε)t ′2
dt ′
)

×
(

bN0
t

M2
K

+ t2

π

∫ ∞

t0

N̂LO
0 (t ′)δ1/2

0,LO(t ′)
(t ′ − t − iε)t ′2

dt ′
)

,

NNLO
1 (t) = 0,

ÑNLO
1 (t) =

(

1 + ω
1/2
1

t

M2
K

+ t2

π

∫ ∞

t0

δ
1/2
1,LO(t ′)

(t ′ − t − iε)t ′2
dt ′
)

×
(
t

π

∫ ∞

t0

ˆ̃NLO
1 (t ′)δ1/2

1,LO(t ′)
(t ′ − t − iε)t ′

dt ′
)

,

RNLO
0 (u) =

(

1 + ω
3/2
0

u

M2
K

+ u2

π

∫ ∞

u0

δ
3/2
0,LO(u′)

(u′−u−iε)u′2 du′
)

×
(

u2

π

∫ ∞

u0

R̂LO
0 (u′)δ3/2

0,LO(u′)
(u′ − u − iε)u′2 du′

)

,

RNLO
1 (u) = 0,

R̃NLO
1 (u) = 0. (137)

If we further expand these expressions chirally and neglect
higher orders, we obtain (note that only aM0 and aM̃1 do not
vanish at LO)

MNLO
0 (s) = aM0

LO

(

1+ω0
0

s

M2
K

+ s2

π

∫ ∞

s0

δ0
0,LO(s′)

(s′ − s − iε)s′2 ds′
)

+�aM0
NLO + bM0

NLO
s

M2
K

+ cM0
NLO

s2

M4
K

,

MNLO
1 (s) = aM1

NLO + bM1
NLO

s

M2
K

,

M̃NLO
1 (s) = aM̃1

LO

(

1+ω1
1

s

M2
K

+ s2

π

∫ ∞

s0

δ1
1,LO(s′)

(s′−s−iε)s′2 ds′
)

+�aM̃1
NLO + bM̃1

NLO
s

M2
K

+ cM̃1
NLO

s2

M4
K

,

NNLO
0 (t) = bN0

NLO
t

M2
K

+ t2

π

∫ ∞

t0

N̂LO
0 (t ′)δ1/2

0,LO(t ′)
(t ′ − t − iε)t ′2

dt ′,

NNLO
1 (t) = 0,

ÑNLO
1 (t) = t

π

∫ ∞

t0

ˆ̃NLO
1 (t ′)δ1/2

1,LO(t ′)
(t ′ − t − iε)t ′

dt ′,
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RNLO
0 (u) = u2

π

∫ ∞

u0

R̂LO
0 (u′)δ3/2

0,LO(u′)
(u′ − u − iε)u′2 du′,

RNLO
1 (u) = 0,

R̃NLO
1 (u) = 0, (138)

where

aM0
NLO = aM0

LO + �aM0
NLO, aM0

LO = MK√
2Fπ

,

aM̃1
NLO = aM̃1

LO + �aM̃1
NLO, aM̃1

LO = MK√
2Fπ

.
(139)

Next, we insert the LO phases and hat functions:

MNLO
0 (s) = aM0

NLO+
(

bM0
NLO + MK√

2Fπ

ω0
0

)
s

M2
K

+ cM0
NLO

s2

M4
K

,

+ s2

π

∫ ∞

s0

1

(s′ − s − iε)s′2
σπ(s′)
32π

×MK (2s′ − M2
π )√

2F3
π

ds′,

MNLO
1 (s) = aM1

NLO + bM1
NLO

s

M2
K

,

M̃NLO
1 (s) = aM̃1

NLO +
(

bM̃1
NLO + MK√

2Fπ

ω1
1

)
s

M2
K

+ cM̃1
NLO

s2

M4
K

+ s2

π

∫ ∞

s0

1

(s′ − s − iε)s′2
σπ(s′)
32π

×MK (s′ − 4M2
π )

3
√

2F3
π

ds′,

NNLO
0 (t) = bN0

NLO
t

M2
K

+ t2

π

∫ ∞

t0

1

(t ′ − t − iε)t ′2

×λ
1/2
Kπ (t ′)
16π t ′

MK (3�Kπ − 5t ′)
32

√
2t ′2F3

π

×(5t ′2 − 2t ′(M2
K + M2

π ) − 3�2
Kπ )dt ′,

NNLO
1 (t) = 0,

ÑNLO
1 (t) = t

π

∫ ∞

t0

1

(t ′ − t − iε)t ′
λ

1/2
Kπ (t ′)
16π t ′

M3
K

16
√

2t ′2F3
π

×(3t ′2 − 6t ′(M2
K + M2

π ) + 3�2
Kπ )dt ′,

RNLO
0 (u) = u2

π

∫ ∞

u0

1

(u′ − u − iε)u′2
λ

1/2
Kπ (u′)
16πu′

MK

2
√

2F3
π

×(M2
K + M2

π − u′)du′,
RNLO

1 (u) = 0,

R̃NLO
1 (u) = 0. (140)

We see that the form of the Omnès representation is com-
pletely equivalent to the standard representation, apart from
the presence of the additional subtraction constants cM0 , bM1

and cM̃1 , which also need to be determined. We expand the

t-channel Kη integrals up to linear terms in t and find

aM0
NLO = m0

0,NLO,

bM0
NLO = m1

0,NLO − MK√
2Fπ

ω0
0,

cM0
NLO = M3

K√
2F3

π

15M4
η + M2

K M2
π

1920π2M4
η

,

aM1
NLO = m0

1,NLO,

bM1
NLO = 0,

aM̃1
NLO = m̃0

1,NLO,

bM̃1
NLO = m̃1

1,NLO − MK√
2Fπ

ω1
1,

cM̃1
NLO = M3

K√
2F3

π

1

1920π2 ,

bN0
NLO = n1

0,NLO.

(141)

The constants ω0
0 and ω1

1 cannot be evaluated with the chi-
ral phases. If we evaluate them with the physical phases, this
leads to exactly the same matching equations for the determi-
nation of the Lr

i as if we would match the Taylor expansion
of the Omnès representation with the Taylor expansion of the
chiral result. Note, however, that the expressions obtained for
cM0 , bM1 and cM̃1 are different. E.g. for bM1 , the chiral expan-
sion leads to bM1

NLO = 0 while a Taylor expansion of the dis-

persion relation would require bM1 = −m0
1,NLO�1

1
′
(0)M2

K ,

where �1
1
′

is the derivative of the Omnès function calcu-
lated with the physical phases. Of course, the difference is
a higher-order effect in the chiral counting. As higher-order
effects can be important if due to final-state rescattering, we
would not like to intermingle them with the matching of the
subtraction constants. The matching on the basis of Taylor
coefficients would require the linear term of M1(s) to vanish
exactly, while the matching based on the chiral expansion of
the dispersion relation gives a non-zero linear term in M1(s)
due to the Omnès function – this is important information
which we wish to make use of in our fits.

4.4.2 Matching equations at O(p6)

Decomposition of the NNLO form factors In the follow-
ing, we describe the decomposition of the two-loop result
such that the matching can be performed at NNLO. Since
the NNLO chiral result has a different asymptotic behaviour
than the NLO result and our numerical dispersive represen-
tation, we have to use the representation (69), which uses a
different gauge and more subtractions than (68).
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The imaginary parts of the K�4 partial waves at NNLO
could again be reconstructed using the unitarity relations,
e.g.

Im f NNLO
l (s) = 1

2l + 1

1

32π
σπ(s)(t I∗l,LO(s) f LO

l (s)

+ �t I∗l,NLO(s) f LO
l (s) + t I∗l,LO(s)� f NLO

l (s)). (142)

However, instead of proceeding as for NLO, it is more
straightforward to decompose the two-loop result directly
into functions of one variable, then to impose the gauge con-
dition and extract the Taylor coefficients of the functions of
one variable.

The two-loop result for the form factors F and G was
computed in [11]. We have the full expressions in form of a
C++program at hand.4 It has the following structure:

XNNLO(s, t, u) = XLO + XNLO
L (s, t, u) + XNLO

R (s, t, u)

+XNNLO
C (s, t, u) + XNNLO

L (s, t, u) + XNNLO
P (s, t, u)

+XNNLO
V S (s, t, u) + XNNLO

VT (s, t, u) + XNNLO
VU (s, t, u),

(143)

where X ∈ {F,G} and the different parts denote the follow-
ing:

• XNLO
L : NLO polynomial containing the LECs Lr

i ,

• XNLO
R : NLO loops,

• XNNLO
C : NNLO polynomial containing the LECs Cr

i ,

• XNNLO
L : NNLO part containing Lr

i × Lr
i and Lr

i × loop,

• XNNLO
P : NNLO two-loop part without vertex integrals,

• XNNLO
V S : NNLO vertex integrals in the s-channel,

• XNNLO
VT : NNLO vertex integrals in the t-channel,

• XNNLO
VU : NNLO vertex integrals in the u-channel.

In Appendix E.2.1, we perform the explicit decomposi-
tion of the two-loop result into functions of one Mandelstam
variable according to (67) and (69) and evaluate numerically
the subtraction constants.

NNLO form factors in the Omnès representation As we
already pointed out for the NLO matching, it is desirable to
use the Omnès representation rather than the standard dis-
persion relation for the matching and the determination of
the LECs. Let us therefore derive the matching equations at
NNLO in the Omnès scheme.

4 We thank Johan Bijnens and Ilaria Jemos for providing the C++
implementation of the NNLO expressions.

We have to use the second gauge for the decomposition of
the NNLO representation (69). As a starting point, let us find
the NLO Omnès subtraction constants in the second gauge.
In the first gauge, we found RNLO

1 = R̃NLO
1 = 0, hence

cR0
NLO = MK√

2F3
π

M4
K

4 ((M2
K + M2

π )B̄ ′′
Kπ (0) − 2B̄ ′

Kπ (0)),

aR1
NLO = bR̃1

NLO = 0.

(144)

The gauge transformation (74) is then defined by

CR0
NLO = MK√

2F3
π

1

32π2

M4
K

�4
Kπ

×

⎛

⎜
⎜
⎝

(M2
K + M2

π )(M4
K − 8M2

K M2
π + M4

π )

3
+

4M4
K M4

π ln

(

M2
K

M2
π

)

�Kπ

⎞

⎟
⎟
⎠

,

AR1
NLO = BR̃1

NLO = 0. (145)

At NLO, the shifts in the subtraction constants (C.5) are there-
fore given by

δaM0
NLO = �2

0 − �Kπ��π

M4
K

CR0
NLO, δbM0

NLO = −2�0

M2
K

CR0
NLO,

δcM0
NLO = CR0

NLO, δdM0
NLO = 0,

δaM1
NLO = −2�0

M2
K

CR0
NLO,

δbM1
NLO = 2CR0

NLO, δcM1
NLO = 0,

δaM̃1
NLO = −�2

0 − �Kπ��π

M4
K

CR0
NLO, δbM̃1

NLO = 2�0

M2
K

CR0
NLO,

δcM̃1
NLO = −CR0

NLO, δd M̃1
NLO = 0,

δbN0
NLO = −3(�Kπ + 2�0)

4M2
K

CR0
NLO, δcN0

NLO = −5

4
CR0

NLO,

δaN1
NLO = 3

2
CR0

NLO, δbÑ1
NLO = −3

2
CR0

NLO,

δcR0
NLO = CR0

NLO, δaR1
NLO = 0, δbR̃1

NLO = 0. (146)

When studying now the Omnès representation at NNLO, we
notice that the asymptotic behaviour of the phases at NNLO
is even worse than at NLO, hence we have to subtract the
Omnès function three times:

�(s) = exp

(
s

π

∫ ∞

s0

δ(s′)
(s′ − s − iε)s′ ds

′
)

= exp

(
s

π

∫ ∞

s0

δ(s′)
s′2 ds′
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+ s2

π

∫ ∞

s0

δ(s′)
s′3 ds′+ s3

π

∫ ∞

s0

δ(s′)
(s′−s−iε)s′3 ds′

)

=: exp

(

ω
s

M2
K

+ω̄
s2

M4
K

+ s3

π

∫ ∞

s0

δ(s′)
(s′−s−iε)s′3 ds′

)

.

(147)

ω and ω̄ are both divergent if evaluated in χPT at NNLO,
hence we will use the physical phases to determine them.

In the case of the NLO matching, we have derived the
relation between the standard and the Omnès subtraction con-
stants (141) by comparing the Taylor coefficients of the chi-
rally expanded Omnès representation with the Taylor coeffi-
cients of the standard dispersive representation. Although it is
instructive to understand the chiral expansion of the Omnès
representation, a shortcut can be taken. Note that the chi-
ral expansion and the Taylor expansion are interchangeable.
Therefore, we easily obtain the relations between the stan-
dard subtraction constantsm0

0, . . . and the Omnès subtraction
constants aM0 , . . . by chirally expanding the Taylor coeffi-
cients of the Omnès representation (C.1) and comparing it
with the Taylor coefficients of (69).

This leads to the following relations between the relevant
subtraction constants:

m0,NNLO
0 = aM0

NNLO,

m1,NNLO
0 = bM0

NNLO + ω0
0a

M0
NLO,

m2,NNLO
0 = cM0

NNLO+ω0
0b

M0
NLO+ 1

2
ω0

0
2
aM0

LO +aM0
NLOω̄0

0+h.o.,

m0,NNLO
1 = aM1

NNLO,

m1,NNLO
1 = bM1

NNLO + ω1
1a

M1
NLO,

m̃0,NNLO
1 = aM̃1

NNLO,

m̃1,NNLO
1 = bM̃1

NNLO + ω1
1a

M̃1
NLO,

m̃2,NNLO
1 = cM̃1

NNLO + ω1
1b

M̃1
NLO + 1

2
ω1

1
2
aM̃1

LO +aM̃1
NLOω̄1

1+h.o.,

n1,NNLO
0 = bN0

NNLO,

n2,NNLO
0 = cN0

NNLO + ω
1/2
0 bN0

NLO,

n0,NNLO
1 = aN1

NNLO,

ñ1,NNLO
1 = bÑ1

NNLO. (148)

The NNLO chiral expansion of the full Omnès representation
can be found in Appendix E.2.2 and leads to the same result. It
can be used to identify all the imaginary parts and to connect

the different dispersive integrals with the discontinuities of
the loop diagrams.

5 Results

In this chapter, we discuss the results for the low-energy con-
stants that we determine by fitting the dispersive representa-
tion to data and matching it to χPT. In order to understand
the differences between the results at NLO and NNLO and
the source of complications that appear at NNLO, it is useful
to study in a first step the results of direct χPT fits. We per-
form direct fits at NLO and NNLO and compare our results
with the literature before using the whole machinery of the
dispersive framework matched to χPT at NLO and finally at
NNLO.

5.1 Comparison of direct χPT fits

The most recent fits to K�4 data performed in the literature
are [45]. There a global fit is performed, taking into account
the threshold expansion parameters of the K�4 form factor
measurement of NA48/2 [9]:

F = fs + f ′
s q

2 + · · · ,

fs = 5.705 ± 0.035, f ′
s = 0.867 ± 0.050

G = gp + g′
pq

2 + · · · ,

gp = 4.952 ± 0.086, g′
p = 0.508 ± 0.122, (149)

where q2 = s
4M2

π
− 1. In [45], the above quantities are fitted

with the form factors at cos θ = 0 instead of the first partial
wave. In addition to the K�4 form factor data, the global fit of
[45] uses many other inputs, like data on the different decay
constants and masses, ππ - and Kπ -scattering parameters,
quark mass ratios etc.

We compare now different strategies for direct fits with
the results of [45]. We use only K�4 data for our fits and
therefore are only sensitive to the LECs Lr

1, Lr
2 and Lr

3 [12].
The other LECs are taken as a fixed input.

