Controlling for Culture-Specific Response Bias using Ipsatization and Response Style Indicators: Family Orientation in Seventeen Cultures and Two Generations

Boris Mayer
University of Bern
Acknowledgements

“Value of Children and Intergenerational Relations”
Principal Investigators: Prof. Dr. G. Trommsdorff & Prof. Dr. B. Nauck

Team leaders and team members in the collaborating countries:

Czech Republic: Prof. Dr. Ivo Mozny, Prof. Dr. Petr Pakosta
China: Prof. Dr. Gang Zheng, Dr. Shaohua Shi, Dr. Hong Tang
Estonia: Dr. Kairi Kasearu
France: Prof. Dr. Colette Sabatier, Dr. Lyda Lannegrand-Willems
Germany: Prof. Dr. Gisela Trommsdorff, Prof. Dr. Bernhard Nauck, PD Dr. Beate Schwarz, Dr. Isabelle Albert, Dr. Daniela Klaus, Dr. Boris Mayer, Dr. Jana Suckow
Ghana: Prof. Dr. David Lackland Sam
India: Prof. Dr. Ramesh Mishra (Varanasi), Dr. Arun Tipandjan (Pondicherry)
Indonesia: Prof. Dr. Kusdwiratri Setiono, Dr. Lieke Wisnubrata, Prof. Dr. Samsunuwijati Marat, Peter R. Nelwan, MA
Israel and the Palestinian Authority: Dr. Asher Ben-Arieh, Dr. Muhammad M. Haj-Yahia
Jamaica: Annekatrin Bock, MA
Poland: Dr. Katarzyna Lubiewska
Russia: Prof. Dr. Zarethkan Saralieva, Prof. Dr. Vladimir Blonin, Prof. Dr. Alexander Iudin
South Africa: Prof. Dr. Karl Peltzer
Turkey: Dr. Bilge Ataca, Prof. Dr. Cigdem Kagitcibasi
United States: Prof. Dr. Wolfgang Friedlmeier, Prof. Dr. Mihaela Friedlmeier

Many thanks to Sebastian Strahm for his help in data analysis.
Measurement Equivalence and Response Bias Across Cultures

> “Strong” (scalar) equivalence as precondition for cross-cultural mean comparisons (Byrne, 2008; Cheung & Rensvold, 2000)

> But: MACS CFA cannot control for uniform response bias (Little, 2000)

> Single response style factor (He, Bartram, Inceoglu, & van de Vijver, 2014)

> Further recent developments:

Controlling for culture-specific response bias using ipsatization and response style indicators

Thomas, Abts, & Vander Weyden (2014)

Controlling for culture-specific response bias using ipsatization and response style indicators

(Within-subject) Standardization / Ipsatization

> Ipsatization recommended to control for culture-specific response bias in mean comparisons (Fischer, 2004; Fischer & Milfont, 2010)

> But which kind of ipsatization? “Single Construct” (e.g. Schwartz values) or “All items of a questionnaire”?

> Caution – “fixed pie” – possibly controlling for content in addition to bias!

> Psychological assessment literature: ipsatized measures appropriate with large number of constructs (> 10) and low intercorrelations among constructs (< .30) (Baron, 1996; Bartram, 1996)

> Alternative: random selection of items measuring different underlying constructs and are uncorrelated (Weijters, Schillewaert, & Geuens, 2008)

“Representative Indicators Response Style Means and Covariance Structure” (RIRSMACS)

Current Study: Using RIRS for 1) ipsatization and 2) response style indicators (acquiescence and extremity responding, ANCOVAs) and comparing results
Controlling for culture-specific response bias using ipsatization and response style indicators

