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Abstract 

The present topical review deals with the motor control of facial expressions in humans. 

Facial expressions are a central part of human communication. Emotional face 

expressions have a crucial role in human non-verbal behavior, allowing a rapid transfer 

of information between individuals. Facial expressions can be both voluntarily or 

emotionally controlled. 

Recent studies in non-human primates and humans revealed that the motor control of 

facial expressions has a distributed neural representation. At least 5 cortical regions on 

the medial and lateral aspects of each hemisphere are involved: the primary motor 

cortex, the ventral lateral premotor cortex, the supplementary motor area on the medial 

wall, and, finally, the rostral and caudal cingulate cortex.  The results of studies in 

humans and non-human primates suggest that the innervation of the face is bilaterally 

controlled for the upper part, and mainly contralaterally controlled for the lower part. 

Furthermore, the primary motor cortex, the ventral lateral premotor cortex, and the 

supplementary motor area are essential for the voluntary control of facial expressions. 

In contrast, the cingulate cortical areas are important for emotional expression, since 

they receive input from different structures of the limbic system. 
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Introduction 

The importance of the human face expression is reflected in art and philosophy since 

antiquity. Cicero considered facial expressions as “Imago animi vultus” (Cicero, de 

oratore), the image of the soul. Facial expression was also considered to have prognostic 

value. For instance, the “facies hippocratica”, or Hippocratic facies, had an empiric, 

negative prognostic significance, since it indicated that the patient “had moved into the 

atrium of death.” (Illich, 1995).  

In humans, the motor nucleus of the facial nerve is the largest of all motor nuclei of the 

brainstem (Cattaneo and Pavesi, 2014). The comparative anatomy of the facial 

musculature and of the central nervous apparatus that controls facial movements 

suggest that, in some primates, group size, facial motor control, and primary visual 

cortex evolved with the same pattern (Dobson & Sherwood, 2011).  

Species living in relatively large social groups tend to have relatively large facial motor 

nuclei, and species with enlarged facial nuclei and facial mobility have rather large 

primary visual cortices (Dobson, 2009; Barton, 1998). Great apes and humans have 

facial motor cortices that are thicker and richer in local circuitry, and their facial 

movements have the highest degree of dependency from the primary motor cortex. 

Finally, great apes and humans have more pronounced direct cortico-facial projections 

(Sherwood et al. 2004, Dobson and Sherwood, 2011).  

The facial muscular system consists of a flat web of muscular fascicles, embedded in a 

variable matrix of connective tissue, and packed into a small two-dimensional matrix 

under the facial skin. In humans, the 17 paired mimetic (from the Greek “mimesis”, 

imitation) facial muscles are innervated by the facial nerve, and have their distinct 

embryological origin from the second branchial arch (for a review, see Cattaneo and 

Pavesi, 2014). Mimetic facial muscles are believed to lack muscle spindles (Stal, 1994), 

which may reflect the absence of external loads, and imply an absence of stretch 

reflexes. Thus, the central nervous system has to process sensory information from the 

skin receptors in order to infer information on facial movements. 

Converging evidence suggest that the functional units of the facial muscular system are 

not represented – as conventionally defined – by the single facial muscle, but rather 

correspond to smaller bundles of myofibers, each with its own anatomical signature and 

function (Cattaneo and Pavesi, 2014).  
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Facial movements can be categorized in voluntary movements, which are coordinated 

by cortical pathways, in reflexive movements, and in movements driven by central 

pattern generators, which are mainly located in the brainstem (Gothard, 2014). 

 

 

Historical aspects 

Duchenne de Boulogne (1806-1875) was a French neurologist and physiologist, who 

was fascinated by the mechanisms controlling human facial expressions. Believing that  

“l’âme est donc la source de l’expression” (the soul is the source of the facial expression), 

he studied facial muscular action using galvanic stimulation (Duchenne de Boulogne, 

1862, see Figure 1). He identified 33 different expressions, including the “Duchenne 

smile” (Ekman et al., 1990), and proposed a new nomenclature of the facial muscles, 

suggesting that there is a specific facial muscle for the expression of each emotion.  