5.1.1 Direct fits at O(p4)

Fits of threshold parameters In order to make the connec-
tion to [45], we first perform a direct NLO fit to the NA48/2
threshold parameters in (149). Using cos θ = 0, i.e. the first
Taylor coefficient of an expansion in z = cos θ , and the LEC
inputs Lr

4 = 0 and the fitted value for Lr
5 of [45], we repro-

duce almost exactly the result of [45] for Lr
1, Lr

2 and Lr
3; see

the second and third column in Table 2. If we use instead
the partial-wave projection (55), the fit results for Lr

1 and Lr
2

change a bit, as shown in the fourth column of Table 2. The
last column uses lattice results [46,47] for the input LECs.
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Table 2 Comparison of direct NLO fits to the NA48/2 threshold param-
eters [9]. The renormalisation scale is μ = 770 MeV. The last column
uses the lattice determination of [46,47] for the input LECs. The uncer-
tainties are purely statistical

Ref. [45] Taylor PWE PWE

103 · Lr
1 0.98 (09) 0.99 (09) 1.15 (09) 1.17 (09)

103 · Lr
2 1.56 (09) 1.57 (09) 1.48 (08) 1.50 (08)

103 · Lr
3 −3.82 (30) −3.83 (30) −3.82 (30) −3.87 (30)

103 · Lr
4 ≡0 ≡0 ≡0 ≡0.04

103 · Lr
5 1.23 (06) ≡1.23 ≡1.23 ≡0.84

χ2 16 0.3 0.3 0.3

dof 5 1 1 1

χ2/dof 3.2 0.3 0.3 0.3

Table 3 Comparison of direct NLO fits to the NA48/2 and E865 form
factor measurements. The renormalisation scale is μ = 770 MeV. For
Lr

4 and Lr
5, we use lattice input [46,47], for Lr

9 the determination of
[48]. The uncertainties are purely statistical

Fits of the complete form factor data In a next step, we
no longer fit the threshold expansion parameters (149) of the
form factors, but the form factor data of NA48/2 [6,9] and
E865 [7,8], discussed in Sect. 4.1. The second column of
Table 3 shows the result of the NLO fit to the one-dimensional
NA48/2 data without isospin corrections (but with the cor-
rected normalisation of Fs to account for the s�-dependence).
In the third column, isospin corrections are applied to the
fitted data (Table 10). The fourth and fifth column show the
results of a combined fit to NA48/2 and E865 data (Table 11).
The smaller χ2 value in the fits to the data with isospin-
breaking corrections is due to the fact that the isospin cor-
rections introduce an additional uncertainty in the data.

Figure 12 shows a comparison of the NA48/2 threshold
parameter fit of [45] with the result of the fit to the whole
form factor data set (fourth column of Table 3). It helps one
to understand the difference between the fitted LECs in the
two procedures: in the fit to the threshold parameters, the
curvature of the form factor is neglected. Since the NLO
chiral representation cannot reproduce the curvature, the data

5.4

5.6

5.8

6

6.2

6.4

0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15

F
s(
s,
s �

)

s/GeV2

S-wave of F

NLO fit of Ref. [45]
Fit to NA48/2 and E865

NA48/2 data
E865 data

Fig. 12 Comparison of different fits for the S-wave of the form factor
F : NA48/2 threshold parameter fit of [45] and a fit to the full data set.
The (s, s�)-phase space is projected on the s-axis. No isospin corrections
are applied

points at higher energies reduce the slope in a fit to the whole
data set.

5.1.2 Direct fits at O(p6)

χPT at NNLO suffers from the problem that many new low-
energy constantsCr

i appear in theO(p6) Lagrangian. In K�4,
in total 24 linearly independent combinations of the Cr

i enter
in the NNLO chiral representation of the form factors F
and G. A fit of so many parameters seems out of question.
We would rather like to use some input values for the Cr

i .
Unfortunately, only very few of the NNLO LECs are known
reliably. We could either use determinations of the Cr

i with
models like the chiral quark model [49], a resonance esti-
mate [11,50] or the educated guess of [45]. These different
estimates, however, do not lead to compatible results [45].

In Table 4, we display the results of our direct χPT fits
at NNLO in comparison with the results of [45]. In con-
trast to [45], we do not use the threshold parameters but the
whole form factor data sets of NA48/2 and E865 corrected by
isospin-breaking effects [33]. It turns out that even at NNLO,
χPT has trouble to reproduce the curvature of the Fs data.
We also note that the results for the fitted LECs at NNLO
differ quite significantly from the results at NLO.

5.2 Matching the dispersion relation to χPT

With the direct χPT fits, we have seen a number of problems:
First, at NLO and even at NNLO, the energy dependence of
the Fs form factor is not very well described. Second, at
O(p6), the appearance of quite a large number of additional
LECs reduces the predictive power of χPT. Some input val-
ues for the Cr

i have to be assumed, as a fit of K�4 data alone
cannot determine all these LECs.
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Table 4 Direct NNLO fits for different choices of the Cr
i . The results

of the fits of [45] are shown for comparison. The renormalisation scale
is μ = 770 MeV. Our results are fits to the entire form factor data

including isospin corrections. The uncertainties are purely statistical.
The NLO input LECs Lr

4, Lr
5, Lr

6 and Lr
8 are lattice determinations

[46,47], Lr
7 is the BE14 value [45] and Lr

9 is taken from [48]

Ref. [45] Ref. [45] NA48/2 NA48/2 & E865 NA48/2 NA48/2 & E865

Cr
i ≡0 BE14 ≡0 ≡0 BE14 BE14

103 · Lr
1 0.67 (06) 0.53 (06) 0.34 (03) 0.28 (02) 0.33 (03) 0.27 (02)

103 · Lr
2 0.17 (04) 0.81 (04) 0.42 (06) 0.35 (05) 0.95 (06) 0.89 (05)

103 · Lr
3 −1.76 (21) −3.07 (20) −1.54 (14) −1.25 (11) −3.06 (14) −2.80 (11)

103 · Lr
4 0.73 (10) ≡0.3 ≡0.04 ≡0.04 ≡0.04 ≡0.04

103 · Lr
5 0.65 (05) 1.01 (06) ≡0.84 ≡0.84 ≡0.84 ≡0.84

103 · Lr
6 0.25 (09) 0.14 (05) ≡0.07 ≡0.07 ≡0.07 ≡0.07

103 · Lr
7 −0.17 (06) −0.34 (09) ≡ −0.34 ≡ −0.34 ≡ −0.34 ≡ −0.34

103 · Lr
8 0.22 (08) 0.47 (10) ≡0.36 ≡0.36 ≡0.36 ≡0.36

103 · Lr
9 ≡5.93 ≡5.93 ≡5.93 ≡5.93

χ2 26 1.0 81.3 128.7 52.5 91.2

dof 9 27 39 27 39

χ2/dof 2.9 3.0 3.3 1.9 2.3

We now turn to the results using the dispersive representa-
tion as an intermediate step in the determination of the LECs:
we fit the K�4 form factor data with the dispersion relation.
The matching to χPT relates the subtraction constants of the
dispersion relation to the LECs. As the dispersion relation
provides a resummation of final-state rescattering effects, we
trust that we will obtain a better description of the energy
dependence of the form factors. However, it is clear that the
matching of the dispersion relation to NNLO χPT will not
be free of the problem related to the large number of LECs.
We will alleviate the situation by including additional con-
straints on the chiral convergence in the fit. This will enable
us to fit partially the contribution of the NNLO LECs to the
subtraction constants.

5.2.1 Matching at O(p4)

Our numerical solution of the dispersion relation (85) is
parameterised by nine subtraction constants, which in fact
are functions of s�. If we use the matching at NLO to provide
a chiral representation of the subtraction constants, we see

that aM0
NLO and aM̃1

NLO are linear in s�, while the other subtrac-
tion constants do not depend on s�. We therefore introduce
this s�-dependence according to (118) and have to determine
in total 11 parameters.

We fit our dispersive representation to the data of both
experiments, shown in Appendix D. In the case of NA48/2,
the use of the two-dimensional instead of the one-dimensional
data set has basically no effect on the determination of the
LECs Lr

1, Lr
2 and Lr

3 but gives us the option to fit the s�-
dependence and therefore to determine also Lr

9. In order to
test the influence of the isospin-breaking corrections, we also
perform fits to the data without isospin corrections.

An unconstrained fit with the 11 subtraction parameters
leads to a low relative χ2 of 0.77 (with 94 degrees of freedom,
dof) for the NA48/2 data alone or 0.74 (106 dof) for the com-
bined data set of NA48/2 and E865. However, the soft-pion
theorems in such a fit are not well reproduced. Therefore, we
chose to use the soft-pion theorems as constraints in the fit:
the first soft-pion theorem (112) with a tolerance of 2 % and
the second soft-pion theorem (113) of 5 %. These numbers
are inspired by the typical NNLO deviation. In these fits the
relative χ2 slightly increases to 0.79 (96 dof) for the NA48/2
fit and 0.77 (108 dof) for the combined fit. This shows that in
a fit with all 11 parameters, the soft-pion theorems are not ful-
filled automatically but are not a strong additional constraint.

In an unconstrained fit, the result for the subtraction con-
stants turns out to be rather unstable: the statistical uncertain-
ties are large and some of the subtraction constants change
drastically if the E865 data is included. We consider these fits
of little interest and fix to an a priori value those subtraction
constants that have the largest statistical uncertainty: these
are the subtraction constants of highest order in each func-
tion and the one parametrising the s�-dependence in Gp, i.e.

cM0 , bM1 , cM̃1 and aM̃1
1 . We fix these subtraction constants to

the NLO chiral prediction in the matching (141): while cM0 ,

bM1 and cM̃1 are purely numerical, aM̃1
1 depends on Lr

2 and
Lr

9. We take those two LECs as input and iterate the fit after
the matching to reach self-consistency for Lr

2 (and Lr
9 if this

LEC is determined in the matching as well).

Seven subtraction constants aM0
0 , aM0

1 , bM0 , aM1 , aM̃1
0 ,

bM̃1 and bN0 remain to be fitted to the data. In the matching
equations (i.e. 141 together with Appendix E.1), the LECs
Lr

1, Lr
2, Lr

3 and Lr
9 are overdetermined. Hence, we have to use

a second χ2 minimisation to fix these LECs. As an alternative
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Table 5 Fit results for the dispersion relation matched to χPT at NLO. The renormalisation scale is μ = 770 MeV

NA48/2 NA48/2 and E865 NA48/2 NA48/2 and E865 NA48/2 NA48/2 and E865

Isospin corr. ✗ ✗ ✓ ✓ ✓ ✓

σSPT1 – – – – 2 % 2 %

σSPT2 – – – – 5 % 5 %

103 · Lr
1 0.52 (02) (05) 0.48 (02) (05) 0.54 (02) (05) 0.50 (02) (05) 0.54 (02) (05) 0.50 (02) (05)

103 · Lr
2 1.00 (05) (07) 0.94 (04) (07) 0.94 (05) (07) 0.88 (05) (07) 0.94 (05) (07) 0.88 (05) (07)

103 · Lr
3 −3.03 (11) (07) −2.83 (09) (07) −2.99 (11) (07) −2.79 (10) (07) −2.99 (11) (07) −2.80 (10) (07)

103 · Lr
9 4.70 (40) (63) 4.64 (39) (61) 4.51 (43) (63) 4.44 (43) (61) 4.52 (43) (63) 4.45 (43) (61)

χ2 100.9 133.3 86.1 116.8 98.0 128.8

dof 101 113 101 113 103 115

χ2/dof 1.0 1.2 0.9 1.0 1.0 1.1

to this two-step procedure (first fit to the data, then matching
to χPT), we can directly use the NLO chiral representation of
the subtraction constants and perform the fit of the dispersive
representation to the data with the LECs as fitting parameters.
As expected, these two strategies lead to almost identical
numerical results for the LECs.

In Table 5, we show the results of the fits of the dispersion
relation matched to NLO χPT. For the input LECs, we use
lattice results [46,47]:

103 · Lr
4 = 0.04(14),

103 · Lr
5 = 0.84(38). (150)

The χ2 and degrees of freedom correspond to the strategy
of using the LECs as fitting parameters. If we use the two-step
fitting/matching strategy instead, the χ2/dof of the fit of the
subtraction constants to the data is good: around 0.8 for the
fit to NA48/2 and around 1.0 for the fit to both experiments.
At the same time, the relative χ2/dof of the matching is bad
(between 2.9 and 6.1). This is not surprising because the sum
of the total χ2 of the two steps is approximately equal to the
total χ2 in the one-step procedure, while the dof in the second
step are drastically reduced.

The first bracket indicates the statistical uncertainty due
to the fitted data. The second bracket gives the systematic
uncertainty. In Sect. 5.3, we will discuss in more detail the
different sources of uncertainty.

The fit results for Lr
9 are not in agreement with the deter-

mination of [48],

103 · Lr
9 = 5.93(43). (151)

Note that the influence of Lr
9 on Lr

1, Lr
2 and Lr

3 is minimal:
if Lr

9 is fixed to (151), we find 103 · Lr
1 = 0.51(02)(06),

103 · Lr
2 = 0.89(05)(07) and 103 · Lr

3 = −2.82(10)(07).
While the final results for the LECs do not differ signif-

icantly in the one-step and two-step strategies, a difference
can be observed concerning the soft-pion theorems. If we
use the two-step matching strategy, the soft-pion theorems

are not automatically satisfied, but if they are imposed as a
fitting constraint, they can be perfectly satisfied with only a
slight increase of the χ2. In contrast, in the one-step strat-
egy, where the subtraction constants have to fulfil the chiral
constraints, the accuracy of the soft-pion theorems lies at ∼4
and ∼10 %, respectively. This does not change with the soft-
pion constraints added to the fit, which only increases the χ2 a
bit.

The influence of the isospin-breaking corrections of [33]
is about the size of the statistical uncertainty in the case of
Lr

1 and Lr
2, while Lr

3 is less sensitive to the isospin effects.
A plot of the data points indicates that the two experiments

NA48/2 and E865 are in agreement, which is confirmed by
the fit results. We find it worthwhile to stress that this is only
the case if the normalisation of the Fs data points of NA48/2
is determined including the s�-dependence (for the values in
the 10 published bins, this requires the normalisation to be
increased by 0.77 %). If the published values are used, which
are normalised neglecting the s�-dependence, a quite strong
tension between the two experiments is observed, resulting
in higher χ2 values for combined fits.

We note that the χ2 in the dispersive treatment is clearly
improved compared to the direct fit with χPT at NLO: in
a fit to the one-dimensional data in Appendix D, the χ2 of
a dispersive fit is 1.2 instead of 2.5 for the direct chiral fit
(both with 27 dof). This is illustrated in Fig. 13: in contrast
to a pure chiral treatment, the dispersion relation allows to
describe the curvature of the S-wave of the form factor F . We
interpret this as the result of the resummation of final-state
rescattering effects. Figure 14 shows the fitted P-waves of F
and G.

5.2.2 Matching at O(p6)

We have seen that when using one-loop χPT, the dispersive
treatment clearly exhibits its powers, and the advantage over
a pure chiral treatment is evident: the dispersive representa-
tion is able to describe the energy dependence of the form
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Fig. 13 Fit result for the S-wave of the form factor F . The dispersive
description reproduces beautifully the curvature of the form factor. The
(s, s�)-phase space is projected on the s-axis, the plotted lines corre-
spond to splines through the (s, s�)-values of the two data sets

factors, hence the χ2 of the fit to the whole form factor data is
much better. Due to the resummation of final-state rescatter-
ing effects, we expect the dispersive representation to capture
the most important higher-order contributions and to render
the determination of the LECs more robust.

In combination with two-loopχPT, the treatment becomes
more difficult. The matching equations at NNLO relate the
subtraction constants to chiral expressions that contain the
O(p6) LECs Cr

i . The largest obstacle in a chiral treatment at
NNLO is the large number of poorly known Cr

i . In the dis-
persive treatment with NNLO matching, the same problem
occurs. It turns out that the determination of the NLO LECs
is still strongly affected by the choice of the Cr

i , a situation
known from direct χPT fits [45,50].

In order to alleviate this problem, we note that not all
choices of the input Cr

i lead to a good convergence of the
chiral expansion. In our dispersion relation, there appear nine
subtraction constants, which are gauge-dependent quantities.

Since the gauge transformation (74) is described by three
parameters, we can find six gauge-invariant linear combina-
tions of subtraction constants. For these linear combinations,
we require a good chiral convergence. We obtain this by mod-
ifying the fitting procedure as follows.

• We introduce nine additional fitting parameters, corre-
sponding to the contribution of the Cr

i to the subtraction
constants.

• We add to the χ2 nine observations of these parameters
corresponding to the input values of the Cr

i with a 50 %
tolerance for the linear combinations of the Cr

i .
• We add to the χ2 six observations of the total O(p6) cor-

rection to the gauge-invariant linear combinations of sub-
traction constants. The observation is zero ±5.6 % of the
O(p4) contribution (5.6 % corresponds to M2

η/(4πFπ )2).