VOC-Project: Mothers and Adolescents from 17 Cultural Groups

<table>
<thead>
<tr>
<th>Culture</th>
<th>Mothers</th>
<th>Adolescents</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>309</td>
<td>306</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>243</td>
<td>242</td>
</tr>
<tr>
<td>Estonia</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>France</td>
<td>197</td>
<td>199</td>
</tr>
<tr>
<td>Germany</td>
<td>311</td>
<td>311</td>
</tr>
<tr>
<td>Ghana</td>
<td>294</td>
<td>294</td>
</tr>
<tr>
<td>India</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Indonesia</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Israeli Jews</td>
<td>194</td>
<td>194</td>
</tr>
<tr>
<td>Jamaica</td>
<td>314</td>
<td></td>
</tr>
<tr>
<td>Palestinians / IsraeliArabs</td>
<td>181</td>
<td>177</td>
</tr>
<tr>
<td>Poland</td>
<td>575</td>
<td>575</td>
</tr>
<tr>
<td>Russia</td>
<td>230</td>
<td>226</td>
</tr>
<tr>
<td>South Africa</td>
<td>317</td>
<td>317</td>
</tr>
<tr>
<td>South India</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Turkey</td>
<td>308</td>
<td>308</td>
</tr>
<tr>
<td>USA</td>
<td>337</td>
<td>337</td>
</tr>
<tr>
<td>Total</td>
<td>5010</td>
<td>4686</td>
</tr>
</tbody>
</table>
Controlling for culture-specific response bias using ipsatization and response style indicators

Family Values

- Core aspect of collectivism, substantial cross-cultural variation documented *(Triandis, 1990; Georgas, Berry, van de Vijver, Kagitcibasi, & Poortinga, 2006)*
- Five-item short scale based on Georgas (1991)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Strongly disagree</td>
<td>Slightly disagree</td>
<td>Neither agree nor disagree</td>
<td>Slightly agree</td>
<td>Strongly agree</td>
</tr>
</tbody>
</table>

1. One should maintain good relationships with one’s relatives.
2. Children have an obligation to care for their parents when their parents are old.
3. A family’s problems should be solved within the family.
4. We should honor and protect our family’s reputation.
5. Children should obey their parents.

Traditional family values including two main aspects: 1) hierarchy and 2) relationships within the family.

Internal consistencies mixed, but structural equivalence ok (using target rotation approach).
Response Style Indicators 1

Ipsatization across all Likert-scale items of the questionnaire (including target construct)

— Subtract grand mean (+ divide by grand SD)

— Some items/constructs had to be discarded since...
 - not included all cultural groups
 - too many missings (e.g. relationship with grandparents)

— Mothers: 137 items from 13 constructs

— Adolescents: 171 items from 17 constructs
Response Style Indicators 2

> Ipsatization across random subset of 15 items (excluding items from target construct)
 — Subtract grand mean based on 15 items (+ divide by grand SD)
 — Partly the same items for mothers and adolescents

> Acquiescence and Extremity indicators based on the same subset of 15 randomly selected items
 — Acquiescence: double count 5 + count 4
 — Extremity: count 1 + 5

> Check if randomly selected items are (mostly) uncorrelated (see next slide)
Correlations Among the 15 Randomly Selected Items

Mothers: Mean of corrected item-total correlations: .11 (vs. .25)

