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Abstract. Isotope labelling is a powerful tool to study el-

emental cycling within terrestrial ecosystems. Here we de-

scribe a new multi-isotope technique to label organic matter

(OM).

We exposed poplars (Populus deltoides× nigra) for 14

days to an atmosphere enriched in 13CO2 and depleted

in 2H18
2 O. After 1 week, the water-soluble leaf OM

(δ13C= 1346± 162 ‰) and the leaf water were strongly

labelled (δ18O=−63± 8, δ2H=−156± 15 ‰). The leaf

water isotopic composition was between the atmospheric

and stem water, indicating a considerable back-diffusion of

vapour into the leaves (58–69 %) in the opposite direction

to the net transpiration flow. The atomic ratios of the la-

bels recovered (18O / 13C, 2H / 13C) were 2–4 times higher

in leaves than in the stems and roots. This could be an in-

dication of the synthesis of more condensed compounds in

roots and stems (e.g. lignin vs. cellulose) or might be the re-

sult of O and H exchange and fractionation processes during

phloem transport and biosynthesis.

We demonstrate that the three major OM elements (C,

O, H) can be labelled and traced simultaneously within the

plant. This approach could be of interdisciplinary interest in

the fields of plant physiology, palaeoclimatic reconstruction

or soil science.

1 Introduction

Artificial labelling with stable isotopes facilitates the ob-

servation of bio(geo)chemical cycling of elements or com-

pounds with minor disturbance to the plant–soil systems. It

has provided many insights into plant carbon allocation pat-

terns (e.g. Simard et al., 1997; Keel et al., 2006; Högberg et

al., 2008), water dynamics (e.g. Plamboeck et al., 2007; Kul-

matiski et al., 2010) and soil OM processes (e.g. Bird and

Torn, 2006; Girardin et al., 2009) in terrestrial ecosystems.

Only a few studies have used labelling approaches with more

than one stable isotope, for example, to study the interactions

between the carbon and nitrogen cycle (e.g. Bird and Torn,

2006; Schenck zu Schweinsberg-Mickan et al., 2010). How-

ever, to our knowledge, isotopic labelling of organic matter

(OM) with its three major elements, carbon (C), oxygen (O)

and hydrogen (H), has never been done in ecosystem studies

before, even though combined δ13C, δ18O and δ2H analyses

have been widely used to study plant physiological processes

and to reconstruct past climatic conditions (Hangartner et al.,

2012; Roden and Farquhar, 2012; Scheidegger et al., 2000;

Werner et al., 2012). Similarly, artificial labelling with those

isotopes would be useful not only to clarify basic mecha-

nisms related to the plant water-use efficiency or the oxygen

and hydrogen signals in tree rings but also to study other OM

dynamics in the plant–soil system such as OM decomposi-

tion in the soil.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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The C, O and H contents of OM have been applied to dis-

tinguish major groups of compounds by plotting the atomic

ratios O /C and H /C in a van Krevelen diagram (Kim et al.,

2003; Ohno et al., 2010; Sleighter and Hatcher, 2007). This

approach is based on the distinct molecular composition of

organic compounds. For example, the glucose molecule (C6

H12 O6) is characterized by high O /C (= 1) and H /C (= 2)

ratios and is the precursor of other compounds, such as cellu-

lose ((C6 H10 O5)[n] O /C= 0.8, H /C= 1.7; Fig. 3a). Con-

densation or reduction reactions during biosynthesis lead to

other compound groups with lower atomic ratios (e.g. lignin)

or similar H /C but lower O /C ratios (e.g. lipids, proteins)

compared to glucose. Following the logic of the van Kreve-

len diagram, we wanted to test whether we can use the iso-

topic ratios 18O / 13C and 2H / 13C of the labels recovered

in plant–soil bulk materials after labelling the fresh assim-

ilates with those stable isotopes in order to detect the uti-

lization of the labelled assimilates for the synthesis of differ-

ent OM compounds. With this multi-labelling approach we

would gain information about the characteristics of the OM

formed by simple isotopic analysis of bulk material. This has

several advantages compared to compound-specific analysis,

such as being much less laborious and less expensive and

yielding integrated information on the bulk OM sampled.