With this setup, we are able to perform the NNLO matching
with a reduced dependence on the input values of the Cr

i . In
Table 6, we present the matching results at NNLO, using the
‘preferred values’ of [45] as input for the Cr

i .
The fit results with Lr

9 taken as input are shown in the
second and third column of Table 6. Here, the corrections
from NLO to NNLO matching for all three LECs are smaller
than the corrections between NLO and NNLO observed in
direct χPT fits. The larger uncertainties with respect to the
NLO matching are explained by the additional fitting param-
eters for the Cr

i contribution to the subtraction constants. If
we take as input for the Cr

i the resonance estimate of [50],
we obtain {Lr

1, L
r
2, L

r
3} = {0.65, 0.26,−1.79} · 10−3. With

the Cr
i input taken from the chiral quark model [49], we find

{Lr
1, L

r
2, L

r
3} = {0.49, 0.65,−2.44} · 10−3. We prefer the

BE14 input values for the Cr
i , because they lead to the best

chiral convergence and the best χ2 of the fit.
The fit results change quite drastically if we include Lr

9 in
the fit. These fit results are shown in the fourth and fifth
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Fig. 14 Fit results for the P-waves of the form factors F and G. The (s, s�)-phase space is again projected on the s-axis
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Table 6 Fit results for the
dispersion relation matched to
χPT at NNLO. The
renormalisation scale is
μ = 770 MeV. As in Table 4,
we use lattice input for Lr

4, Lr
5,

Lr
6 and Lr

8 [46,47], Lr
7 is the

BE14 value [45] and the input
value for Lr

9 is taken from [48]

NA48/2 NA48/2 and E865 NA48/2 NA48/2 and E865

103 · Lr
1 0.82 (16) (09) 0.69 (16) (08) 0.93 (17) (04) 0.78 (17) (03)

103 · Lr
2 0.71 (10) (10) 0.63 (09) (10) 1.11 (17) (08) 0.97 (17) (08)

103 · Lr
3 −3.10 (40) (27) −2.63 (39) (24) −3.96 (49) (14) −3.38 (48) (10)

103 · Lr
9 ≡5.93 ≡5.93 8.36 (87) (48) 8.05 (86) (39)

χ2 91.8 123.9 83.1 115.3

dof 110 122 109 121

χ2/dof 0.8 1.0 0.8 1.0

Table 7 Matching results for the LECs at NLO and NNLO. The scale
is μ = 770 MeV

NLO NNLO

103 · Lr
1(μ) 0.51 (02) (06) 0.69 (16) (08)

103 · Lr
2(μ) 0.89 (05) (07) 0.63 (09) (10)

103 · Lr
3(μ) −2.82 (10) (07) −2.63 (39) (24)

Table 8 Statistical and systematic correlations of the fitted LECs at
NLO

Statistical
correlation

Lr
2 Lr

3 Systematic
correlation

Lr
2 Lr

3

Lr
1 0.49 −0.72 Lr

1 −0.69 −0.31

Lr
2 −0.95 Lr

2 −0.29

column of Table 6. In the matching equations at NNLO,
a stronger correlation between Lr

9 and the other LECs is
introduced due to their appearance in the s�-dependence. At
present, alternative determinations of Lr

9 are clearly more
reliable than this one, and we therefore prefer here the fits
with Lr

9 taken as input. However, if the s�-dependence of the
form factors will be measured in forthcoming experiments
with even higher statistics, this could provide a new reliable
way to determine Lr

9.

5.3 Error analysis

In the following, we analyse the different sources of uncer-
tainties in the determination of the LECs using the NLO and
NNLO matching. In table 7 we give once more the NLO and
NNLO values for the LECs, obtained from the combined fits
to the NA48/2 and E865 data, where Lr

9 is taken as a fixed
input [48].

The first error indicates the statistical one, i.e. the error
calculated in the linear fit of the parameters. This error is
due to the uncertainty of the fitted data including isospin
corrections. In the case of NNLO matching, it includes also
the uncertainty introduced with the 50 % tolerance of the Cr

i
contribution to the subtraction constants. The second error is
due to the systematics of our approach. The corresponding
statistical and systematic correlations are shown in Tables 8
and 9.

Table 9 Statistical and systematic correlations of the fitted LECs at
NNLO

Statistical
correlation

Lr
2 Lr

3 Systematic
correlation

Lr
2 Lr

3

Lr
1 0.31 −0.32 Lr

1 0.23 −0.83

Lr
2 −0.84 Lr

2 −0.70

Figures 15, 16 and 17 show bar charts of the uncertain-
ties of the LECs. The fractional uncertainties are summed in
squares and determined as follows:

• The uncertainty due to the K�4 form factor data is the
statistical uncertainty of a fit where no isospin corrections
are included and the Cr

i contributions are fixed to the
fitted values.

• The uncertainty due to isospin corrections is the differ-
ence in squares of the statistical uncertainties of fits to
data with and without isospin corrections, again with the
Cr
i contributions fixed to the fitted values.

• The uncertainty due to the Cr
i is the difference in squares

of the statistical uncertainties of fits to isospin corrected
data with the Cr

i contributions either fitted or fixed to the
fitted values.

• For the ππ phases [28,29], we vary all the 28 parameters
and sum the variations of the LECs in squares. In the bar
charts, this is the uncertainty labelled by ‘ππ phases, low
energy’.

• The next fractional uncertainty is due to the high-energy
behaviour of the ππ phases. We sum in squares the dif-
ferences between the high-energy solutions explained in
Sect. 3.2.1.

• The Kπ phases are simply varied between the centre and
upper/lower limit of the error bands. This influence is
labelled as ‘Kπ phases, low energy’.

• The uncertainty due to the high-energy behaviour of the
Kπ phases is estimated with the two solutions for each
of the Kπ phases as explained in Sect. 3.2.2.

• The input LECs are varied by their uncertainties given in
(150) and (151).

• We have checked that the numerical uncertainties due to
the discretisation, interpolation and numerical integration
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Fig. 15 Contributions to the uncertainty of Lr
1 in the O(p4) and O(p6) matching in units of 10−5

Fig. 16 Contributions to the uncertainty of Lr
2 in the O(p4) and O(p6) matching in units of 10−5

Fig. 17 Contributions to the uncertainty of Lr
3 in the O(p4) and O(p6) matching in units of 10−5
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of the functions as well as the iteration procedure are
completely negligible.

We note that at NLO, the largest contribution to the sys-
tematic errors comes from the high-energy behaviour of the
phase shifts, either from the ππ phases in the case of Lr

1 and
Lr

2 or the Kπ phases in the case of Lr
3. The uncertainties due

to the low-energy parameterisation of the phases are small.
The uncertainty due to the input LEC Lr

9 is very small as well.
At NNLO, the high-energy behaviour of the phases is

again a large contribution to the uncertainty. Lr
9 has now

a large impact on the uncertainty of Lr
2. The additional LECs

Lr
6, Lr

7 and Lr
8 have almost no influence on the uncertainty.

The largest uncertainty is due to the fitted contribution of the
Cr
i , which is part of the statistical uncertainty.

6 Conclusion and outlook

We have presented a new dispersive treatment of K�4 decays,
which provides a very accurate description of the hadronic
form factors F and G. The dispersion relation is valid up
to and including O(p6) in the chiral counting. Further-
more, it provides a resummation of final-state ππ - and Kπ -
rescattering effects, which we believe to be the most impor-
tant contribution beyond O(p6).

Our dispersion relation for K�4 is written in the form of
an Omnès representation. It consists of a set of coupled inte-
gral equations. We have solved this system numerically with
an iterative procedure. The solutions are parameterised by
subtraction constants, which we have determined in a fit to
the data and by using the soft-pion theorem as well as chiral
input. In contrast to a pure chiral description, the dispersion
relation describes perfectly the experimentally observed cur-
vature of the S-wave of the form factor F , which we interpret
as a result of significant ππ -rescattering effects. This is yet
another case in which high-precision data clearly call for
effects which go even beyond NNLO in χPT. These effects
only concern the momentum dependence of the form factors:
we see no sign that quark mass dependence beyond NNLO
is required by data.

By using the matching equations to χPT we have extracted
the values of the low-energy constants Lr

1, Lr
2 and Lr

3. The
correction from NLO to NNLO, when matching the chiral
and dispersive representations and fitting the latter to the
data are smaller than the corrections from NLO to NNLO
observed in direct χPT fits. Constraints on the chiral con-
vergence of the subtraction constants allow us to reduce the
dependence on the input values for the Cr

i . Still, the poorly
known values of the Cr

i are responsible for the larger uncer-
tainties in the matching at NNLO.

Our results for the LECs obtained by matching χPT at
NLO are:

Lr
1 = 0.51(06) · 10−3, Lr

2 = 0.89(09) · 10−3,

Lr
3 = −2.82(12) · 10−3, (152)

whereas the matching at NNLO gives

Lr
1 = 0.69(18) · 10−3, Lr

2 = 0.63(13) · 10−3,

Lr
3 = −2.63(46) · 10−3. (153)

The two-dimensional NA48/2 data set for the S-wave of F ,
which shows both the s- and the s�-dependence, has allowed
us to extract a value for Lr

9, which is roughly compatible with
previous determinations. In accuracy, however, it cannot yet
compete, as it reflects the low precision in the measurement
of the s�-dependence of F . The determination of Lr

9 is also
quite strongly dependent on whether the matching is done at
NLO or NNLO.
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A Scalar loop functions

We use the following conventions for the scalar one-loop
functions in n dimensions:

A0(m
2) := 1

i

∫
dnq

(2π)n

1

[q2 − m2] ,

B0(p
2,m2

1,m
2
2) := 1

i

∫
dnq

(2π)n

1

[q2 − m2
1][(q + p)2 − m2

2]
.

(A.1)

These loop functions are UV-divergent. We define the renor-
malised loop functions in the MS scheme:

A0(m
2) = −2m2λ + Ā0(m

2) + O(4 − n),

B0(p
2,m2

1,m
2
2) = −2λ + B̄0(p

2,m2
1,m

2
2) + O(4 − n),

(A.2)
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where

λ = μn−4

16π2

(
1

n − 4
− 1

2
(ln(4π) + 1 − γE )

)

. (A.3)

μ denotes the renormalisation scale.
The renormalised loop functions are given by [11]

Ā0(m
2) = − m2

16π2 ln

(
m2

μ2

)

,

B̄0(p
2,m2

1,m
2
2) = − 1

16π2

m2
1 ln

(

m2
1

μ2

)

− m2
2 ln

(

m2
2

μ2

)

m2
1 − m2

2
(A.4)

+ 1

32π2

(

2 +
(

− �

p2 + �

�

)

ln

(

m2
1

m2
2

)

− ν

p2 ln

(
(p2 + ν)2 − �2

(p2 − ν)2 − �2

))

,

where

� := m2
1 − m2

2,

� := m2
1 + m2

2, (A.5)

ν := λ1/2(s,m2
1,m

2
2).

The renormalised two-point function fulfils a once-
subtracted dispersion relation:

B̄0(s,m
2
1,m

2
2) = B̄0(0,m2

1,m
2
2)

+ s

π

∫ ∞

(m1+m2)2

Im B̄0(s′,m2
1,m

2
2)

(s′ − s − iε)s′ ds′,

(A.6)

where the imaginary part is given by

Im B̄0(s,m
2
1,m

2
2) = 1

16π

λ1/2(s,m2
1,m

2
2)

s
(A.7)

and the value at s = 0 is

B0(0,m2
1,m

2
2) = − 1

16π2

m2
1 ln

(

m2
1

μ2

)

− m2
2 ln

(

m2
2

μ2

)

m2
1 − m2

2

.

(A.8)

The first and second derivative at s = 0 are

B ′
0(0,m2

1,m
2
2) = 1

32π2

��−2m2
1m

2
2 ln

(
m2

1
m2

2

)

�3 ,

B ′′
0 (0,m2

1,m
2
2) = 1

48π2

�(m4
1+10m2

1m
2
2+m4

2)−6m2
1m

2
2� ln

(
m2

1
m2

2

)

�5 .

(A.9)

B Kinematics

For each channel, the partial-wave expansion is performed
in the corresponding rest frame, i.e. in the ππ centre-of-
mass frame for the s-channel and in one of the Kπ centre-
of-mass frames for the t- and u-channel. Therefore, we
work out explicitly the kinematics in the three different
frames.

B.1 Legendre polynomials and spherical harmonics

For the partial-wave expansions, we make use of several rela-
tions between spherical harmonics and Legendre polynomi-
als.

We use the addition theorem for the spherical harmonics
and the relations between Legendre polynomials or deriva-
tives of Legendre polynomials to spherical harmonics:

Pl(cos θ ′) = 4π

2l + 1

l
∑

m=−l

Ym
l (θ, 0)Ym

l
∗
(θ ′′, φ′′), (B.1)

Pl ′(cos θ ′′) =
√

4π

2l ′ + 1
Y 0
l ′ (θ

′′, φ′′) (for any φ′′), (B.2)

P ′
l ′(cos θ ′′) sin θ ′′ = (−1)

√

4π

2l ′ + 1

√

(l ′ + 1)!
(l ′ − 1)!

× Y 1
l ′

∗
(θ ′′, φ′′)eiφ′′

, (B.3)

where P ′
l (z) := d

dz Pl(z). The different angles are defined in
Fig. 18.

We can now easily derive the addition theorem for the
Legendre polynomials:
∫

d�′′Pl(cos θ ′)Pl ′(cos θ ′′)

=
∫

d�′′ 4π

2l + 1

l
∑

m=−l

Ym
l (θ, 0)Ym

l
∗
(θ ′′, φ′′)

×
√

4π

2l ′ + 1
Y 0
l ′ (θ

′′, φ′′)

x

y

z

θ

θ

θ

φ

Fig. 18 Vectors and angles appearing in the addition theorem for spher-
ical harmonics
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=
l
∑

m=−l

Ym
l (θ, 0)

4π

2l + 1

√

4π

2l ′ + 1

×
∫

d�′′Ym
l

∗
(θ ′′, φ′′)Y 0

l ′ (θ
′′, φ′′)

︸ ︷︷ ︸

δll′ δm0

= δll ′
4π

2l + 1

√

4π

2l + 1
Y 0
l (θ, 0) = δll ′

4π

2l + 1
Pl(cos θ),

(B.4)

as well as the following relation:

∫

d�′′Pl(cos θ ′)P ′
l ′(cos θ ′′) sin θ ′′e−iφ′′

=
∫

d�′′ 4π

2l + 1

l
∑

m=−l

Ym
l

∗
(θ, 0)Ym

l (θ ′′, φ′′)(−1)

×
√

4π

2l ′ + 1

√

(l ′ + 1)!
(l ′ − 1)! Y

1
l ′

∗
(θ ′′, φ′′)

=
l
∑

m=−l

Ym
l

∗
(θ, 0)

4π

2l + 1
(−1)

√

4π

2l ′ + 1

√

(l ′ + 1)!
(l ′ − 1)!

×
∫

d�′′Ym
l (θ ′′, φ′′)Y 1

l ′
∗
(θ ′′, φ′′)

︸ ︷︷ ︸

δll′ δm1

= δll ′
4π

2l + 1
(−1)

√

4π

2l + 1

√

(l + 1)!
(l − 1)! Y

1
l

∗
(θ, 0)

= δll ′
4π

2l + 1
P ′
l (cos θ) sin θ. (B.5)

Since the right-hand side is real, we conclude that

∫

d�′′Pl(cos θ ′)P ′
l ′(cos θ ′′) sin θ ′′ cos φ′′

= δll ′
4π

2l + 1
P ′
l (cos θ) sin θ,

∫

d�′′Pl(cos θ ′)P ′
l ′(cos θ ′′) sin θ ′′ sin φ′′ = 0. (B.6)

B.2 Kinematics in the s-channel

In the ππ centre-of-mass frame, the four-momenta of the
different particles take the following values:

k =
(√

M2
K + �k2, �k

)

, −L =
(

−
√

s� + �k2,−�k
)

,

q1 =
(√

M2
π + �q2, �q

)

, q2 =
(√

M2
π + �q2,−�q

)

,

p1 =
(√

M2
π + �p2, �p

)

, p2 =
(√

M2
π + �p2,− �p

)

, (B.7)

x

y

z

θ

θ

θ

φ

−k
1

1

Fig. 19 Vectors and angles in the s-channel centre-of-mass frame

where q1 and q2 will be the momenta of intermediate pions.
Note that we choose here the decay region (L0 is positive),
but we could have equally well chosen the scattering region.