Duchenne's ideas also influenced Charles Darwin’s book “The expression of the 

emotions in man and animals” (Darwin, 1872).  

 

Figure 1 about here 

 

The different patterns of facial palsy resulting from central or peripheral lesions of the 

facial innervation were already described in the textbooks of neurology of the 19th 

century (e.g., von Strümpell, 1884; Mills, 1898). The clinical observation that a 

hemispheric stroke involving the territory of the middle cerebral artery results in a 

paralysis of the contralateral lower face, but spares the upper face, was explained by a 

bilateral innervation of the upper face, and a unilateral, contralateral innervation of the 

lower face from the primary motor cortex. Jackson (1884) speculated that unilateral 

movements, such as limb movements and lower face movements, were rather voluntary 

movements (and thus more vulnerable to damage), whereas bilateral movements, such 

as movements of the upper face, were less vulnerable to damage because they belonged 

to a class of rather automatic movements (as cited in Morecraft et al., 2004).  

Furthermore, Bechterew  (1887) and Nothnagel (1889) speculated in their work about 

the anatomical basis of the striking clinical observation of the dissociation between 

voluntary and emotional facial innervation after brain lesions. 

 

Human and animal studies  
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The anatomical organization of the facial nucleus has been elucidated in both primates 

and humans (Kuypers, 1958a, 1958b; Jenny and Saper, 1987; Sadota et al. 1987; Welt 

and Abbs 1990; Van der Werf et al. 1998; Morecraft et al., 2001). Histologically, at least 

four distinct subnuclei are defined (medial, lateral, dorsolateral, and intermediate 

subnucleus; Kuypers, 1958a; Jenny and Saper, 1987). The facial subnuclei structure 

presents similarities between primates and humans (Kuypers, 1958a; Jenny and Saper, 

1987). The musculotopic pattern is well preserved across mammals and primates, 

including humans (Sherwood, 2005). Neurons innervating the same facial muscle are 

arranged together in longitudinal columns, which are oriented cranio-caudally (see 

Figure 2B; after Morecraft et al., 2001).  

 

Figure 2A and B about here 

 

According to Holstege (2002), the dorsal subgroup of the facial nucleus contains motor 

neurons innervating the muscles around the eye, and the medial subgroup innervates 

the muscles of the ear. In humans, this latter group is small, since there is a lack of ear 

musculature. The opposite is found for the lateral subgroup, which is the largest in 

humans. This subgroup innervates the muscles of the mouth, which are very well 

developed in humans. It appears that the dorsal portion of the lateral subgroup 

innervates the muscles of the upper mouth, whereas its ventral portion innervates the 

muscles of the lower mouth. Thus, for smiling, the motor neurons responsible for the 

innervation of the upper mouth, in the dorsal portion, would be activated. Conversely, 

for negative facial expressions, the ventral portion of the lateral facial subgroup might 

be more important (Holstege, 2002). Sherwood et al. (2005) studied the evolution of the 

brainstem orofacial motor system in 47 species of primates. They found that hominids 

present significantly larger volumes of the facial nucleus than predicted. The authors 

suggest that the phylogenetic specialization of the facial nucleus may be related to the 

variation in facial muscle differentiation, and to increased descending inputs from 

neocortical areas.  