<table>
<thead>
<tr>
<th>Item 1</th>
<th>Item 2</th>
<th>Item 3</th>
<th>Item 4</th>
<th>Item 5</th>
<th>Item 6</th>
<th>Item 7</th>
<th>Item 8</th>
<th>Item 9</th>
<th>Item 10</th>
<th>Item 11</th>
<th>Item 12</th>
<th>Item 13</th>
<th>Item 14</th>
<th>Item 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item 1</td>
<td>.11</td>
<td>.06</td>
<td>.06</td>
<td>.12</td>
<td>-.01</td>
<td>.1</td>
<td>.08</td>
<td>.05</td>
<td>.09</td>
<td>.01</td>
<td>-.02</td>
<td>.02</td>
<td>.06</td>
<td>-.01</td>
</tr>
<tr>
<td>Item 2</td>
<td>.08</td>
<td>.04</td>
<td>.13</td>
<td>.03</td>
<td>-.02</td>
<td>.11</td>
<td>.14</td>
<td>.17</td>
<td>.11</td>
<td>.06</td>
<td>.01</td>
<td>-.04</td>
<td>.15</td>
<td>-.02</td>
</tr>
<tr>
<td>Item 3</td>
<td>.10</td>
<td>-.03</td>
<td>.07</td>
<td>.11</td>
<td>0</td>
<td>.04</td>
<td>.04</td>
<td>-.05</td>
<td>.02</td>
<td>-.01</td>
<td>.07</td>
<td>-.03</td>
<td>.03</td>
<td>.02</td>
</tr>
<tr>
<td>Item 4</td>
<td>.07</td>
<td>.21</td>
<td>.02</td>
<td>.08</td>
<td>-.04</td>
<td>.06</td>
<td>.1</td>
<td>.06</td>
<td>.07</td>
<td>.02</td>
<td>0</td>
<td>-.04</td>
<td>.1</td>
<td>.01</td>
</tr>
<tr>
<td>Item 5</td>
<td>.15</td>
<td>-.01</td>
<td>.16</td>
<td>.07</td>
<td>.06</td>
<td>.02</td>
<td>.01</td>
<td>-.02</td>
<td>.04</td>
<td>-.04</td>
<td>.04</td>
<td>-.03</td>
<td>0</td>
<td>-.02</td>
</tr>
<tr>
<td>Item 6</td>
<td>-.01</td>
<td>-.06</td>
<td>.04</td>
<td>-.06</td>
<td>.04</td>
<td>-.08</td>
<td>-.09</td>
<td>.01</td>
<td>-.01</td>
<td>-.04</td>
<td>.17</td>
<td>.09</td>
<td>-.04</td>
<td>.04</td>
</tr>
<tr>
<td>Item 7</td>
<td>.06</td>
<td>.15</td>
<td>.00</td>
<td>.12</td>
<td>.02</td>
<td>-.04</td>
<td>.09</td>
<td>.04</td>
<td>.05</td>
<td>.02</td>
<td>-.02</td>
<td>-.04</td>
<td>.05</td>
<td>-.01</td>
</tr>
<tr>
<td>Item 8</td>
<td>.05</td>
<td>.20</td>
<td>-.02</td>
<td>.14</td>
<td>.03</td>
<td>-.08</td>
<td>.12</td>
<td>.12</td>
<td>.15</td>
<td>.07</td>
<td>.03</td>
<td>-.04</td>
<td>.18</td>
<td>.00</td>
</tr>
<tr>
<td>Item 9</td>
<td>.04</td>
<td>.07</td>
<td>-.01</td>
<td>.04</td>
<td>.01</td>
<td>.08</td>
<td>.04</td>
<td>.15</td>
<td>.10</td>
<td>.00</td>
<td>-.04</td>
<td>.02</td>
<td>.26</td>
<td>-.06</td>
</tr>
<tr>
<td>Item 10</td>
<td>.02</td>
<td>-.11</td>
<td>.06</td>
<td>-.06</td>
<td>.02</td>
<td>.09</td>
<td>-.06</td>
<td>-.09</td>
<td>.03</td>
<td>.16</td>
<td>.01</td>
<td>-.03</td>
<td>.11</td>
<td>.03</td>
</tr>
<tr>
<td>Item 11</td>
<td>.05</td>
<td>.06</td>
<td>.02</td>
<td>.08</td>
<td>.02</td>
<td>-.04</td>
<td>.08</td>
<td>.10</td>
<td>-.04</td>
<td>.01</td>
<td>.02</td>
<td>-.02</td>
<td>.08</td>
<td>.10</td>
</tr>
<tr>
<td>Item 12</td>
<td>.07</td>
<td>-.06</td>
<td>.10</td>
<td>-.05</td>
<td>.10</td>
<td>.08</td>
<td>-.06</td>
<td>-.02</td>
<td>.00</td>
<td>.04</td>
<td>-.02</td>
<td>-.16</td>
<td>.00</td>
<td>.05</td>
</tr>
<tr>
<td>Item 13</td>
<td>.07</td>
<td>.06</td>
<td>-.01</td>
<td>.12</td>
<td>-.05</td>
<td>.01</td>
<td>.09</td>
<td>.09</td>
<td>.08</td>
<td>.05</td>
<td>.08</td>
<td>.02</td>
<td>-.04</td>
<td>.02</td>
</tr>
<tr>
<td>Item 14</td>
<td>.07</td>
<td>.11</td>
<td>.03</td>
<td>.14</td>
<td>.04</td>
<td>-.13</td>
<td>.13</td>
<td>.16</td>
<td>.01</td>
<td>-.09</td>
<td>.09</td>
<td>-.04</td>
<td>.04</td>
<td>-.02</td>
</tr>
<tr>
<td>Item 15</td>
<td>.02</td>
<td>-.02</td>
<td>.02</td>
<td>-.03</td>
<td>.04</td>
<td>.25</td>
<td>-.07</td>
<td>-.04</td>
<td>.07</td>
<td>.09</td>
<td>-.05</td>
<td>.09</td>
<td>-.04</td>
<td>-.07</td>
</tr>
</tbody>
</table>