Inserting these expressions into s = (k − L)2 = (q1 +
q2)

2 = (p1 + p2)
2 gives the values of �k2, �q2 and �p2.

We choose the directions of the three-vectors according to
Fig. 19, i.e. the angles are defined as θ := � (−�k, �p1),
θ ′ := � ( �p1, �q1), θ ′′ := � (−�k, �q1).

We end up with the following explicit expressions for the
four-vectors:

k =
(

M2
K+s−s�
2
√
s

,−λ
1/2
K� (s)
2
√
s

, 0, 0

)

,

L =
(

M2
K−s−s�
2
√
s

,−λ
1/2
K� (s)
2
√
s

, 0, 0

)

,

q1 =
(√

s
2 ,

√
s
4 − M2

π cos θ ′′,
√

s
4 − M2

π sin θ ′′ cos φ′′,
√

s
4 − M2

π sin θ ′′ sin φ′′
)

,

q2 =
(√

s
2 ,−

√
s
4 − M2

π cos θ ′′,−
√

s
4 − M2

π sin θ ′′ cos φ′′,

−
√

s
4 − M2

π sin θ ′′ sin φ′′
)

,

p1 =
(√

s
2 ,

√
s
4 − M2

π cos θ,

√
s
4 − M2

π sin θ, 0
)

,

p2 =
(√

s
2 ,−

√
s
4 − M2

π cos θ,−
√

s
4 − M2

π sin θ, 0
)

,

(B.8)

where λK�(s) := λ(M2
K , s�, s). Note that λ

1/2
K� (s) has a

square root branch cut in the s-plane between
(

MK − √
s�
)2

and
(

MK +√
s�
)2 and changes sign when we continue it ana-

lytically to the scattering region. We will have to pay attention
that we do not introduce this kinematic singularity into the
partial-wave expansion.

In order to express the s-channel scattering angle θ with
the Mandelstam variables, we calculate:

t − u = (k − p1)
2 − (k − p2)

2

= k2 + p2
1 − 2kp1 − k2 − p2

2 + 2kp2

= 2k(p2 − p1)
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= 2(k0(p0
2 − p0

1) − �k · ( �p2 − �p1))

= λ
1/2
K� (s)√

s

(

−2

√

s

4
− M2

π cos θ

)

= −λ
1/2
K� (s)

√

1 − 4M2
π

s
cos θ

= −2X (s)σπ (s) cos θ, (B.9)

hence

cos θ = u − t

2Xσπ

, (B.10)

where σπ(s) := √

1 − 4M2
π/s and X (s) = 1

2λ
1/2
K� (s) as

before.

B.3 Kinematics in the t-channel

In the t-channel, we are in the Kπ centre-of-mass frame and
look at the t-channel scattering region:

k =
(√

M2
K + �k2, �k

)

, −p1 =
(√

M2
π + �k2,−�k

)

,

qK =
(√

M2
K + �q2

K , �qK
)

, qπ =
(√

M2
π + �q2

K ,−�qK
)

,

p2 =
(√

M2
π + �p2

2, �p2

)

, L =
(√

s� + �p2
2,− �p2

)

.(B.11)

Inserting these expressions into t = (k − p1)
2 = (qK +

qπ )2 = (p2 + L)2 gives the values of �k2, �q2
K and �p2

2.
We choose the directions of the three-vectors according to
Fig. 20, i.e. the angles are defined as θt := � (−�k, �p2),
θ ′
t := � (�k, �qK ), θ ′′

t := � (−�qK , �p2).
We find the following results:

k =
(

t + M2
K − M2

π

2
√
t

,−λ
1/2
Kπ (t)

2
√
t

cos θt ,−λ
1/2
Kπ (t)

2
√
t

sin θt , 0

)

,

p1 =
(

M2
K − M2

π − t

2
√
t

,−λ
1/2
Kπ (t)

2
√
t

cos θt ,−λ
1/2
Kπ (t)

2
√
t

sin θt , 0

)

,

x

y

z

θt

θt

θt

φt

2

−k

− K

Fig. 20 Vectors and angles in the t-channel centre-of-mass frame

qK =
(

t + M2
K − M2

π

2
√
t

,−λ
1/2
Kπ (t)

2
√
t

cos θ ′′
t ,−λ

1/2
Kπ (t)

2
√
t

sin θ ′′
t cos φ′′

t ,

−λ
1/2
Kπ (t)

2
√
t

sin θ ′′
t sin φ′′

t

)

,

qπ =
(

t − M2
K + M2

π

2
√
t

,
λ

1/2
Kπ (t)

2
√
t

cos θ ′′
t ,

λ
1/2
Kπ (t)

2
√
t

sin θ ′′
t cos φ′′

t ,

λ
1/2
Kπ (t)

2
√
t

sin θ ′′
t sin φ′′

t

)

,

p2 =
(

t − s� + M2
π

2
√
t

,
λ

1/2
�π (t)

2
√
t

, 0, 0

)

,

L =
(

t + s� − M2
π

2
√
t

,−λ
1/2
�π (t)

2
√
t

, 0, 0

)

, (B.12)

whereλKπ (t) := λ(M2
K , M2

π , t) andλ�π (t) := λ(s�, M2
π , t).

Again, the square root of the first of these Källén func-
tions has in the t-plane a branch cut between (MK − Mπ )2

and (MK + Mπ )2, the second between
(

Mπ − √
s�
)2 and

(

Mπ + √
s�
)2. Since we need the partial-wave expansion

only in the scattering region t > (MK + Mπ )2, these branch
cuts are not relevant.

We calculate the t-channel scattering angle θt as a function
of the Mandelstam variables:

s − u = (p1 + p2)2 − (k − p2)2 = p2
1 + p2

2 + 2p1 p2

− k2 − p2
2 + 2kp2 = M2

π − M2
K + 2p2(k + p1)

= M2
π −M2

K +2

(

t − s� + M2
π

2
√
t

M2
K − M2

π√
t

+ λ
1/2
�π

(t)

2
√
t

λ
1/2
Kπ

(t)√
t

cos θt

)

,

(B.13)

hence

cos θt = t (s − u) + �Kπ��π

λ
1/2
Kπ (t)λ1/2

�π (t)
. (B.14)

B.4 Kinematics in the u-channel

The u-channel is completely analogous to the t-channel:

k =
(√

M2
K + �k2, �k

)

, −p2 =
(√

M2
π + �k2,−�k

)

,

qK =
(√

M2
K + �q2

K , �qK
)

, qπ =
(√

M2
π + �q2

K ,−�qK
)

,

p1 =
(√

M2
π + �p2

1, �p1

)

, L =
(√

s� + �p2
1,− �p1

)

. (B.15)

Inserting these expressions into u = (k − p2)
2 = (qK +

qπ )2 = (p1 + L)2 gives the values of �k2, �q2
K and �p2

1.
We choose the directions of the three-vectors according to
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x

y

z

θu

θu

θu

φu

1

−k

− K

Fig. 21 Vectors and angles in the u-channel centre-of-mass frame

Fig. 21, i.e. the angles are defined as θu := � (−�k, �p1),
θ ′
u := � (�k, �qK ), θ ′′

u := � (−�qK , �p1).
The results for the u-channel are then

k =
(

u + M2
K − M2

π

2
√
u

, −λ
1/2
Kπ (u)

2
√
u

cos θu , −λ
1/2
Kπ (u)

2
√
u

sin θu , 0

)

,

p2 =
(

M2
K − M2

π − u

2
√
u

, −λ
1/2
Kπ (u)

2
√
u

cos θu , −λ
1/2
Kπ (u)

2
√
u

sin θu , 0

)

,

qK =
(

u + M2
K − M2

π

2
√
u

, −λ
1/2
Kπ (u)

2
√
u

cos θ ′′
u , −λ

1/2
Kπ (u)

2
√
u

sin θ ′′
u cos φ′′

u ,

−λ
1/2
Kπ (u)

2
√
u

sin θ ′′
u sin φ′′

u

)

,

qπ =
(

u − M2
K + M2

π

2
√
u

,
λ

1/2
Kπ (u)

2
√
u

cos θ ′′
u ,

λ
1/2
Kπ (u)

2
√
u

sin θ ′′
u cos φ′′

u ,

λ
1/2
Kπ (u)

2
√
u

sin θ ′′
u sin φ′′

u

)

,

p1 =
(

u − s� + M2
π

2
√
u

,
λ

1/2
�π (u)

2
√
u

, 0, 0

)

,

L =
(

u + s� − M2
π

2
√
u

, −λ
1/2
�π (u)

2
√
u

, 0, 0

)

. (B.16)

Let us calculate the u-channel scattering angle θu as a
function of the Mandelstam variables:

s − t = (p1 + p2)
2 − (k − p1)

2

= p2
1 + p2

2 + 2p1 p2 − k2 − p2
1 + 2kp1

= M2
π − M2

K + 2p1(k + p2) = M2
π − M2

K

+2

(

u−s�+M2
π

2
√
u

M2
K−M2

π√
u

+ λ
1/2
�π (u)

2
√
u

λ
1/2
Kπ (u)√

u
cos θu

)

,

(B.17)

hence

cos θu = u(s − t) + �Kπ��π

λ
1/2
Kπ (u)λ

1/2
�π (u)

. (B.18)

C Omnès solution to the dispersion relation

C.1 Solution for n = 3 subtractions

For n = 3 subtractions, the Omnès representation reads

M0(s) = �0
0(s)

{

aM0 + bM0
s

M2
K

+ cM0
s2

M4
K

+ dM0
s3

M6
K

+ s4

π

∫ �2

s0

M̂0(s′) sin δ0
0(s′)

|�0
0(s

′)|(s′ − s − iε)s′4 ds′
}

,

M1(s) = �1
1(s)

{

aM1 + bM1
s

M2
K

+ cM1
s2

M4
K

+ s3

π

∫ �2

s0

M̂1(s′) sin δ1
1(s′)

|�1
1(s

′)|(s′ − s − iε)s′3 ds′
}

,

M̃1(s) = �1
1(s)

{

aM̃1 + bM̃1
s

M2
K

+ cM̃1
s2

M4
K

+ d M̃1
s3

M6
K

+ s4

π

∫ �2

s0

ˆ̃M1(s′) sin δ1
1(s′)

|�1
1(s

′)|(s′ − s − iε)s′4 ds′
}

,

N0(t) = �
1/2
0 (t)

{

bN0
t

M2
K

+ cN0
t2

M4
K

+ t3

π

∫ �2

t0

N̂0(t ′) sin δ
1/2
0 (t ′)

|�1/2
0 (t ′)|(t ′ − t − iε)t ′3

dt ′
}

,

N1(t) = �
1/2
1 (t)

×
{

aN1 + t

π

∫ �2

t0

N̂1(t ′) sin δ
1/2
1 (t ′)

|�1/2
1 (t ′)|(t ′ − t − iε)t ′

dt ′
}

,

Ñ1(t) = �
1/2
1 (t)

×
{

bÑ1
t

M2
K

+ t2

π

∫ �2

t0

ˆ̃N1(t ′) sin δ
1/2
1 (t ′)

|�1/2
1 (t ′)|(t ′ − t − iε)t ′2

dt ′
}

,

R0(t) = �
3/2
0 (t)

×
{
t3

π

∫ �2

t0

R̂0(t ′) sin δ
3/2
0 (t ′)

|�3/2
0 (t ′)|(t ′ − t − iε)t ′3

dt ′
}

,

R1(t) = �
3/2
1 (t)

×
{
t

π

∫ �2

t0

R̂1(t ′) sin δ
3/2
1 (t ′)

|�3/2
1 (t ′)|(t ′ − t − iε)t ′

dt ′
}

,

R̃1(t) = �
3/2
1 (t)

×
{
t2

π

∫ �2

t0

ˆ̃R1(t ′) sin δ
3/2
1 (t ′)

|�3/2
1 (t ′)|(t ′ − t − iε)t ′2

dt ′
}

. (C.1)

Let us work out how to transform the Omnès representa-
tion (85) into the one with more subtractions (C.1). We start
by subtracting all the dispersive integrals once more, using
the relation

1

s′ − s
= 1

s′ + s

(s′ − s)s′ . (C.2)

This generates nine additional subtraction constants:

M0(s) = �0
0(s)

{

aM0 + bM0
s

M2
K

+ cM0
s2

M4
K

+ dM0
s3

M6
K

123



Eur. Phys. J. C (2015) 75 :172 Page 45 of 65 172

+ s4

π

∫ �2

s0

M̂0(s′) sin δ0
0(s′)

|�0
0(s

′)|(s′ − s − iε)s′4 ds′
}

,

M1(s) = �1
1(s)

{

aM1 + bM1
s

M2
K

+ cM1
s2

M4
K

+ s3

π

∫ �2

s0

M̂1(s′) sin δ1
1(s′)

|�1
1(s

′)|(s′ − s − iε)s′3 ds′
}

,

M̃1(s) = �1
1(s)

{

aM̃1 + bM̃1
s

M2
K

+ cM̃1
s2

M4
K

+ d M̃1
s3

M6
K

+ s4

π

∫ �2

s0

ˆ̃M1(s′) sin δ1
1(s′)

|�1
1(s

′)|(s′ − s − iε)s′4 ds′
}

,

N0(t) = �
1/2
0 (t)

{

bN0
t

M2
K

+ cN0
t2

M4
K

+ t3

π

∫ �2

t0

N̂0(t ′) sin δ
1/2
0 (t ′)

|�1/2
0 (t ′)|(t ′ − t − iε)t ′3

dt ′
}

,

N1(t) = �
1/2
1 (t)

×
{

aN1 + t

π

∫ �2

t0

N̂1(t ′) sin δ
1/2
1 (t ′)

|�1/2
1 (t ′)|(t ′ − t − iε)t ′

dt ′
}

,

Ñ1(t) = �
1/2
1 (t)

×
{

bÑ1
t

M2
K

+ t2

π

∫ �2

t0

ˆ̃N1(t ′) sin δ
1/2
1 (t ′)

|�1/2
1 (t ′)|(t ′−t − iε)t ′2

dt ′
}

,

R0(t) = �
3/2
0 (t)

×
{

cR0
t2

M4
K

+ t3

π

∫ �2

t0

R̂0(t ′) sin δ
3/2
0 (t ′)

|�3/2
0 (t ′)|(t ′−t−iε)t ′3

dt ′
}

,

R1(t) = �
3/2
1 (t)

×
{

aR1 + t

π

∫ �2

t0

R̂1(t ′) sin δ
3/2
1 (t ′)

|�3/2
1 (t ′)|(t ′ − t − iε)t ′

dt ′
}

,

R̃1(t) = �
3/2
1 (t)

×
{

bR̃1
t

M2
K

+ t2

π

∫ �2

t0

ˆ̃R1(t ′) sin δ
3/2
1 (t ′)

|�3/2
1 (t ′)|(t ′−t−iε)t ′2

dt ′
}

. (C.3)

To get rid of the subtraction constants in the R-functions, we
apply a gauge transformation (74). To this end, let us write
the gauge transformation in the Omnès representation:

δM0(s) = �0
0(s)

{

δaM0 + δbM0
s

M2
K

+ δcM0
s2

M4
K

+δdM0
s3

M6
K

+ s4

π

∫ �2

s0

δM̂0(s′) sin δ0
0(s′)

|�0
0(s

′)|(s′−s−iε)s′4 ds′
}

,

δM1(s) = �1
1(s)

{

δaM1 + δbM1
s

M2
K

+ δcM1
s2

M4
K

+ s3

π

∫ �2

s0

δM̂1(s′) sin δ1
1(s′)

|�1
1(s

′)|(s′ − s − iε)s′3 ds′
}

,

δM̃1(s) = �1
1(s)

{

δaM̃1 + δbM̃1
s

M2
K

+ δcM̃1
s2

M4
K

+δd M̃1
s3

M6
K

+ s4

π

∫ �2

s0

δ
ˆ̃M1(s′) sin δ1

1(s′)
|�1

1(s
′)|(s′−s−iε)s′4 ds′

}

,

δN0(t) = �
1/2
0 (t)

{

δbN0
t

M2
K

+ δcN0
t2

M4
K

+ t3

π

∫ �2

t0

δ N̂0(t ′) sin δ
1/2
0 (t ′)

|�1/2
0 (t ′)|(t ′ − t − iε)t ′3

dt ′
}

,

δN1(t) = �
1/2
1 (t)

×
{

δaN1 + t

π

∫ �2

t0

δ N̂1(t ′) sin δ
1/2
1 (t ′)

|�1/2
1 (t ′)|(t ′ − t − iε)t ′

dt ′
}

,

δ Ñ1(t) = �
1/2
1 (t)

×
{

δbÑ1
t

M2
K

+ t2

π

∫ �2

t0

δ
ˆ̃N1(t ′) sin δ

1/2
1 (t ′)

|�1/2
1 (t ′)|(t ′−t−iε)t ′2

dt ′
}

,

δR0(t) = �
3/2
0 (t)

×
{

δcR0
t2

M4
K

+ t3

π

∫ �2

t0

δ R̂0(t ′) sin δ
3/2
0 (t ′)

|�3/2
0 (t ′)|(t ′−t−iε)t ′3

dt ′
}

,

δR1(t) = �
3/2
1 (t)

×
{

δaR1 + t

π

∫ �2

t0

δ R̂1(t ′) sin δ
3/2
1 (t ′)

|�3/2
1 (t ′)|(t ′ − t − iε)t ′

dt ′
}

,

δ R̃1(t) = �
3/2
1 (t)

×
{

δbR̃1
t

M2
K

+ t2

π

∫ �2

t0

δ
ˆ̃R1(t ′) sin δ

3/2
1 (t ′)

|�3/2
1 (t ′)|(t ′−t−iε)t ′2

dt ′
}

.