The facial nucleus receives very strong afferents from the bed nucleus of the stria 

terminalis, from the lateral hypothalamus, and, in all likelihood very strongly in humans, 

from the medial orbitofrontal cortex. Kuipers et al. (2006) have shown that, in the cat, 

the infralimbic cortex, corresponding to Brodmann area 25 in humans, projects to all 

parts of the pontine and medullary lateral tegmental field. Although these projections do 
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not have any direct access to the facial motor neurons, they certainly have indirect 

access to the mouth part of the facial nucleus. In cats (Hopkins and Holstege, 1978) and 

in rats (Post and Mai, 1980), direct projections from the amygdala to the facial nucleus 

have been evidenced. In Macaca monkey, no direct projections have been described, 

whereas projections from the central amygdaloid nucleus to the parvocellular reticular 

formation, a premotor structure of the orofacial motor nuclei, have been demonstrated 

(for a review, see Holstege, 1992).  

Five cortical regions project to the facial nucleus (see Figure 2A). It is generally accepted 

that, in the human and the monkey, the facial representation in the primary motor 

cortex (M1) lies anterior to the most lateral segment of the central sulcus. Cortico-facial 

projections from M1 project to all subdivisions of the facial nucleus (Kuypers, 1958b; 

Jenny and Saper, 1987; Morecraft et al., 2001), with an important portion of the 

projections innervating the contralateral, lower facial musculature (Morecraft et al., 

2001). Such an innervation pattern subtends the clinical observation of a contralesional, 

lower facial paralysis after damage to M1. However, M1 also sends cortico-facial fibers 

bilaterally to all musculotopical subdivisions of the facial nucleus, as shown by Jenny 

and Saper (1987) and Morecraft et al. (2001). Thus, the existence of cortico-facial fibers 

projecting ipsilaterally to the lateral part of the facial nucleus cannot be excluded. The 

facial area of the ventral lateral premotor cortex (LPMCv) and the dorsal lateral 

premotor cortex (LPMCd) are localized anterior to the facial representation of M1 

(Luppino and Rizolatti, 2000). Projections from these areas, especially from the LPMCv, 

terminate mainly in the contralateral lateral subnucleus, innervating the lower facial 

muscles (Morecraft et al., 2001).  Finally, a third cortical region, the caudal area of the 

anterior midcingulate, which is named M4 by Morecraft et al. (2001), presents strong 

projections to the contralateral lateral subnucleus, innervating the muscles of the lower 

face. This region is localized in the caudal cingulate motor cortex, which resides in area 

23c (Picard and Strick, 1996). M4 projections end specifically within the dorsolateral 

part of the lateral subnucleus, which contains motor neurons innervating the upper, but 

not the lower, lip (Morecraft et al., 2001). On the medial surface of the cerebral cortex, 

two facial areas are currently described as projecting bilaterally to the facial nuclei. 

First, a facial representation within the supplementary motor cortex (a region 

denominated as M2 in Morecraft’s nomenclature) is located in the superior frontal 

lobule of the medial surface, anterior to the arm representation of M2 and caudal to a 

region known as the presupplementary motor area (Luppino and Rizolatti, 2000). 
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Second, a facial representation region is located in the rostral midcingulate motor cortex 

(corresponding to M3 in Morecraft’s nomenclauture; Morecraft et al., 1996, 2001). Both 

regions project bilaterally to the medial part of the facial nucleus, innervating the upper 

face. In humans, direct electric stimulation of the rostral portion of the SMA elicits 

complex patterns of facial movements (Fried et al., 1991), with both contralateral and 

bilateral movements. Fontaine et al. (2002) found, in 11 patients, that facial palsy 

occurred after neurosurgical resection of the left SMA, but never after resection of the 

right SMA. The authors explained this phenomenon by postulating a bilateral 

representation of the face in the left SMA, which was not present in the right SMA. 

LeRoux et al. (1991) found that the resection of the non-dominant facial motor cortex 

does not lead to facial palsy. Other authors (Fried et al., 1991; Bleasel et al., 1996; 

Bleasel and Luders, 2002) described bilateral movements during intraoperative 

stimulation, irrespective of the stimulated hemisphere. However, tumors or other slowly 

evolving pathological processes may induce neuroplastic changes in cortical functions 

(Duffau, 2014), and thus result in contradictory effects.  