Adolescents: Mean of corrected item-total correlations: .11 (vs. .23)
Response Style Indicators Across Cultures

Controlling for culture-specific response bias using ipsatization and response style indicators

Table

<table>
<thead>
<tr>
<th>Culture</th>
<th>Grand-M Total</th>
<th>Grand-SD Total</th>
<th>Grand-M 15 Items</th>
<th>Grand-SD 15 Items</th>
<th>Acquiescence</th>
<th>Extremity</th>
</tr>
</thead>
<tbody>
<tr>
<td>MO</td>
<td>AD</td>
<td>MO</td>
<td>AD</td>
<td>MO</td>
<td>AD</td>
<td>MO</td>
</tr>
<tr>
<td>India (Pondicherry)</td>
<td>3.60</td>
<td>3.63</td>
<td>1.60</td>
<td>1.42</td>
<td>3.92</td>
<td>3.68</td>
</tr>
<tr>
<td>Indonesia</td>
<td>3.59</td>
<td>3.23</td>
<td>1.32</td>
<td>1.28</td>
<td>3.91</td>
<td>3.17</td>
</tr>
<tr>
<td>Ghana</td>
<td>3.59</td>
<td>3.51</td>
<td>1.31</td>
<td>1.33</td>
<td>3.84</td>
<td>3.69</td>
</tr>
<tr>
<td>Palestinians / Israeli Arabs</td>
<td>3.58</td>
<td>3.48</td>
<td>1.39</td>
<td>1.41</td>
<td>3.80</td>
<td>3.58</td>
</tr>
<tr>
<td>South Africa</td>
<td>3.56</td>
<td>3.37</td>
<td>1.54</td>
<td>1.58</td>
<td>4.09</td>
<td>3.57</td>
</tr>
<tr>
<td>India (Varanasi)</td>
<td>3.52</td>
<td>3.48</td>
<td>1.41</td>
<td>1.39</td>
<td>3.71</td>
<td>3.48</td>
</tr>
<tr>
<td>Jamaica</td>
<td>3.51</td>
<td>1.47</td>
<td>3.97</td>
<td>1.34</td>
<td>18.68</td>
<td>9.47</td>
</tr>
<tr>
<td>Turkey</td>
<td>3.44</td>
<td>3.32</td>
<td>1.33</td>
<td>1.35</td>
<td>3.86</td>
<td>3.45</td>
</tr>
<tr>
<td>Israeli Jews</td>
<td>3.35</td>
<td>3.17</td>
<td>1.52</td>
<td>1.46</td>
<td>3.75</td>
<td>3.27</td>
</tr>
<tr>
<td>Poland</td>
<td>3.33</td>
<td>3.16</td>
<td>1.27</td>
<td>1.26</td>
<td>3.70</td>
<td>3.30</td>
</tr>
<tr>
<td>Russia</td>
<td>3.32</td>
<td>3.16</td>
<td>1.14</td>
<td>1.18</td>
<td>3.61</td>
<td>3.22</td>
</tr>
<tr>
<td>China</td>
<td>3.31</td>
<td>3.17</td>
<td>1.25</td>
<td>1.32</td>
<td>3.49</td>
<td>3.10</td>
</tr>
<tr>
<td>Estonia</td>
<td>3.22</td>
<td>3.08</td>
<td>1.19</td>
<td>1.20</td>
<td>3.65</td>
<td>3.24</td>
</tr>
<tr>
<td>USA</td>
<td>3.10</td>
<td>3.17</td>
<td>1.42</td>
<td>1.34</td>
<td>3.72</td>
<td>3.28</td>
</tr>
<tr>
<td>France</td>
<td>3.02</td>
<td>2.98</td>
<td>1.36</td>
<td>1.35</td>
<td>3.72</td>
<td>3.21</td>
</tr>
<tr>
<td>Germany</td>
<td>3.00</td>
<td>2.99</td>
<td>1.28</td>
<td>1.25</td>
<td>3.77</td>
<td>3.18</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>2.91</td>
<td>3.14</td>
<td>1.58</td>
<td>1.38</td>
<td>3.96</td>
<td>3.33</td>
</tr>
</tbody>
</table>
Controlling for Response Bias in Mothers’ Family Values