(C.4)

Since the gauge transformation is a polynomial and has no
discontinuity, the changes in the hat functions are given by
δM̂0 = −δM0 etc., which ensures that the partial waves are
unchanged. The shifts in the subtraction constants are most
easily found by comparing the Taylor expansion of (C.4) with
(74):

δaM0 = (2AR1 − BR̃1 + 2CR0)
�2

0 − �Kπ��π

2M4
K

,

δbM0 = −(2AR1 −BR̃1 +2CR0)

(

�0

M2
K

+ω0
0
�2

0 −�Kπ��π

2M4
K

)

,

δcM0 = (2AR1 − BR̃1 + 2CR0)

×
(

1

2
+ ω0

0
�0

M2
K

+
(

ω0
0

2

2
− ω̄0

0

)

�2
0 − �Kπ��π

2M4
K

)

,

δdM0 = −(2AR1 − BR̃1 + 2CR0)

(
ω0

0

2
−
(

ω̄0
0 − ω0

0
2

2

)

× �0

M2
K

+ (ω0
0

3 − 6ω0
0ω̄

0
0 + 6 ¯̄ω0

0)
�2

0 − �Kπ��π

12M4
K

)

,

δaM1 = −(AR1 + BR̃1 + 2CR0)
�0

M2
K

+ BR̃1
�Kπ

2M2
K

,

δbM1 = (BR̃1 + 2CR0)

+ ω1
1

(

(AR1 + BR̃1 + 2CR0)
�0

M2
K

− BR̃1
�Kπ

2M2
K

)

,
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δcM1 = −
(

(AR1 + BR̃1 + 2CR0)
�0

M2
K

− BR̃1
�Kπ

2M2
K

)

×
(

ω1
1

2

2
− ω̄1

1

)

− ω1
1(B

R̃1 + 2CR0),

δaM̃1 = (BR̃1 − 2CR0)
�2

0

2M4
K

− (2AR1 + BR̃1 − 2CR0)

× �Kπ��π

2M4
K

+ BR̃1
�0�Kπ

2M4
K

,

δbM̃1 = −
(

BR̃1
�Kπ

2M2
K

+ (AR1 + BR̃1 − 2CR0)
�0

M2
K

)

− ω1
1

(

(BR̃1 − 2CR0)
�2

0

2M4
K

− (2AR1 + BR̃1

−2CR0)
�Kπ��π

2M4
K

+ BR̃1
�0�Kπ

2M4
K

)

,

δcM̃1 = 1

2
(2AR1 + BR̃1 − 2CR0)

+ ω1
1

(

BR̃1
�Kπ

2M2
K

+ (AR1 + BR̃1 − 2CR0)
�0

M2
K

)

+
(

ω1
1

2

2
− ω̄1

1

)

×
(

(BR̃1 − 2CR0)
�2

0

2M4
K

− (2AR1 + BR̃1 − 2CR0)

× �Kπ��π

2M4
K

+ BR̃1
�0�Kπ

2M4
K

)

,

δd M̃1 = −1

2
ω1

1(2A
R1 + BR̃1 − 2CR0) −

(

ω1
1

2

2
− ω̄1

1

)

×
(

BR̃1
�Kπ

2M2
K

+ (AR1 + BR̃1 − 2CR0)
�0

M2
K

)

− 1

6
(ω1

1
3 − 6ω1

1ω̄
1
1 + 6 ¯̄ω1

1)

×
(

(BR̃1 − 2CR0)
�2

0

2M4
K

− (2AR1 + BR̃1 − 2CR0)

× �Kπ��π

2M4
K

+ BR̃1
�0�Kπ

2M4
K

)

,

δbN0 = −(2AR1 − BR̃1 + 2CR0)
3(�Kπ + 2�0)

8M2
K

,

δcN0 = 1

8
(6AR1 − 3BR̃1 − 10CR0)

+ ω
1/2
0 (2AR1 − BR̃1 + 2CR0)

3(�Kπ + 2�0)

8M2
K

,

δaN1 = −1

4
(2AR1 + 3BR̃1 − 6CR0),

δbÑ1 = −1

4
(6AR1 + 5BR̃1 + 6CR0),

δcR0 = CR0 , δaR1 = AR1 , δbR̃1 = BR̃1 , (C.5)

where ω, ω̄ and ¯̄ω are defined by applying subtractions to the
Omnès functions:

�(s) = exp

(
s

π

∫ ∞

s0

δ(s′)
(s′ − s − iε)s′ ds

′
)

= exp

(
s

π

∫ ∞

s0

δ(s′)
s′2 ds′ + s2

π

∫ ∞

s0

δ(s′)
s′3 ds′

+ s3

π

∫ ∞

s0

δ(s′)
s′4 ds′ + s4

π

∫ ∞

s0

δ(s′)
(s′ − s − iε)s′4 ds′

)

=: exp

(

ω
s

M2
K

+ ω̄
s2

M4
K

+ ¯̄ω s3

M6
K

+ s4

π

∫ ∞

s0

δ(s′)
(s′ − s − iε)s′4 ds′

)

. (C.6)

In order to obtain the form (C.1), the subtraction constants in
the R-functions can now be removed with the gauge trans-
formation

CR0 = −cR0 ,

AR1 = −aR1 ,

BR̃1 = −bR̃1 . (C.7)
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C.2 Hat functions

In the following, we provide the explicit expressions for the
hat functions that appear in the Omnès solution to the disper-
sion relation.

M̂0(s) = 2

3
(〈N0〉ts + 2〈R0〉ts ) − (〈zN0〉ts + 2〈zR0〉ts )

2σπ PL

3X

− (〈N1〉ts + 2〈R1〉ts )
3s2 − 4s�0 + �2

0 − 4�Kπ��π

6M4
K

+ (〈zN1〉ts + 2〈zR1〉ts )
σπ (−4PL�Kπ��π + PL(3s2 − 4s�0 + �2

0) − 4sX2)

6M4
K X

+ (〈z2N1〉ts + 2〈z2R1〉ts )
2σ 2

π (PLs + X2)

3M4
K

− (〈z3N1〉ts + 2〈z3R1〉ts )
2σ 3

π PL X

3M4
K

− (〈Ñ1〉ts + 2〈R̃1〉ts )
2�Kπ + 3s − 3�0

6M2
K

+ (〈z Ñ1〉ts + 2〈z R̃1〉ts )
σπ (PL(2�Kπ − s + �0) − 6X2)

6M2
K X

− (〈z2 Ñ1〉ts + 2〈z2 R̃1〉ts )
σ 2

π PL

3M2
K

, (C.8)

M̂1(s) = (〈N0〉ts − 〈R0〉ts )
M2

K PL

2X2 + (〈zN0〉ts − 〈zR0〉ts )
M2

K

σπ X
− (〈z2N0〉ts − 〈z2R0〉ts )

3M2
K PL

2X2

+ (〈N1〉ts − 〈R1〉ts )
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+ (2〈Ñ1〉tu + 〈R̃1〉tu )
M2

K (u + ��π) (u (�0 − u) + �Kπ (��π − 2u))

16u2λ�π (u)
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Table 10 NA48/2 data [6,9], corrected by additional radiative and
isospin-breaking mass effects [33]. The uncertainties of the isospin cor-
rections (without the higher-order estimate) are added in quadrature to

the systematic error. The fully correlated error of the normalisation
increases from 0.62 to 0.70 %. The normalisation of Fs is increased by
0.77 % to take the dependence on s� into account

√
s/MeV

√
s�/MeV Fs Fp G p G̃ p

286.06 92.61 5.6941 (85) (185) −0.181 (67) (15) 5.035 (257) (66) 4.317 (74) (20)

295.95 92.01 5.7878 (90) (170) −0.324 (62) (34) 5.168 (142) (84) 4.404 (53) (32)

304.88 91.51 5.8410 (89) (171) −0.209 (60) (33) 4.924 (108) (59) 4.532 (46) (26)

313.48 90.65 5.8905 (91) (171) −0.156 (58) (32) 4.879 (91) (51) 4.627 (41) (24)

322.02 88.32 5.9275 (90) (166) −0.366 (55) (41) 5.227 (80) (58) 4.692 (38) (29)

330.80 85.59 5.9557 (93) (168) −0.383 (54) (40) 5.265 (73) (56) 4.748 (35) (28)

340.17 81.02 5.9915 (92) (166) −0.218 (55) (46) 5.036 (68) (59) 4.762 (34) (31)

350.94 76.16 6.0161 (92) (163) −0.302 (54) (35) 5.246 (62) (37) 4.889 (34) (21)

364.57 69.80 6.0351 (91) (162) −0.309 (54) (33) 5.338 (57) (31) 5.000 (35) (20)

389.95 58.96 6.1155 (93) (224) −0.264 (59) (35) 5.400 (55) (34) 5.144 (36) (22)

〈zn X〉ts := 1

2

∫ 1

−1
zn X (t (s, z))dz,

〈zn X〉st := 1

2

∫ 1

−1
zn X (s(t, z))dz,

〈zn X〉ut := 1

2

∫ 1

−1
zn X (u(t, z))dz, (C.17)

〈zn X〉su := 1

2

∫ 1

−1
zn X (s(u, z))dz,

〈zn X〉tu := 1

2

∫ 1

−1
zn X (t (u, z))dz,

and

t (s, z) = 1

2
(�0 − s − 2Xσπ z) ,

s(t, z) = 1

2

(

�0 − t + 1

t
(z λ

1/2
Kπ (t)λ1/2

�π (t) − �Kπ��π )

)

,

u(t, z) = 1

2

(

�0 − t − 1

t
(z λ

1/2
Kπ (t)λ1/2

�π (t) − �Kπ��π )

)

,

s(u, z) = 1

2

(

�0 − u + 1

u
(z λ

1/2
Kπ (u)λ

1/2
�π (u) − �Kπ��π )

)

,

t (u, z) = 1

2

(

�0 − u − 1

u
(z λ

1/2
Kπ (u)λ

1/2
�π (u) − �Kπ��π )

)

.

(C.18)

We recall the abbreviations

�Kπ = M2
K − M2

π , ��π = s� − M2
π ,

�0 = M2
K + 2M2

π + s�,

PL = 1

2
(M2

K − s − s�), X = 1

2
λ1/2(M2

K , s, s�),

σπ =
√

1 − 4M2
π

s
. (C.19)

Table 11 E865 data [7,8], corrected by isospin-breaking mass effects
[33]. The uncertainties of the isospin corrections (without the higher-
order estimate) are added in quadrature to the systematic error. The fully
correlated error of the normalisation is 1.2 %
√
s/MeV

√
s�/MeV Fs G p

287.6 106.8 5.781 (13) (42) 4.702 (89) (40)

299.5 105.7 5.825 (14) (48) 4.693 (62) (37)

311.2 103.8 5.914 (14) (56) 4.771 (54) (41)

324.0 101.1 5.974 (16) (62) 4.999 (51) (56)

339.6 96.3 6.097 (17) (63) 5.002 (49) (57)

370.0 84.6 6.151 (20) (41) 5.104 (50) (42)

D Isospin-breaking corrected data input

In this appendix, we list the isospin-corrected data sets on
the K�4 form factors that we use for the fits of the dispersion
relation. These are the NA48/2 [6,9] and E865 data sets [7,8],
corrected for isospin-breaking mass effects and (in the case of
NA48/2) the additional radiative effects that were calculated
in [33].

More detailed explanations can be found in Sect. 4.1.

D.1 One-dimensional NA48/2 and E865 data sets

See Tables 10 and 11.

D.2 Two-dimensional NA48/2 data set

For the fits of the dispersion relation to the data, we do not use
the above NA48/2 data set on Fs consisting of 10 bins, but
the two-dimensional data set, which was recently published
as an addendum to [9]. Here, we list the isospin-corrected
values of Fs that we use as input in our fits. The values and
uncertainties, shown in Table 12, are constructed as follows:
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Table 12 Values of Fs for the two-dimensional data set of NA48/2 [9] including isospin-breaking corrections [33]. The fully correlated error of
the normalisation of 0.70 % has to be treated separately

Fs 1 2 3 4 5 6

1 5.641 (51) (55) 5.628 (30) (35) 5.700 (24) (30) 5.687 (22) (28) 5.744 (21) (27) 5.707 (22) (28)

2 5.753 (51) (30) 5.716 (30) (22) 5.747 (24) (20) 5.777 (22) (20) 5.807 (22) (20) 5.833 (23) (20)

3 5.785 (52) (33) 5.775 (31) (24) 5.831 (25) (21) 5.837 (22) (21) 5.841 (22) (20) 5.875 (23) (21)

4 5.908 (52) (33) 5.809 (31) (23) 5.877 (25) (21) 5.874 (22) (20) 5.910 (22) (20) 5.894 (23) (20)

5 5.910 (52) (24) 5.903 (31) (19) 5.891 (25) (18) 5.909 (22) (18) 5.924 (21) (18) 5.961 (22) (18)

6 5.831 (51) (29) 5.925 (30) (22) 5.912 (24) (20) 5.919 (22) (19) 5.971 (21) (19) 6.032 (22) (19)

7 6.031 (50) (25) 5.927 (29) (20) 5.941 (23) (18) 5.970 (21) (18) 6.024 (20) (18) 6.045 (22) (18)

8 6.026 (47) (21) 5.976 (28) (18) 5.990 (22) (17) 6.020 (20) (17) 6.024 (20) (17) 6.067 (23) (17)

9 6.023 (44) (22) 5.987 (26) (18) 6.037 (20) (17) 6.059 (19) (17) 6.044 (20) (17) 6.077 (25) (18)

10 6.163 (38) (67) 6.128 (22) (41) 6.107 (18) (34) 6.120 (18) (34) 6.139 (23) (42) 6.130(45) (79)

7 8 9 10

1 5.703 (25) (30) 5.721 (30) (35) 5.717 (43) (47) 5.709 (82) (86)

2 5.817 (26) (21) 5.828 (31) (23) 5.872 (43) (27) 5.929 (84) (45)

3 5.843 (26) (22) 5.934 (31) (24) 5.911 (43) (29) 5.923 (117) (68)

4 5.905 (26) (21) 5.957 (31) (24) 6.111 (50) (32)

5 6.004 (25) (18) 5.942 (33) (20) 6.074 (70) (29)

6 6.025 (26) (20) 6.009 (38) (24)

7 6.042 (28) (20) 6.124 (54) (26)

8 6.086 (33) (19) 6.024 (122) (39)

9 6.058 (54) (25)

• With the number of data and Monte Carlo events for each
2D bin [9], we compute the relative values and statistical
uncertainty of the relative values of Fs .

• We fix the normalisation by requiring fs = 5.705 in a
parametric fit of the form (111).

• Unfortunately, systematic errors are not available for the
2D data set. We guess a systematic error by assuming
that the ratio of systematic and statistical error does not
depend on s�.

• We apply isospin corrections due to photonic and mass-
difference effects [33]. The uncertainty from the mass
effects is added in quadrature to the systematic error.