Furthermore, the cingulate facial motor areas (i.e., both M3 and M4) may represent 

critical anatomic entry points for limbic input into the cortical motor system (Morecraft 

et al., 1998; Morecraft and van Hoesen, 1998). The rostral cingulate motor cortex (M3) 

receives widespread limbic and prefrontal inputs (Morecraft and Van Hoesen, 1993, 

1998; Morecraft et al., 1998, Morecraft et al., 2007). The primate amygdala is central for 

the recognition of, and the response to, social stimuli such as faces (Rutishauser et al., 

2015). The projections from the amygdala to M3, and from M3 to the facial nucleus 

(Morecraft et al., 2007) allow to consider M3 as one of the higher-order motor areas of 

the cortex (Shima et al., 1991; Shima and Tanji, 1998). This area is thought to be 

involved in the mediation of the expression of upper facial higher-order emotions, such 

as fear, anger, happiness, and sadness (Morecraft et al., 2007). 

 

Dissociation between voluntary and emotional facial innervation in humans 

The observation of double dissociations between different facial movements resulted, 

already in the 19th century, in the suggestion that separate neural structures are 

involved in voluntary and emotional facial movements. Facial emotional expressions are 

a mainstay of non-verbal communication. Ekman (1993) suggested that these highly 

stereotyped facial postures are, at least in part, archetypal, since there is a high 

agreement in the classification of facial emotional expressions in almost all cultures. A 
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limited number of elementary emotional states – fear, disgust, joy, sadness, anger, and 

surprise – are associated with stereotyped facial expressions. These seem to be hard-

wired in the human motor system, resulting in an evolutionary advantage (Darwin, 

1872). Facial expressions are also part of stereotyped physiological responses to 

particular affective states, involving both the autonomic and the somatic systems, which 

are controlled by the so-called “emotional motor system” (Holstege, 1992; Holstege 

2002).  

In humans, most information concerning the emotional innervation of the face comes 

from studies of the results of focal lesions due to stroke, neurosurgical interventions, or 

electrical stimulation during interventions. The methodological problem with lesion 

studies is that the extension of the lesions often encompasses more than one key 

anatomical structure, sometimes resulting in inconsistent findings. Isolated emotional 

facial palsy (Figure 3B), which is far less frequent than voluntary facial palsy, has been 

described following lesions of the contralateral anterolateral and posterior thalamus, of 

the anterior striatocapsular region, or of the medial frontal lobes (Bogousslavsky et al., 

1988; Hopf et al., 1992, 2000; Michel et al., 2008; Ross and Mathiesen, 1998; Trosch et 

al., 1990).  

 

Figure 3 about here 

 

Furthermore, an isolated emotional palsy can occur at very distal location with respect 

to the lesion, such as in the ipsilateral pons and medulla (Cerrato et al., 2003; Hopf et al., 

2000; Khurana et al., 2002). The much more frequent condition of a voluntary facial 

palsy with sparing of emotional face movements (Figure 3A) may occur after after a 

wide variety of different lesion locations lesions ranging from the motor cortex and 

descending the pyramidal tract to the brainstem (Bouras et al., 2007; Hopf et al., 1992; 

Kappos and Mehling, 2010; Topper et al., 1995; Trepel et al., 1996; Urban et al., 1998, 

2001). The fact that dissociations between emotional and voluntary facial movements 

are also found at the level of the brainstem suggests that these two systems are 

independent up to the facial nucleus. Furthermore, this fact suggests the existence of an 

alternative, fronto-thalamo-pontine pathway projecting to the facial nucleus, which is 

distinct from the facial contingent of the cortico-nuclear tract. The behavioral 

consequences of such an organization are that the voluntary motor system cannot gain 

access to a genuine emotional motor pattern. In other words, such an organization is the 
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reason why it is not possible to voluntarily produce a genuine emotional facial 

expression. As discussed by Cattaneo and Pavesi (2014), a striking feature of emotional 

facial palsy is that it is unilateral, indicating that emotional movements of each half of 

the face are represented separately in the contralateral hemisphere.  