<table>
<thead>
<tr>
<th>Culture</th>
<th>Family Values (Original)</th>
<th>IPS Total Means</th>
<th>IPS Total M + SD</th>
<th>IPS 15 Means</th>
<th>IPS 15 M + SD</th>
<th>ADJ Means AQ</th>
<th>ADJ Means AQ + EX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indonesia</td>
<td>4.70</td>
<td>1.12</td>
<td>0.85</td>
<td>0.79</td>
<td>0.65</td>
<td>4.62</td>
<td>4.63</td>
</tr>
<tr>
<td>India (Pondicherry)</td>
<td>4.70</td>
<td>1.10</td>
<td>0.67</td>
<td>0.78</td>
<td>0.51</td>
<td>4.52</td>
<td>4.47</td>
</tr>
<tr>
<td>South Africa</td>
<td>4.68</td>
<td>1.12</td>
<td>0.72</td>
<td>0.59</td>
<td>0.45</td>
<td>4.46</td>
<td>4.45</td>
</tr>
<tr>
<td>Palestinians / Israeli Arabs</td>
<td>4.65</td>
<td>1.08</td>
<td>0.76</td>
<td>0.86</td>
<td>0.63</td>
<td>4.61</td>
<td>4.59</td>
</tr>
<tr>
<td>India (Varanasi)</td>
<td>4.61</td>
<td>1.09</td>
<td>0.75</td>
<td>0.91</td>
<td>0.65</td>
<td>4.59</td>
<td>4.56</td>
</tr>
<tr>
<td>Ghana</td>
<td>4.54</td>
<td>0.96</td>
<td>0.72</td>
<td>0.71</td>
<td>0.55</td>
<td>4.51</td>
<td>4.52</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>4.46</td>
<td>1.55</td>
<td>0.97</td>
<td>0.49</td>
<td>0.35</td>
<td>4.70</td>
<td>4.66</td>
</tr>
<tr>
<td>Jamaica</td>
<td>4.42</td>
<td>0.91</td>
<td>0.61</td>
<td>0.45</td>
<td>0.33</td>
<td>4.26</td>
<td>4.24</td>
</tr>
<tr>
<td>Israeli Jews</td>
<td>4.39</td>
<td>1.05</td>
<td>0.69</td>
<td>0.64</td>
<td>0.45</td>
<td>4.36</td>
<td>4.33</td>
</tr>
<tr>
<td>Turkey</td>
<td>4.39</td>
<td>0.95</td>
<td>0.71</td>
<td>0.52</td>
<td>0.43</td>
<td>4.34</td>
<td>4.36</td>
</tr>
<tr>
<td>Poland</td>
<td>4.30</td>
<td>0.97</td>
<td>0.75</td>
<td>0.60</td>
<td>0.48</td>
<td>4.35</td>
<td>4.36</td>
</tr>
<tr>
<td>China</td>
<td>4.25</td>
<td>0.95</td>
<td>0.76</td>
<td>0.77</td>
<td>0.61</td>
<td>4.41</td>
<td>4.41</td>
</tr>
<tr>
<td>Russia</td>
<td>4.25</td>
<td>0.93</td>
<td>0.81</td>
<td>0.64</td>
<td>0.59</td>
<td>4.41</td>
<td>4.44</td>
</tr>
<tr>
<td>USA</td>
<td>4.23</td>
<td>1.13</td>
<td>0.79</td>
<td>0.51</td>
<td>0.39</td>
<td>4.25</td>
<td>4.25</td>
</tr>
<tr>
<td>Estonia</td>
<td>4.03</td>
<td>0.81</td>
<td>0.67</td>
<td>0.38</td>
<td>0.33</td>
<td>4.15</td>
<td>4.18</td>
</tr>
<tr>
<td>France</td>
<td>3.98</td>
<td>0.96</td>
<td>0.70</td>
<td>0.26</td>
<td>0.21</td>
<td>4.04</td>
<td>4.05</td>
</tr>
<tr>
<td>Germany</td>
<td>3.90</td>
<td>0.90</td>
<td>0.70</td>
<td>0.13</td>
<td>0.12</td>
<td>3.97</td>
<td>4.01</td>
</tr>
</tbody>
</table>