E Matching equations

E.1 Subtraction constants at O(p4) in χPT

In the following expressions for the subtraction constants at
NLO, we have used the Gell-Mann–Okubo (GMO) formula
M2

η = (4M2
K − M2

π )/3 to simplify the analytic expressions
considerably. This introduces an error only at NNLO. In prac-
tice, we use the physical η mass and not the GMO relation.
We do not show the analytic expressions for this case because
they are much larger. We have

m0
0,NLO = MK√

2Fπ
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(
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+ s�
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K − M2
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π )

128π2�3
Kπ
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, (E.1)
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(E.6)

E.2 Matching at NNLO

E.2.1 Decomposition of the two-loop result

E.2.1.1 NLO contribution We have already decomposed
the NLO contributions. We apply a gauge transformation to
convert the expressions to the second gauge and evaluate the
result numerically:
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E.2.1.2 NNLO LECs First, we consider the contribution of
the NNLO LECs, the Cr

i . We decompose this contribution
into the form of the polynomial part in (69):
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13 − 6Cr
22 − 8Cr

23 + 2Cr
25

+2Cr
63 + Cr

66 − 2Cr
67 − Cr

69 − 2Cr
83 + Cr

90)

−s�(12Cr
3 + 2Cr

4 + Cr
66 − 2Cr

67 − Cr
69 + Cr

88 − Cr
90)),

(E.10)

m̃2,NNLO
1,C = MK√

2Fπ

1

F4
π

2M4
K

×(8Cr
3 +2Cr

4 +Cr
66−Cr

67−Cr
69−Cr

88+Cr
90),

n1,NNLO
0,C = MK√

2Fπ

1

F4
π

3M2
K (−2M2

K

×(3Cr
1 − 4Cr

4 + 2Cr
5 + 4Cr

6

+2Cr
10 + 8Cr

11 − 2Cr
12 − 8Cr

13 + 2Cr
22 + 4Cr

23)

−1

2
M2

π (16Cr
1 + 8Cr

3 − 18Cr
4 + 8Cr

6 + 8Cr
8

+8Cr
10 + 16Cr

11 − 16Cr
12 − 16Cr

13 + 16Cr
22 + 32Cr

23

−Cr
66 − 2Cr

67 + Cr
69 + Cr

88 − Cr
90)

−1

2
s�(4C

r
1 − 8Cr

3 − 6Cr
4 + Cr

66 + 2Cr
67 + 3Cr

69

−Cr
88 + Cr

90)),

n2,NNLO
0,C = MK√

2Fπ

1

F4
π

12M4
K (Cr

1 + Cr
3 − Cr

4),

n0,NNLO
1,C = MK√

2Fπ

1

F4
π

−3M4
K

2
(16Cr

3 +6Cr
4 −Cr

66−2Cr
67

+Cr
69+Cr

88−Cr
90),

ñ1,NNLO
1,C = MK√

2Fπ

1

F4
π

3M4
K (8Cr

3 +2Cr
4 +Cr

66

+2Cr
67−Cr

69−Cr
88+Cr

90).

Unfortunately, a lot of NNLO LECs enter the polynomial. In
total, there appear 24 linearly independent combinations of
the Cr

i .
If we use the resonance estimate of [50], we obtain the

following values for the NNLO counterterm contribution:

m0,NNLO
0,reso = MK√

2Fπ

(

−0.1546−0.1716
s�
M2

K

+0.0316
s2
�

M4
K

)

,

m1,NNLO
0,reso = MK√

2Fπ

(

0.1747 − 0.0316
s�
M2

K

)

,

m2,NNLO
0,reso = MK√

2Fπ

(0.0310),

m0,NNLO
1,reso = MK√

2Fπ

(

0.1657 − 0.0316
s�
M2

K

)

,

m1,NNLO
1,reso = MK√

2Fπ

(−0.0104),

m̃0,NNLO
1,reso = MK√

2Fπ

(

−0.0900 − 0.0135
s�
M2

K

)

,

m̃1,NNLO
1,reso = MK√

2Fπ

(

−0.1712 − 0.0316
s�
M2

K

)

,

m̃2,NNLO
1,reso = MK√

2Fπ

(0.1805),

n1,NNLO
0,reso = MK√

2Fπ

(

0.1502 − 0.0237
s�
M2

K

)

,

n2,NNLO
0,reso = MK√

2Fπ

(−0.0233),

n0,NNLO
1,reso = MK√

2Fπ

(−0.0078),

ñ1,NNLO
1,reso = MK√

2Fπ

(0.2707). (E.11)

Alternatively, if we use the ‘preferred values’ of the BE14
fit [45] (complemented with Cr

88 − Cr
90 = −55 · 10−6 [48]

and the remaining LECs that appear in the s�-dependence
set to zero), we obtain the following values for the NNLO
counterterm contribution:

m0,NNLO
0,BE14 = MK√

2Fπ

(

−0.4108−0.1823
s�
M2

K

−0.0033
s2
�

M4
K

)

,

m1,NNLO
0,BE14 = MK√

2Fπ

(

0.7959 + 0.0986
s�
M2

K

)

,

m2,NNLO
0,BE14 = MK√

2Fπ

(−0.1709) ,

m0,NNLO
1,BE14 = MK√

2Fπ

(

0.2627 + 0.0296
s�
M2

K

)

,

m1,NNLO
1,BE14 = MK√

2Fπ

(−0.1709) ,

m̃0,NNLO
1,BE14 = MK√

2Fπ

(

0.0356+0.1050
s�
M2

K

+0.0263
s2
�

M4
K

)

,

m̃1,NNLO
1,BE14 = MK√

2Fπ

(

−0.2942 − 0.0296
s�
M2

K

)

,

m̃2,NNLO
1,BE14 = MK√

2Fπ

(0.1841) ,

n1,NNLO
0,BE14 = MK√

2Fπ

(

0.3505 + 0.0296
s�
M2

K

)

,

n2,NNLO
0,BE14 = MK√

2Fπ

(0.0099) ,
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n0,NNLO
1,BE14 = MK√

2Fπ

(−0.1282) ,

ñ1,NNLO
1,BE14 = MK√

2Fπ

(0.2761) . (E.12)

E.2.1.3 Vertex integrals Let us study in more detail the
contribution of the vertex integrals. They can be decomposed
into functions of one Mandelstam variable according to

FNNLO
V (s, t, u) = FNNLO

V S,0 (s, s�) + u − t

M2
K

FNNLO
V S,1 (s, s�)

+ FNNLO
VT,0 (t, s�) + s − u

M2
K

FNNLO
VT,1 (t, s�) + FNNLO

VU (u, s�),

GNNLO
V (s, t, u) = GNNLO

V S (s, s�) + GNNLO
VT,0 (t, s�)

+ s − u

M2
K

GNNLO
VT,1 (t, s�) + GNNLO

VU (u, s�). (E.13)

The u-channel vertex integrals fulfil FNNLO
VU = GNNLO

VU . In
the following, we treat them numerically. The contribution
to R0 is obtained by subtracting the constant, linear and
quadratic terms:

RV
0 (u, s�) = FNNLO

VU (u, s�) − PNNLO
VU (u, s�),

PNNLO
VU (u, s�) = FNNLO

VU (0, s�)

+ uFNNLO
VU

′
(0, s�) + 1

2
u2FNNLO

VU
′′
(0, s�), (E.14)

where ′ stands for the derivative with respect to the first argu-
ment (u). The polynomial PNNLO

VU has to be lumped into the
overall polynomial and finally reshuffled into the subtraction
constants. Numerically, we find

PNNLO
VU (u, s�) ≈ MK√

2Fπ

(

0.4008 + 0.0119
s�
M2

K

+
(

−0.2521−0.0130
s�
M2

K

)

u

M2
K

+0.0569
u2

M4
K

)

.

(E.15)

As we have checked again numerically, the polynomial-
subtracted u-channel contribution of the vertex integrals ful-
fils the dispersion relation

RV
0 (u, s�) = u3

π

∫ ∞

u0

ImRV
0 (u′, s�)

(u′ − u − iε)u′3 du′. (E.16)

Next, we consider the s-channel vertex integrals: apart
from a polynomial, they belong to either M0, M1 or M̃1.
Again, we subtract the first few terms of the Taylor expansion:

MV
0 (s, s�) = FNNLO

V S,0 (s, s�) − PNNLO
F,V S0(s, s�),

MV
1 (s, s�) = FNNLO

V S,1 (s, s�) − PNNLO
F,V S1(s, s�),

M̃V
1 (s, s�) = GNNLO

V S (s, s�) − PNNLO
G,V S (s, s�),

PNNLO
F,V S0(s, s�) = FNNLO

V S,0 (0, s�) + sFNNLO
V S,0

′
(0, s�)

+ 1

2
s2FNNLO

V S,0
′′
(0, s�),

PNNLO
F,V S1(s, s�) = FNNLO

V S,1 (0, s�) + sFNNLO
V S,1

′
(0, s�),

PNNLO
G,V S (s, s�) = GNNLO

V S (0, s�) + sGNNLO
V S

′
(0, s�)

+ 1

2
s2GNNLO

V S
′′
(0, s�). (E.17)

We find numerically

PNNLO
F,V S0(s, s�) ≈ MK√

2Fπ

(

0.2663 + 0.0992
s�
M2

K

+
(

−1.7763 − 0.0450
s�
M2

K

)

s

M2
K

− 0.5385
s2

M4
K

)

,

PNNLO
F,V S1(s, s�) ≈ MK√

2Fπ

×
(

0.0029 + 0.0006
s�
M2

K

+ 0.0006
s

M2
K

)

,

PNNLO
G,V S (s, s�) ≈ MK√

2Fπ

(

−0.3197 − 0.0727
s�
M2

K

+
(

0.1457+0.0163
s�
M2

K

)

s

M2
K

+0.0003
s2

M4
K

)

. (E.18)

A numerical check shows that the polynomial-subtracted s-
channel contributions of the vertex integrals fulfil the disper-
sion relations

MV
0 (s, s�) = s3

π

∫ ∞

s0

ImMV
0 (s′, s�)

(s′ − s − iε)s′3 ds′,

MV
1 (s, s�) = s2

π

∫ ∞

s0

ImMV
1 (s′, s�)

(s′ − s − iε)s′2 ds′,

M̃V
1 (s, s�) = s3

π

∫ ∞

s0

ImM̃V
1 (s′, s�)

(s′ − s − iε)s′3 ds′.

(E.19)

Finally, we consider the t-channel, which is a bit more intri-
cate: the reason is that not all linear and quadratic terms of a
simple Taylor expansion in t belong to the subtraction poly-
nomial. The t-channel contributions can be written as

FNNLO
VT,0 (t, s�) = 2

3
NV

0 (t, s�) + 2

3

�Kπ��π

M4
K

NV
1 (t, s�)

−2

3

�Kπ − 3t

2M2
K

Ñ V
1 (t, s�) + 1

3
RV

0 (t, s�) + PNNLO
F,VT 0(t, s�),

FNNLO
VT,1 (t, s�) = 2t

3M2
K

NV
1 (t, s�) + PNNLO

F,VT 1(t, s�),

GNNLO
VT,0 (t, s�) = −2

3
NV

0 (t, s�) − 2

3

�Kπ��π

M4
K

NV
1 (t, s�)

+2

3

�Kπ + t

2M2
K

Ñ V
1 (t, s�) − 1

3
RV

0 (t, s�) + PNNLO
G,VT 0(t, s�),
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GNNLO
VT,1 (t, s�) = − 2t

3M2
K

NV
1 (t, s�) + PNNLO

G,V T 1(t, s�),

(E.20)

where PNNLO
F,V T 0, PNNLO

G,VT 0 are second order and PNNLO
F,V T 1, PNNLO

G,VT 1

are first-order polynomials. The Taylor expansion of NV
0

starts with a cubic term, the one of Ñ V
1 with a quadratic

and the one of NV
1 with a linear term. Numerically, we find

PNNLO
F,VT 1(t, s�) = −PNNLO

G,V T 1(t, s�) ≈ MK√
2Fπ

×
(

0.0044 + 0.0002
s�
M2

K

+ 0.0003
t

M2
K

)

(E.21)

and also identify the linear and the quadratic term of the
Taylor expansion of NV

1 . In the sum

FNNLO
VT,0 (t, s�) + GNNLO

VT,0 (t, s�)

= 4t

3M2
K

Ñ V
1 (t, s�)+PNNLO

F,V T 0(t, s�)+PNNLO
G,V T 0(t, s�),

(E.22)

we can easily separate Ñ V
1 from the sum of the polynomials.

After having identified Ñ V
1 (in particular the quadratic term

of its Taylor expansion), we can also separate the difference
of the polynomials using

FNNLO
VT,0 (t, s�) − GNNLO

VT,0 (t, s�) = 4

3
NV

0 (t, s�)

+4

3

�Kπ��π

M4
K

NV
1 (t, s�) − 2

3

�Kπ − t

M2
K

Ñ V
1 (t, s�)

+ 2

3
RV

0 (t, s�) + PNNLO
F,VT 0(t, s�) − PNNLO

G,VT 0(t, s�). (E.23)

Numerically, we find

PNNLO
F,VT 0(t, s�) ≈ MK√

2Fπ

(

−0.6831 − 0.1136
s�
M2

K

− 0.0013

× s2
�

M4
K

+
(

0.2841−0.0006
s�
M2

K

)

t

M2
K

+0.0190
t2

M4
K

)

,

PNNLO
G,VT 0(t, s�)≈

MK√
2Fπ

(

−0.0055−0.0146
s�
M2

K

−0.0006

× s2
�

M4
K

+
(

0.0131+0.0095
s�
M2

K

)

t

M2
K

−0.0356
t2

M4
K

)

.

(E.24)

Again, the following dispersion relations can be checked
numerically:

NV
0 (t, s�) = t3

π

∫ ∞

t0

ImNV
0 (t ′, s�)

(t ′ − t − iε)t ′3
dt ′,

NV
1 (t, s�) = t

π

∫ ∞

t0

ImNV
1 (t ′, s�)

(t ′ − t − iε)t ′
dt ′,

Ñ V
1 (t, s�) = t2

π

∫ ∞

t0

ImÑ V
1 (t ′, s�)

(t ′ − t − iε)t ′2
dt ′. (E.25)

Reshuffling the polynomial contributions into the subtraction
constants leads to

m0,NNLO
0,V = MK√

2Fπ

(

0.0705+0.0667
s�
M2

K

−0.0539
s2
�

M4
K

)

,

m1,NNLO
0,V = MK√

2Fπ

(

−1.7841 + 0.0648
s�
M2

K

)

,

m2,NNLO
0,V = MK√

2Fπ

(−0.5954) ,

m0,NNLO
1,V = MK√

2Fπ

(

−0.2658 + 0.0969
s�
M2

K

)

,

m1,NNLO
1,V = MK√

2Fπ

(−0.1132) ,

m̃0,NNLO
1,V = MK√

2Fπ

(

−0.1310−0.2580
s�
M2

K

+0.0435
s2
�

M4
K

)

,

m̃1,NNLO
1,V = MK√

2Fπ

(

0.2570 − 0.0849
s�
M2

K

)

,

m̃2,NNLO
1,V = MK√

2Fπ

(0.0572) ,

n1,NNLO
0,V = MK√

2Fπ

(

−0.2587 + 0.0519
s�
M2

K

)

,

n2,NNLO
0,V = MK√

2Fπ

(0.0898) ,

n0,NNLO
1,V = MK√

2Fπ

(−0.0849) ,

ñ1,NNLO
1,V = MK√

2Fπ

(0.0729) . (E.26)

E.2.1.4 Remaining two-loop integrals Next, we consider
the remaining two-loop parts, XNNLO

P . It is easy to decompose
them into functions of one Mandelstam variable:

FNNLO
P (s, t, u) = FNNLO

PS (s, s�) + FNNLO
PT,0 (t, s�)

+ s − u

M2
K

FNNLO
PT,1 (t, s�) + FNNLO

PU (u, s�) + PNNLO
F,P (s, t, u),

GNNLO
P (s, t, u) = GNNLO

PS (s, s�) + GNNLO
PT,0 (t, s�)

+ s − u

M2
K

GNNLO
PT,1 (t, s�)+GNNLO

PU (u, s�)+PNNLO
G,P (s, t, u),

(E.27)

where PNNLO
F,P and PNNLO

G,P are second-order polynomials.
The remaining steps are analogous to the case ofthe ver-

123



Eur. Phys. J. C (2015) 75 :172 Page 59 of 65 172

tex integrals. Again, we apply subtractions to the different
functions:

MP
0 (s, s�) = FNNLO

PS (s, s�) − PNNLO
F,PS (s, s�),

M̃ P
1 (s, s�) = GNNLO

PS (s, s�) − PNNLO
G,PS (s, s�),

RP
0 (u, s�) = FNNLO

PU (u, s�) − PNNLO
F,PU (u, s�)

= GNNLO
PU (u, s�) − PNNLO

G,PU (u, s�), (E.28)

where

PNNLO
F,PS (s, s�) = FNNLO

PS (0, s�) + sFNNLO
PS

′
(0, s�)

+1

2
s2FNNLO

PS
′′
(0, s�),

PNNLO
G,PS (s, s�) = GNNLO

PS (0, s�) + sGNNLO
PS

′
(0, s�)

+1

2
s2GNNLO

PS
′′
(0, s�),

PNNLO
F,PU (u, s�) = FNNLO

PU (0, s�) + uFNNLO
PU

′
(0, s�)

+1

2
u2FNNLO

PU
′′
(0, s�),

PNNLO
G,PU (u, s�) = GNNLO

PU (0, s�) + uGNNLO
PU

′
(0, s�)

+1

2
u2GNNLO

PU
′′
(0, s�). (E.29)

Numerically, we find

PNNLO
F,PS (s, s�) ≈ MK√

2Fπ

(

−0.1660 + 0.0002
s�
M2

K

+0.0007

× s2
�

M4
K

+
(

1.1629 + 0.0343
s�
M2

K

)

s

M2
K

+ 0.7815
s2

M4
K

)

,

PNNLO
G,PS (s, s�) ≈ MK√

2Fπ

(

0.0609 + 0.0118
s�
M2

K

+
(

−0.0514 − 0.0058
s�
M2

K

)

s

M2
K

− 0.0007
s2

M4
K

)

,

PNNLO
F,PU (u, s�) = PNNLO

G,PU (u, s�) ≈ MK√
2Fπ

(

0.0585−0.0089

× s�
M2

K

+
(

0.0165 + 0.0069
s�
M2

K

)

u

M2
K

− 0.0442
u2

M4
K

)

.