The empirical observation that a small degree of asymmetry in facial expressions exists 

at the population level led to different controversial models, dealing with hemispheric 

specialization of production of facial emotions. At present, two main hypotheses have 

been proposed: 1) the right hemisphere hypothesis; and, 2) the upper–lower facial axis 

hypothesis of emotional expression (for a recent review, see Murray et al., 2015). The 

results of many studies support the right hemisphere hypothesis, postulating that the 

left side of the face is more emotionally expressive than the right side (e.g., Borod et al. 

1988, 1997; Campbell 1978; Sackeim and Gur 1978; Sackeim et al.1978). Borod et al. 

(1997) reviewed the results of 49 published experiments, and concluded that the left 

hemiface is more involved in the expression of facial emotions than the right hemiface. 

From a neuropsychological perspective, these findings suggest that the right cerebral 

hemisphere is dominant for the facial expression of emotions. An alternative model 

proposes that positive emotional expressions are lateralized to the left hemisphere, and 

negative emotions are lateralized to the right hemisphere- (Davidson et al., 1990). 

Finally, the production of facial patterns for “social” emotions, which are development-

dependent and acquired later during infancy, would be lateralized to the left 

hemisphere. 

The second hypothesis – the upper-lower facial axis hypothesis of emotional expression 

– is related to the theory that the left hemisphere preferentially processes voluntary, 

social emotional displays, which are enacted by the lower hemiface. Ross et al., in a 

series of publications (e.g. Ross et al., 1994, 2007a, 2007, 2013, Ross and Pulusu, 2013), 

have argued that emotional displays in the upper hemiface are preferentially processed 

by the right hemisphere, whereas emotional display in the lower hemiface are processed 

by the left hemisphere. This hypothesis is also supported by the different neuroanatomic 

connections for the upper versus the lower face discussed above.  

 

Conclusions 

The identification of multiple cortical facial motor areas emphasizes the idea that the 

higher-order regulation processes of facial expression are not likely to occupy a specific 

site of the brain, nor to manifest through a single neural projection system (Morecraft et 
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al., 2004). Facial expressions are controlled through a distributed network, through 

multiple areas involving the cortical facial areas reviewed in this article. Cortical 

projections from the lateral facial representations, from the primary motor cortex and 

LPMCv, and from the caudal cingulate motor cortex may mainly influence the 

contralateral, lower facial muscles. Medial motor areas, including the supplementary 

motor area and the rostral cingulate motor cortex, control the upper facial muscles, 

possibly bilaterally. Furthermore, the cingulate cortico-facial projections, which receive 

input from the amygdala, play a special role in emotional expression. The cortico-facial 

projections from the lateral part of the frontal lobe may, in contrast, play a significant 

role in the control of voluntary facial movements. Thus, current results represent strong 

arguments against the classical clinical interpretation of the facial nucleus as being 

cortically innervated. 

The reviewed studies also suggest that sparing of the upper facial musculature following 

a middle cerebral artery stroke is due to sparing of the projections from supplementary 

motor areas and from the rostral cingulate cortex, which are located in the territory of 

the anterior cerebral artery. In terms of the dissociation between voluntary and 

emotional facial palsy, the projections from the caudal cingulate motor cortex, which 

receives strong inputs from the limbic lobe, may play a role in overcoming the voluntary 

palsy of the contralesional lower face. 
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Legends 

Figure 1 

Original drawing by Duchenne, showing the famous toothless cobbler undergoing 

electrical stimulation of the face (from Drouin and Péréon, 2013; with permission) 