R² .222 .104 .062 .151 .138 .137 .112
Controlling for Response Bias in Adolescents’ Family Values

<table>
<thead>
<tr>
<th>Culture</th>
<th>Family Values (Original)</th>
<th>IPS Total Means</th>
<th>IPS Total M + SD</th>
<th>IPS 15 Means</th>
<th>IPS 15 M + SD</th>
<th>ADJ Means AQ</th>
<th>ADJ Means AQ + EX</th>
</tr>
</thead>
<tbody>
<tr>
<td>India (Varanasi)</td>
<td>4.54</td>
<td>1.06</td>
<td>0.75</td>
<td>1.06</td>
<td>0.76</td>
<td>4.43</td>
<td>4.43</td>
</tr>
<tr>
<td>Palestinians / Israeli Arabs</td>
<td>4.51</td>
<td>1.02</td>
<td>0.72</td>
<td>0.93</td>
<td>0.68</td>
<td>4.37</td>
<td>4.37</td>
</tr>
<tr>
<td>India (Pondicherry)</td>
<td>4.49</td>
<td>0.85</td>
<td>0.59</td>
<td>0.81</td>
<td>0.58</td>
<td>4.29</td>
<td>4.29</td>
</tr>
<tr>
<td>South Africa</td>
<td>4.45</td>
<td>1.08</td>
<td>0.69</td>
<td>0.88</td>
<td>0.57</td>
<td>4.23</td>
<td>4.22</td>
</tr>
<tr>
<td>Indonesia</td>
<td>4.32</td>
<td>1.09</td>
<td>0.85</td>
<td>1.16</td>
<td>0.89</td>
<td>4.40</td>
<td>4.40</td>
</tr>
<tr>
<td>Ghana</td>
<td>4.30</td>
<td>0.78</td>
<td>0.58</td>
<td>0.60</td>
<td>0.47</td>
<td>4.14</td>
<td>4.15</td>
</tr>
<tr>
<td>Turkey</td>
<td>4.24</td>
<td>0.92</td>
<td>0.68</td>
<td>0.79</td>
<td>0.61</td>
<td>4.19</td>
<td>4.20</td>
</tr>
<tr>
<td>China</td>
<td>4.22</td>
<td>1.05</td>
<td>0.79</td>
<td>1.12</td>
<td>0.83</td>
<td>4.33</td>
<td>4.32</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>4.19</td>
<td>1.05</td>
<td>0.75</td>
<td>0.86</td>
<td>0.64</td>
<td>4.40</td>
<td>4.39</td>
</tr>
<tr>
<td>Israeli Jews</td>
<td>4.11</td>
<td>0.94</td>
<td>0.63</td>
<td>0.85</td>
<td>0.58</td>
<td>4.12</td>
<td>4.11</td>
</tr>
<tr>
<td>Poland</td>
<td>3.97</td>
<td>0.82</td>
<td>0.64</td>
<td>0.68</td>
<td>0.54</td>
<td>4.03</td>
<td>4.03</td>
</tr>
<tr>
<td>USA</td>
<td>3.96</td>
<td>0.79</td>
<td>0.59</td>
<td>0.68</td>
<td>0.50</td>
<td>3.98</td>
<td>3.98</td>
</tr>
<tr>
<td>Russia</td>
<td>3.91</td>
<td>0.75</td>
<td>0.63</td>
<td>0.69</td>
<td>0.62</td>
<td>4.05</td>
<td>4.06</td>
</tr>
<tr>
<td>France</td>
<td>3.82</td>
<td>0.84</td>
<td>0.62</td>
<td>0.61</td>
<td>0.45</td>
<td>3.88</td>
<td>3.88</td>
</tr>
<tr>
<td>Estonia</td>
<td>3.76</td>
<td>0.68</td>
<td>0.56</td>
<td>0.52</td>
<td>0.41</td>
<td>3.85</td>
<td>3.86</td>
</tr>
<tr>
<td>Germany</td>
<td>3.70</td>
<td>0.72</td>
<td>0.58</td>
<td>0.52</td>
<td>0.42</td>
<td>3.81</td>
<td>3.81</td>
</tr>
</tbody>
</table>