(E.30)

The t-channel contributions can be written as

FNNLO
PT,0 (t, s�) = 2

3
N P

0 (t, s�) + 2

3

�Kπ��π

M4
K

N P
1 (t, s�)

− 2

3

�Kπ − 3t

2M2
K

Ñ P
1 (t, s�) + 1

3
RP

0 (t, s�) + PNNLO
F,PT 0(t, s�),

FNNLO
PT,1 (t, s�) = 2t

3M2
K

N P
1 (t, s�) + PNNLO

F,PT 1(t, s�),

GNNLO
PT,0 (t, s�) = −2

3
N P

0 (t, s�) − 2

3

�Kπ��π

M4
K

N P
1 (t, s�)

+ 2

3

�Kπ + t

2M2
K

Ñ P
1 (t, s�) − 1

3
RP

0 (t, s�) + PNNLO
G,PT 0(t, s�),

GNNLO
PT,1 (t, s�) = − 2t

3M2
K

N P
1 (t, s�) + PNNLO

G,PT 1(t, s�), (E.31)

where PNNLO
F,PT 0, PNNLO

G,PT 0 are second order and PNNLO
F,PT 1, PNNLO

G,PT 1
are first-order polynomials. Numerically, we find

PNNLO
F,PT 1(t, s�) = −PNNLO

G,PT 1(t, s�)

≈ MK√
2Fπ

(

−0.0010 − 0.0001
t

M2
K

)

(E.32)

and also identify the linear and the quadratic term of the
Taylor expansion of N P

1 . In the sum

FNNLO
PT,0 (t, s�) + GNNLO

PT,0 (t, s�) = 4t

3M2
K

Ñ P
1 (t, s�)

+ PNNLO
F,PT 0(t, s�) + PNNLO

G,PT 0(t, s�) (E.33)

we can separate Ñ P
1 from the polynomials. We obtain the

difference of the polynomials with

FNNLO
PT,0 (t, s�) − GNNLO

PT,0 (t, s�)

= 4

3
N P

0 (t, s�) + 4

3

�Kπ��π

M4
K

N P
1 (t, s�)

− 2

3

�Kπ − t

M2
K

Ñ P
1 (t, s�)

+ 2

3
RP

0 (t, s�) + PNNLO
F,PT 0(t, s�) − PNNLO

G,PT 0(t, s�)

(E.34)

and find numerically

PNNLO
F,PT 0(t, s�) ≈ MK√

2Fπ

(

0.2047 + 0.0339
s�
M2

K

+
(

−0.1781 + 0.0019
s�
M2

K

)

t

M2
K

− 0.0211
t2

M4
K

)

,

PNNLO
G,PT 0(t, s�) ≈ MK√

2Fπ

(

−0.0662 + 0.0085
s�
M2

K

+
(

0.0757 − 0.0054
s�
M2

K

)

t

M2
K

+ 0.0251
t2

M4
K

)

. (E.35)

Finally, the additional polynomials are given by

PNNLO
F,P (s, t, u) ≈ MK√

2Fπ

(

0.2640 − 0.0510
s�
M2

K

−0.0002
s2
�

M4
K

+ 0.0561
s

M2
K

− 0.0700
t

M2
K

)

,
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PNNLO
G,P (s, t, u) ≈ MK√

2Fπ

(

0.0686 + 0.0287
s�
M2

K

+0.0006
s2
�

M4
K

− 0.0396
s

M2
K

+ 0.0169
t

M2
K

)

. (E.36)

Reshuffling all polynomial contributions into the subtraction
constants leads to

m0,NNLO
0,P = MK√

2Fπ

(

0.3349 − 0.0426
s�
M2

K

+ 0.0429
s2
�

M4
K

)

,

m1,NNLO
0,P = MK√

2Fπ

(

1.1922 − 0.0523
s�
M2

K

)

,

m2,NNLO
0,P = MK√

2Fπ

(0.8257) ,

m0,NNLO
1,P = MK√

2Fπ

(

−0.0083 − 0.0797
s�
M2

K

)

,

m1,NNLO
1,P = MK√

2Fπ

(0.0884) ,

m̃0,NNLO
1,P = MK√

2Fπ

(

0.0771 + 0.0016
s�
M2

K

− 0.0367
s2
�

M4
K

)

,

m̃1,NNLO
1,P = MK√

2Fπ

(

−0.0030 + 0.0757
s�
M2

K

)

,

m̃2,NNLO
1,P = MK√

2Fπ

(−0.0449) ,

n1,NNLO
0,P = MK√

2Fπ

(

−0.2217 − 0.0478
s�
M2

K

)

,

n2,NNLO
0,P = MK√

2Fπ

(−0.0693) ,

n0,NNLO
1,P = MK√

2Fπ

(0.0662) ,

ñ1,NNLO
1,P = MK√

2Fπ

(−0.0633) . (E.37)

E.2.1.5 NNLO one-loop integrals The last NNLO piece
that we have to decompose is the part containing the Lr

i .
Similar to the two-loop parts, it can easily be decomposed
into functions of one variables. Since this contribution con-
tains only one-loop integrals, we can express it in terms of
A0 and B0 functions, which can be treated analytically. After
decomposing the NNLO one-loop part according to

FNNLO
L (s, t, u) = FNNLO

LS,0 (s, s�) + u − t

M2
K

FNNLO
LS,1 (s, s�)

+ FNNLO
LT,0 (t, s�) + s − u

M2
K

FNNLO
LT,1 (t, s�)

+ FNNLO
LU (u, s�) + PNNLO

F,L (s, t, u),

GNNLO
L (s, t, u) = GNNLO

LS (s, s�) + GNNLO
LT,0 (t, s�)

+ s − u

M2
K

GNNLO
LT,1 (t, s�)

+GNNLO
LU (u, s�) + PNNLO

G,L (s, t, u),

(E.38)

the polynomial contribution is found in analogy to the two-
loop part. Reshuffling the polynomial gives very long expres-
sions for the subtraction constants. We perform a Taylor
expansion in s� and evaluate the expressions numerically,
using the physical masses and μ = 770 MeV:

m0,NNLO
0,L

= MK√
2Fπ

(

(0.0243 + 0.0155 · 103Lr
5) · 103Lr

1

+ (0.3528 − 0.0523 · 103Lr
5) · 103Lr

2

+(0.0831 − 0.0092 · 103Lr
5) · 103Lr

3

+ (0.0400 + 0.0350 · 103Lr
4 − 0.0020 · 103Lr

5) · 103Lr
4

+(0.0066 + 0.0048 · 103Lr
5) · 103Lr

5

− (0.0012 + 0.0699 · 103Lr
4 + 0.0087 · 103Lr

5) · 103Lr
6

+0.0213 · 103Lr
7 + (0.0100 − 0.0027 · 103Lr

4

−0.0003 · 103Lr
5) · 103Lr

8 + s�
M2

K

×(0.0213 · 103Lr
1 − 0.0161 · 103Lr

2 + 0.0230 · 103Lr
3

+0.0139 · 103Lr
4 + 0.0018 · 103Lr

5

− 0.0017 · 103Lr
6 − 0.0008 · 103Lr

8

+(0.0229 − 0.0060 · 103Lr
5) · 103Lr

9)

+ s2
�

M4
K

(−0.0053 · 103Lr
1 − 0.0029 · 103Lr

2

−0.0029 · 103Lr
3 + 0.0065 · 103Lr

4 + 0.0010 · 103Lr
5

−0.0012 · 103Lr
6 − 0.0006 · 103Lr

8 + 0.0025 · 103Lr
9)

)

,

m1,NNLO
0,L = MK√

2Fπ

(

− (0.1644 + 0.0968 · 103Lr
5) · 103Lr

1

−0.2921 · 103Lr
2 − (0.1665 + 0.0242 · 103Lr

5) · 103Lr
3

−0.0353 · 103Lr
4 + 0.0049 · 103Lr

5 + 0.0185 · 103Lr
6

−0.0033 · 103Lr
7 + 0.0076 · 103Lr

8

+ s�
M2

K

(0.0138 · 103Lr
1 − 0.0575 · 103Lr

2 − 0.0087 · 103Lr
3

−0.0130 · 103Lr
4 − 0.0020 · 103Lr

5 + 0.0024 · 103Lr
6

+0.0012 · 103Lr
8 + 0.0196 · 103Lr

9)

)

, (E.39)
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m2,NNLO
0,L = MK√

2Fπ

×(0.3345 · 103Lr
1 + 0.2734 · 103Lr

2

+0.1618 · 103Lr
3 + 0.0863 · 103Lr

4

+ 0.0096 · 103Lr
5 + 0.0067 · 103Lr

6

−0.0003 · 103Lr
7 + 0.0032 · 103Lr

8),

m0,NNLO
1,L = MK√

2Fπ

(

− 0.1203 · 103Lr
1

+
(

−0.2247 + 0.0242 · 103Lr
5

)

· 103Lr
2

−0.0727 · 103Lr
3 − 0.0241 · 103Lr

4

−0.0046 · 103Lr
5 + 0.0078 · 103Lr

6 + 0.0039 · 103Lr
8

+ s�
M2

K

(0.0121 · 103Lr
1 + 0.0044 · 103Lr

2

+0.0063 · 103Lr
3 − 0.0130 · 103Lr

4 − 0.0020 · 103Lr
5

+0.0024 · 103Lr
6 + 0.0012 · 103Lr

8 − 0.0053 · 103Lr
9)

)

,

m1,NNLO
1,L = MK√

2Fπ

(−0.0198 · 103Lr
1

−0.0059 · 103Lr
2 − 0.0056 · 103Lr

3+0.0130 · 103Lr
4

+0.0020 · 103Lr
5 − 0.0024 · 103Lr

6 − 0.0012 · 103Lr
8),

m̃0,NNLO
1,L = MK√

2Fπ

(

0.0440 · 103Lr
1

+(−0.1488 + 0.0281 · 103Lr
5) · 103Lr

2

+(−0.0140 + 0.0131 · 103Lr
5) · 103Lr

3

+(0.0001 + 0.0044 · 103Lr
5) · 103Lr

4

+(−0.0033 + 0.0048 · 103Lr
5) · 103Lr

5

+(0.0186 − 0.0087 · 103Lr
5) · 103Lr

6 − 0.0135 · 103Lr
7

+ (0.0026 − 0.0003 · 103Lr
5) · 103Lr

8

+ s�
M2

K

(−0.0957 · 103Lr
1

−(0.2423 − 0.0242 · 103Lr
5) · 103Lr

2 − 0.0520 · 103Lr
3

−0.0134 · 103Lr
4 − 0.0033 · 103Lr

5 + 0.0067 · 103Lr
6

+0.0033 · 103Lr
8 + (0.0098 − 0.0060 · 103Lr

5) · 103Lr
9)

+ s2
�

M4
K

(0.0057 · 103Lr
1 + 0.0010 · 103Lr

2

+0.0029 · 103Lr
3 − 0.0065 · 103Lr

4

−0.0010 · 103Lr
5 + 0.0012 · 103Lr

6

+0.0006 · 103Lr
8 − 0.0034 · 103Lr

9)

)

,

m̃1,NNLO
1,L = MK√

2Fπ

(

0.0987 · 103Lr
1

+(0.2328 − 0.0242 · 103Lr
5) · 103Lr

2

+0.0581 · 103Lr
3 + 0.0213 · 103Lr

4

+0.0062 · 103Lr
5 − 0.0078 · 103Lr

6 − 0.0039 · 103Lr
8

+ s�
M2

K

(−0.0138 · 103Lr
1 − 0.0029 · 103Lr

2

−0.0026 · 103Lr
3 + 0.0130 · 103Lr

4

+0.0020 · 103Lr
5 − 0.0024 · 103Lr

6

−0.0012 · 103Lr
8 + 0.0089 · 103Lr

9)

)

,

m̃2,NNLO
1,L = MK√

2Fπ

(−0.0070 · 103Lr
1 + 0.0114 · 103Lr

2

−0.0097 · 103Lr
3 − 0.0044 · 103Lr

4

+0.0001 · 103Lr
5+0.0012 · 103Lr

6+0.0006 · 103Lr
8),

n1,NNLO
0,L = MK√

2Fπ

(

− 0.0796 · 103Lr
1

+(−0.4712 + 0.0726 · 103Lr
5) · 103Lr

2

+(−0.1097 + 0.0181 · 103Lr
5) · 103Lr

3

−0.0262 · 103Lr
4 − 0.0049 · 103Lr

5

+0.0075 · 103Lr
6 − 0.0117 · 103Lr

7 − 0.0021 · 103Lr
8

+ s�
M2

K

(0.0095 · 103Lr
1 + 0.0035 · 103Lr

2

+0.0040 · 103Lr
3 − 0.0098 · 103Lr

4

−0.0015 · 103Lr
5 + 0.0018 · 103Lr

6

+0.0009 · 103Lr
8 − 0.0079 · 103Lr

9)

)

,

n2,NNLO
0,L = MK√

2Fπ

(−0.0003 · 103Lr
1

−0.0010 · 103Lr
2 + 0.0101 · 103Lr

3 − 0.0007 · 103Lr
4

−0.0022 · 103Lr
5 + 0.0003 · 103Lr

6

−0.0010 · 103Lr
7 − 0.0004 · 103Lr

8),

n0,NNLO
1,L = MK√

2Fπ

(−0.0125 · 103Lr
1

−0.0051 · 103Lr
2 − 0.0069 · 103Lr

3 + 0.0098 · 103Lr
4

+0.0015 · 103Lr
5 − 0.0018 · 103Lr

6

−0.0009 · 103Lr
8),

ñ1,NNLO
1,L = MK√

2Fπ

(0.0059 · 103Lr
1

+0.0096 · 103Lr
2 · +0.0051 · 103Lr

3 − 0.0072 · 103Lr
4

−0.0012 · 103Lr
5 + 0.0018 · 103Lr

6

+0.0009 · 103Lr
8). (E.40)

Note that there are no quadratic terms in Lr
1, Lr

2 or Lr
3.
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E.2.2 Chiral expansion of the Omnès representation

In order to derive the NNLO chiral expansion of the Omnès
representation (C.1), we first expand the Omnès function chi-
rally:

�NNLO(s)=1+ω
s

M2
K

+ω̄
s2

M4
K

+ s3

π

∫ ∞

s0

δNLO(s′)
(s′−s−iε)s′3 ds′

+ 1

2

(

ω
s

M2
K

+ s2

π

∫ ∞

s0

δLO(s′)
(s′ − s − iε)s′2 ds′

)2

, (E.41)

where the subtraction terms ω and ω̄ are defined in (147).
In the quadratic term of the expansion, only the LO phase

enters and therefore only two subtractions are needed. The
NLO expansion of the modulus of the inverse Omnès func-
tion is given by

1

|�NLO(s)| = 1 − ω
s

M2
K

− s2

π
P
∫ ∞

s0

δNLO(s′)
(s′ − s − iε)s′2 ds′. (E.42)

Therefore, the NNLO chiral expansion of the argument of
the dispersive integrals reads

M̂(s) sin δ(s)
|�(s)|

∣
∣
∣
∣
NNLO

= M̂LO(s)δNLO(s) + M̂NLO(s)δLO(s)

− M̂LO(s)δLO(s)

(

1+ω s
M2

K
+ s2

π
P
∫ ∞

s0

δLO(s′)
(s′−s−iε)s′2 ds′

)

.