Figure 2 

A. Schematic representation of the topographical localization of the motor areas on the 

medial and lateral surface of the cerebral cortex. Abbreviations: M1, primary motor 

cortex; M2, supplementary motor area; M3, posterior cingulate motor cortex; M4, rostral 

cingulate motor cortex; LPMCd, dorsal lateral premotor cortex; LPMCv, ventral lateral 

premotor cortex; A, arm; as,  arcuate sulcus; cf,  calcarine fissure; cgs, cingulate sulcus; 

cs, central sulcus; F, face; FEF, frontal eye field; ios,  inferior occipital sulcus; ips, 

intraparietal sulcus; L, leg; lf, lateral fissure; LL, lower lip; ls, lunate sulcus; pre-SMA, pre-

supplementary motor cortex; rs, rhinal sulcus; SEF, supplementary eye field; sts, 
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superior temporal sulcus; poms, medial parieto-occipital sulcus; (from Morecraft et al., 

2001; with permission)  

 

B. Schematic representation of the major cortico-facial projections in the non-human 

primate. Upper part, left panel: Unilateral lower face innervation by M1, LPMCv, and M4. 

These cortical regions project to the lateral subnucleus of the facial nucleus (FN). Upper 

part, right panel: Bilateral upper face innervation by M2 and M3. These cortical regions 

project to the medial, intermediate, and dorsal subnuclei of the facial nucleus. Lower 

part: Schematic representation of the location of the facial nucleus in the lower pons. On 

the magnified images of the facial nucleus, the main nuclear subdivisions are shown on 

the right side, and the musculotopic organization on the left side. Abbreviations: Ea, ear; 

Fr, frontalis; LL, lower lip; OO, orbicularis oculi; P, platysma; UL, upper lip (from 

Morecraft et al., 2001; with permission)  

 

 

Figure 3 

Dissociation between voluntary and emotional facial innervation. Patient A suffered 

from a focal stroke of the right motor cortex. During emotional smiling, the patient was 

able to overcome the left facial paralysis. However, during voluntary innervation, facial 

paralysis was apparent. Diffusion-weighted magnetic resonance imaging showed a 

hyperintensity in the right precentral gyrus (from Kappos and Mehling, 2010; with 

permission). Patient B suffered from a stroke in the left upper medulla oblongata. 

Central facial paresis was evident when the patient smiled, but disappeared almost 

completely during voluntary contraction. T2-weighted magnetic resonance imaging 

showed a hyperintensity located immediately ventral to the profile of the inferior 

cerebellar pedicle (from Cerrato et al., 2003; with permission). 

 

 

 

Page 19 of 23

John Wiley & Sons

Journal of Comparative Neurology

This article is protected by copyright. All rights reserved.



  

 

 

 

150x112mm (300 x 300 DPI)  

 

 

Page 20 of 23

John Wiley & Sons

Journal of Comparative Neurology

This article is protected by copyright. All rights reserved.



  

 

 

 

137x160mm (600 x 600 DPI)  

 

 

Page 21 of 23

John Wiley & Sons

Journal of Comparative Neurology

This article is protected by copyright. All rights reserved.



  

 

 

 

190x186mm (600 x 600 DPI)  

 

 

Page 22 of 23

John Wiley & Sons

Journal of Comparative Neurology

This article is protected by copyright. All rights reserved.



  

 

 

 

160x119mm (300 x 300 DPI)  

 

 

Page 23 of 23

John Wiley & Sons

Journal of Comparative Neurology

This article is protected by copyright. All rights reserved.



Facial expressions are central part of human non-verbal behavior and communication. 

Facial expression is both voluntarily and emotionally controlled. Recent studies in non-

human primates and humans revealed that motor control of facial expression is 

distributed. At least 5 cortical regions on the medial and lateral hemisphere are 

involved. The primary motor cortex, the ventral lateral premotor cortex and the 

supplementary motor area are important for the voluntary control of facial expression, 

the cingulate areas are important for emotional innervation, since they receive input 

from many regions of the limbic system. 
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