| R² | .216 | .090 | .068 | .127 | .112 | .119 | .116 |
Controlling for culture-specific response bias using ipsatization and response style indicators

Culture-level Correlations Among (Corrected) Family Values Scales

<table>
<thead>
<tr>
<th></th>
<th>Family Values (Original)</th>
<th>IPS Total Means</th>
<th>IPS Total M + SD</th>
<th>IPS 15 Means</th>
<th>IPS 15 M + SD</th>
<th>ADJ Means AQ</th>
<th>ADJ Means AQ + EX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family Values (Orig.)</td>
<td>.47</td>
<td>.75**</td>
<td>.76**</td>
<td>.81**</td>
<td>.71**</td>
<td>.87**</td>
<td>.85**</td>
</tr>
<tr>
<td>IPS Total Means</td>
<td>.75**</td>
<td>.76**</td>
<td>.24</td>
<td>.12</td>
<td>.65**</td>
<td>.61**</td>
<td></td>
</tr>
<tr>
<td>IPS Total M + SD</td>
<td>.54*</td>
<td>.89**</td>
<td>.21</td>
<td>.26</td>
<td>.56*</td>
<td>.59*</td>
<td></td>
</tr>
<tr>
<td>IPS 15 Means</td>
<td>.72**</td>
<td>.91**</td>
<td>.92**</td>
<td>.96**</td>
<td>.84**</td>
<td>.83**</td>
<td></td>
</tr>
<tr>
<td>IPS 15 M + SD</td>
<td>.62*</td>
<td>.80**</td>
<td>.93**</td>
<td>.96**</td>
<td>.78**</td>
<td>.80**</td>
<td></td>
</tr>
<tr>
<td>ADJ Means AQ</td>
<td>.89**</td>
<td>.86**</td>
<td>.80**</td>
<td>.88**</td>
<td>.84**</td>
<td>.99**</td>
<td></td>
</tr>
<tr>
<td>ADJ Means AQ + EX</td>
<td>.89**</td>
<td>.85**</td>
<td>.80**</td>
<td>.88**</td>
<td>.84**</td>
<td>1.00**</td>
<td></td>
</tr>
</tbody>
</table>

Note. Mothers: Upper right triangle. Adolescents: lower left triangle. * $p < .05$ ** $p < .01$.
Controlling for culture-specific response bias using ipsatization and response style indicators