(E.43)
This leads to

MNNLO
0 (s)

= aM0
LO

(

ω0
0

s

M2
K

+ ω̄0
0
s2

M4
K

+ s3

π

∫ ∞

s0

δ0
0,NLO(s′)

(s′ − s − iε)s′3 ds′

+ 1

2

(

ω0
0

s

M2
K

+ s2

π

∫ ∞

s0

δ0
0,LO(s′)

(s′ − s − iε)s′2 ds′
)2)

+
(

�aM0
NLO + bM0

NLO
s

M2
K

+ cM0
NLO

s2

M4
K

)

×
(

ω0
0

s

M2
K

+ s2

π

∫ ∞

s0

δ0
0,LO(s′)

(s′ − s − iε)s′2 ds′
)

+ aM0
NNLO + bM0

NNLO
s

M2
K

+ cM0
NNLO

s2

M4
K

+ dM0
NNLO

s3

M6
K

+ s4

π

∫ ∞

s0

M̂NLO
0 (s′)δ0

0,LO(s′)
(s′ − s − iε)s′4 ds′,

MNNLO
1 (s) =

(

aM1
NLO + bM1

NLO
s

M2
K

)

×
(

ω1
1

s

M2
K

+ s2

π

∫ ∞

s0

δ1
1,LO(s′)

(s′ − s − iε)s′2 ds′
)

+aM1
NNLO + bM1

NNLO
s

M2
K

+ cM1
NNLO

s2

M4
K

+ s3

π

∫ ∞

s0

M̂NLO
1 (s′)δ1

1,LO(s′)
(s′ − s − iε)s′3 ds′,

M̃NNLO
1 (s) = aM̃1

LO

(

ω1
1

s

M2
K

+ ω̄1
1
s2

M4
K

+ s3

π

×
∫ ∞

s0

δ1
1,NLO(s′)

(s′ − s − iε)s′3 ds′

+ 1

2

(

ω1
1

s

M2
K

+ s2

π

∫ ∞

s0

δ1
1,LO(s′)

(s′ − s − iε)s′2 ds′
)2)

+
(

�aM̃1
NLO + bM̃1

NLO
s

M2
K

+ cM̃1
NLO

s2

M4
K

)

×
(

ω1
1

s

M2
K

+ s2

π

∫ ∞

s0

δ1
1,LO(s′)

(s′ − s − iε)s′2 ds′
)

+aM̃1
NNLO + bM̃1

NNLO
s

M2
K

+ cM̃1
NNLO

s2

M4
K

+ d M̃1
NNLO

s3

M6
K

+ s4

π

∫ ∞

s0

ˆ̃MNLO
1 (s′)δ1

1,LO(s′)
(s′ − s − iε)s′4 ds′,

NNNLO
0 (t) =

(

bN0
NLO

t

M2
K

+ cN0
NLO

t2

M4
K

+ t3

π

×
∫ ∞

t0

N̂LO
0 (t ′)δ1/2

0,LO(t ′)
(t ′ − t − iε)t ′3

dt ′
)

×
(

ω
1/2
0

t

M2
K

+ t2

π

∫ ∞

t0

δ
1/2
0,LO(t ′)

(t ′ − t − iε)t ′2
dt ′
)

+ bN0
NNLO

t

M2
K

+ cN0
NNLO

t2

M4
K

+ t3

π

×
∫ ∞

t0

N̂LO
0 (t ′)δ1/2

0,NLO(t ′)
(t ′ − t − iε)t ′3

dt ′

+ t3

π

∫ ∞

t0

N̂NLO
0 (t ′)δ1/2

0,LO(t ′)
(t ′ − t − iε)t ′3

dt ′

− t3

π

∫ ∞

t0

N̂LO
0 (t ′)δ1/2

0,LO(t ′)
(t ′ − t − iε)t ′3

×
(

1 + ω
1/2
0

t ′

M2
K

+ t ′2

π
P
∫ ∞

t0

δ
1/2
0,LO(t ′′)

(t ′′ − t ′ − iε)t ′′2
dt ′′

)

dt ′,

NNNLO
1 (t) = aN1

NLO

×
(

ω
1/2
1

t

M2
K

+ t2

π

∫ ∞

t0

δ
1/2
1,LO(t ′)

(t ′ − t − iε)t ′2
dt ′
)

+ aN1
NNLO + t

π

∫ ∞

t0

N̂NLO
1 (t ′)δ1/2

1,LO(t ′)
(t ′ − t − iε)t ′

dt ′,

ÑNNLO
1 (t) =

(

bÑ1
NLO

t

M2
K

+ t2

π

∫ ∞

t0

ˆ̃NLO
1 (t ′)δ1/2

1,LO(t ′)
(t ′ − t − iε)t ′2

dt ′
)
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×
(

ω
1/2
1

t

M2
K

+ t2

π

∫ ∞

t0

δ
1/2
1,LO(t ′)

(t ′ − t − iε)t ′2
dt ′
)

+ bÑ1
NNLO

t

M2
K

+ t2

π

∫ ∞

t0

ˆ̃NLO
1 (t ′)δ1/2

1,NLO(t ′)
(t ′ − t − iε)t ′2

dt ′

+ t2

π

∫ ∞

t0

ˆ̃NNLO
1 (t ′)δ1/2

1,LO(t ′)
(t ′ − t − iε)t ′2

dt ′

− t2

π

∫ ∞

t0

ˆ̃NLO
1 (t ′)δ1/2

1,LO(t ′)
(t ′ − t − iε)t ′2

×
(

1 + ω
1/2
1

t ′

M2
K

+ t ′2

π
P
∫ ∞

t0

δ
1/2
1,LO(t ′′)

(t ′′ − t ′ − iε)t ′′2
dt ′′

)

dt ′,

RNNLO
0 (t) =

(
t3

π

∫ ∞

t0

R̂LO
0 (t ′)δ3/2

0,LO(t ′)
(t ′ − t − iε)t ′3

dt ′
)

×
(

ω
3/2
0

t

M2
K

+ t2

π

∫ ∞

t0

δ
3/2
0,LO(t ′)

(t ′ − t − iε)t ′2
dt ′
)

+ t3

π

∫ ∞

t0

R̂LO
0 (t ′)δ3/2

0,NLO(t ′)
(t ′ − t − iε)t ′3

dt ′

+t3

π

∫ ∞

t0

R̂NLO
0 (t ′)δ3/2

0,LO(t ′)
(t ′ − t − iε)t ′3

dt ′− t3

π

∫ ∞

t0

R̂LO
0 (t ′)δ3/2

0,LO(t ′)
(t ′ − t − iε)t ′3

×
(

1 + ω
3/2
0

t ′

M2
K

+ t ′2

π
P
∫ ∞

t0

δ
3/2
0,LO(t ′′)

(t ′′ − t ′ − iε)t ′′2
dt ′′

)

dt ′,

RNNLO
1 (t) = 0,

R̃NNLO
1 (t) = 0, (E.44)

where we use the following notation for the contributions to
the subtraction constants:

aNLO = aLO + �aNLO,

aNNLO = aLO + �aNLO + �aNNLO. (E.45)

Remember that bM1
NLO and aN1

NLO are non-zero after the gauge
transformation.

We further define

bM0
NLO =: −ω0

0
MK√
2Fπ

+ b̄M0
NLO,

bM0
NNLO =: −ω0

0
MK√
2Fπ

+ b̄M0
NNLO,

bM̃1
NLO =: −ω1

1
MK√
2Fπ

+ b̄M̃1
NLO,

bM̃1
NNLO =: −ω1

1
MK√
2Fπ

+ b̄M̃1
NNLO,

(E.46)

which allows for the simplifications

MNNLO
0 (s) = MK√

2Fπ

×
((

ω̄0
0 − 1

2
ω0

0
2
)

s2

M4
K

+ s3

π

∫ ∞

s0

δ0
0,NLO(s′)

(s′ − s − iε)s′3 ds′

+ 1

2

(

s2

π

∫ ∞

s0

δ0
0,LO(s′)

(s′ − s − iε)s′2 ds′
)2 )

+
(

�aM0
NLO + b̄M0

NLO
s

M2
K

+ cM0
NLO

s2

M4
K

)

×
(

ω0
0

s

M2
K

+ s2

π

∫ ∞

s0

δ0
0,LO(s′)

(s′ − s − iε)s′2 ds′
)

+ aM0
NNLO + b̄M0

NNLO
s

M2
K

+ cM0
NNLO

s2

M4
K

+ dM0
NNLO

s3

M6
K

+ s4

π

∫ ∞

s0

M̂NLO
0 (s′)δ0

0,LO(s′)
(s′ − s − iε)s′4 ds′,

MNNLO
1 (s) =

(

aM1
NLO + bM1

NLO
s

M2
K

)

×
(

ω1
1

s

M2
K

+ s2

π

∫ ∞

s0

δ1
1,LO(s′)

(s′ − s − iε)s′2 ds′
)

+ aM1
NNLO + bM1

NNLO
s

M2
K

+ cM1
NNLO

s2

M4
K

+ s3

π

∫ ∞

s0

M̂NLO
1 (s′)δ1

1,LO(s′)
(s′ − s − iε)s′3 ds′,

M̃NNLO
1 (s) = MK√

2Fπ

×
((

ω̄1
1 − 1

2
ω1

1
2
)

s2

M4
K

+ s3

π

∫ ∞

s0

δ1
1,NLO(s′)

(s′ − s − iε)s′3 ds′

+1

2

(
s2

π

∫ ∞

s0

δ1
1,LO(s′)

(s′ − s − iε)s′2 ds′
)2)

+
(

�aM̃1
NLO + b̄M̃1

NLO
s

M2
K

+ cM̃1
NLO

s2

M4
K

)

×
(

ω1
1

s

M2
K

+ s2

π

∫ ∞

s0

δ1
1,LO(s′)

(s′ − s − iε)s′2 ds′
)

+aM̃1
NNLO + b̄M̃1

NNLO
s

M2
K

+ cM̃1
NNLO

s2

M4
K

+ d M̃1
NNLO

s3

M6
K

+ s4

π

∫ ∞

s0

ˆ̃MNLO
1 (s′)δ1

1,LO(s′)
(s′ − s − iε)s′4 ds′,

NNNLO
0 (t) = bN0

NNLO
t

M2
K

+ cN0
NNLO

t2

M4
K

+ ω
1/2
0

t

M2
K

×
(

bN0
NLO

t

M2
K

+ δcN0
NLO

t2

M4
K

)

+
(
t2

π

∫ ∞

t0

δ
1/2
0,LO(t ′)

(t ′ − t − iε)t ′2
dt ′
)
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×
(

bN0
NLO

t

M2
K

+ cN0
NLO

t2

M4
K

+ t3

π

∫ ∞

t0

N̂LO
0 (t ′)δ1/2

0,LO(t ′)
(t ′ − t − iε)t ′3

dt ′
)

+ t3

π

∫ ∞

t0

N̂LO
0 (t ′)δ1/2

0,NLO(t ′)
(t ′ − t − iε)t ′3

dt ′

+ t3

π

∫ ∞

t0

N̂NLO
0 (t ′)δ1/2

0,LO(t ′)
(t ′ − t − iε)t ′3

dt ′

− t3

π

∫ ∞

t0

N̂LO
0 (t ′)δ1/2

0,LO(t ′)
(t ′ − t − iε)t ′3

×
(

1 + t ′2

π
P
∫ ∞

t0

δ
1/2
0,LO(t ′′)

(t ′′ − t ′ − iε)t ′′2
dt ′′

)

dt ′,

NNNLO
1 (t) = aN1

NNLO + aN1
NLOω

1/2
1

t

M2
K

+ aN1
NLO

t2

π

∫ ∞

t0

δ
1/2
1,LO(t ′)

(t ′ − t − iε)t ′2
dt ′

+ t

π

∫ ∞

t0

N̂NLO
1 (t ′)δ1/2

1,LO(t ′)
(t ′ − t − iε)t ′

dt ′,

ÑNNLO
1 (t) = bÑ1

NNLO
t

M2
K

+ ω
1/2
1 δbÑ1

NLO
t2

M4
K

+
(
t2

π

∫ ∞

t0

δ
1/2
1,LO(t ′)

(t ′ − t − iε)t ′2
dt ′
)

×
(

bÑ1
NLO

t

M2
K

+ t2

π

∫ ∞

t0

ˆ̃NLO
1 (t ′)δ1/2

1,LO(t ′)
(t ′ − t − iε)t ′2

dt ′
)

+ t2

π

∫ ∞

t0

ˆ̃NLO
1 (t ′)δ1/2

1,NLO(t ′)
(t ′ − t − iε)t ′2

dt ′

+ t2

π

∫ ∞

t0

ˆ̃NNLO
1 (t ′)δ1/2

1,LO(t ′)
(t ′ − t − iε)t ′2

dt ′

− t2

π

∫ ∞

t0

ˆ̃NLO
1 (t ′)δ1/2

1,LO(t ′)
(t ′ − t − iε)t ′2

×
(

1 + t ′2

π
P
∫ ∞

t0

δ
1/2
1,LO(t ′′)

(t ′′ − t ′ − iε)t ′′2
dt ′′

)

dt ′,

RNNLO
0 (t) = −ω

3/2
0

t

M2
K

t2

π

∫ ∞

t0

R̂LO
0 (t ′)δ3/2

0,LO(t ′)
t ′3

dt ′

+
(
t2

π

∫ ∞

t0

δ
3/2
0,LO(t ′)

(t ′ − t − iε)t ′2
dt ′
)

×
(
t3

π

∫ ∞

t0

R̂LO
0 (t ′)δ3/2

0,LO(t ′)
(t ′ − t − iε)t ′3

dt ′
)

+ t3

π

∫ ∞

t0

R̂LO
0 (t ′)δ3/2

0,NLO(t ′)
(t ′ − t − iε)t ′3

dt ′

+ t3

π

∫ ∞

t0

R̂NLO
0 (t ′)δ3/2

0,LO(t ′)
(t ′ − t − iε)t ′3

dt ′− t3

π

∫ ∞

t0

R̂LO
0 (t ′)δ3/2

0,LO(t ′)
(t ′ − t − iε)t ′3

×
(

1 + t ′2

π
P
∫ ∞

t0

δ
3/2
0,LO(t ′′)

(t ′′ − t ′ − iε)t ′′2
dt ′′

)

dt ′,

RNNLO
1 (t) = 0,

R̃NNLO
1 (t) = 0, (E.47)

where δcN0
NLO and δbÑ1

NLO are given by (146) and the remain-
ing subtraction constants denote the quantities after the gauge
transformation. Note that ω and ω̄ appear only in polynomial
terms. In M0, M1 and M̃1, they can be reabsorbed into the
NNLO subtraction constants. However, this is not the case for
N0, N1, Ñ1 and R0. Here, we are required to fix theω-terms by
imposing the requirement that the chirally expanded Omnès
representation agree with the standard dispersive representa-
tion (or finally the two-loop representation). This somewhat
awkward situation is just another manifestation of the fact
that we identify the chiral representation with the Omnès
dispersion relation although the phase shifts of the former
have a wrong asymptotic behaviour.

The comparison of the Taylor expansions of (E.47) and
(69) leads to the relation (148) for the subtraction constants.
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