Culture-level Correlations with External Value Indicators (Hofstede, World Values Survey)

<table>
<thead>
<tr>
<th></th>
<th>Mothers</th>
<th>Adolescents</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 15-16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hofstede PDI</td>
<td>Hofstede IND</td>
</tr>
<tr>
<td>Family Values</td>
<td>.31</td>
<td>-.45</td>
</tr>
<tr>
<td>IPS Total Means</td>
<td>.00</td>
<td>.16</td>
</tr>
<tr>
<td>IPS Total M + SD</td>
<td>.29</td>
<td>-.04</td>
</tr>
<tr>
<td>IPS 15 Means</td>
<td>.52*</td>
<td>-.56*</td>
</tr>
<tr>
<td>IPS 15 M + SD</td>
<td>.61*</td>
<td>-.64**</td>
</tr>
<tr>
<td>ADJ Means AQ</td>
<td>.45</td>
<td>-.49</td>
</tr>
<tr>
<td>ADJ Means AQ + EX</td>
<td>.50</td>
<td>-.54*</td>
</tr>
</tbody>
</table>

* p < .05 ** p < .01.
Controlling for culture-specific response bias using ipsatization and response style indicators

Culture-level Correlations with Family Values from Georgas et al. (2006)

<table>
<thead>
<tr>
<th></th>
<th>Mothers</th>
<th>Adolescents</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Family Hierarchy</td>
<td>Family Relationships</td>
</tr>
<tr>
<td>n = 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family Values</td>
<td>.92**</td>
<td>.89**</td>
</tr>
<tr>
<td>IPS Total Means</td>
<td>.60</td>
<td>.65</td>
</tr>
<tr>
<td>IPS Total M + SD</td>
<td>.23</td>
<td>.42</td>
</tr>
<tr>
<td>IPS 15 Means</td>
<td>.91**</td>
<td>.90**</td>
</tr>
<tr>
<td>IPS 15 M + SD</td>
<td>.88**</td>
<td>.91**</td>
</tr>
<tr>
<td>ADJ Means AQ</td>
<td>.92**</td>
<td>.91**</td>
</tr>
<tr>
<td>ADJ Means AQ + EX</td>
<td>.89**</td>
<td>.90**</td>
</tr>
</tbody>
</table>

Note. Mean values from Georgas et al. kindly provided by Fons van de Vijver. * p < .05 ** p < .01.
Discussion

> Very similar results for RIRS ipsatization and RIRS response style indicators (ANCOVA adjusted means)

> Ipsatizations based on total questionnaire obviously confounds content and style
 — too few and too highly correlated constructs
 — valid only with clear theoretical basis (e.g., Schwartz) and/or low overall correlations of constructs?

> Rank order of original means not strongly affected by controlling for culture-specific response styles (RIRS approach)

> Cross-cultural differences attenuated (from $R^2 \approx .22$ to $R^2 \approx .12$)

> RIRS ipsatization useful approach for controlling response bias?
References

Thank you for your attention!
Controlling for culture-specific response bias using ipsatization and response style indicators

Culture-level Correlations of Georgas’ Family Values with External Indicators

<table>
<thead>
<tr>
<th></th>
<th>n = 25</th>
<th>Hofstede PDI</th>
<th>Hofstede IND</th>
<th>WVS TradSec</th>
<th>WVS SurvSelf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family Values: Hierarchy</td>
<td></td>
<td>.62**</td>
<td>-.71**</td>
<td>-.55**</td>
<td>-.78**</td>
</tr>
<tr>
<td>Family Values: Relationships</td>
<td></td>
<td>.59**</td>
<td>-.46*</td>
<td>-.84**</td>
<td>-.55**</td>
</tr>
<tr>
<td>Family Values (Mean of above)</td>
<td></td>
<td>.65**</td>
<td>-.67**</td>
<td>-.68**</td>
<td>-.75**</td>
</tr>
</tbody>
</table>

* p < .05 ** p < .01.