In this study we added the 13C, 18O and 2H labels via

the gaseous phase in the plants’ atmosphere (CO2, water

vapour). Pre-grown plants were exposed to the labelled atmo-

sphere continuously for 14 days under laboratory conditions,

and the labels added were traced in different plant compart-

ments (leaves, petioles, new stems, stem cuttings, roots) and

soil OM at different points in time. We applied a simple iso-

tope mixing model to estimate the fraction of 18O and 2H

that entered the leaf by diffusion from the atmosphere into

the leaf intercellular cavities and plotted the atomic and iso-

topic ratios of the OM formed in van Krevelen diagrams to

test whether the multi-isotope labelling approach can be used

to detect changes in the OM characteristics.

2 Material and methods

2.1 Plants and soil

The soil, a Cambisol, was sampled from the upper 15 cm in

a beech forest (8◦33′ E, 47◦23′ N; 500 m elevation), coarse-

sieved (2.5× 3.5 cm), and large pieces of hardly decomposed

organic material were removed. The soil had a clay-loam

texture, a pH of 4.8, an organic C content of 2.8 % and a

C /N ratio of 11. The plant pots (volume= 8.2 dm3) were

filled with 3018± 177 g soil (dry weight equivalent). Fif-

teen poplar seedlings (Populus deltoides× nigra, Dorskamp

clone) were grown indoors from 20 cm long stem cuttings for

5 weeks before they were transferred into labelling cham-

bers (described below). They were kept in the chamber for

acclimatization for 1 week prior to labelling. At the begin-

ning of the labelling experiments, the average dry weight of

fresh plant biomass (without the original stem cutting) was

3.3± 0.1 g and the average total leaf area was 641± 6 cm2

per plant. At the end of the experiment (last sampling)

the dry weight was 5.4± 1.1 g and the total leaf area was

1354± 161 cm2. The leaf area was measured with a hand-

held area meter (CID-203 laser leaf area meter, CID Inc.).

2.2 Labelling chamber, procedure and environmental

conditions

The labelling chambers (MICE – Multi-Isotope labelling in a

Controlled Environment – facility) provide a hermetical sep-

aration of the shoots (leaves, petioles and new stems) from

the roots, rhizosphere and the soil. The plant shoots are en-

closed by one large polycarbonate cuboid (volume 1.2 m3)

with a removable front plate and five 2 cm wide gaps in the

bottom plate to slide in three plants in each row. Small poly-

carbonate pieces, Kapton tape and a malleable sealant (Tero-

stat IX, Henkel AG & Co.) wrapped around the stem cuttings

were used to seal off the upper from the lower chamber. The

belowground compartments (soil and roots) are in 15 indi-

vidual pots, which are hermetically sealed from the labora-

tory and aerated with outdoor air. This setup ensures that all

plants receive the same labelling treatment and prevents the

diffusion of labelled atmospheric gases into the soil.

The environmental conditions in the MICE facility are

automatically controlled and monitored by a software pro-

gramme (based on LabVIEW, National Instruments Switzer-

land Corp.), The software switches the light sources (xenon

lamps, HELLA KGaA Hueck & Co) and different valves

(3/2 way, Bürkert-Contromatic AG) on/off. The valves in-

clude or exclude instruments in a gas circuit attached to the

upper chamber to regulate the CO2 and H2O concentration,

which is measured by an infrared gas analyser (LI-840, LI-

COR Inc.). The chamber air is fed by a vacuum pump (N 815,

KNF Neuberger AG) through perforated glass tubes within a

water reservoir to humidify the air or through a Peltier-cooled

water condenser to dry the air (Appendix Fig. A1). Further,

the chamber air can be fed through a Plexiglas tube filled

with soda lime to absorb the CO2, or CO2 is injected from a

gas cylinder.

The isotope labels (13C, 18O and 2H) were added continu-

ously for 14 days via gaseous phase to the plant shoots. We

used CO2 enriched in 13C (10 at.% 13C-CO2, Cambridge Iso-

tope Laboratories Inc.) as well as water vapour depleted in
18O and 2H (δ18O=−370 and δ2H=−813 ‰, waste prod-

uct from enrichment columns at the Paul Scherrer Institute).

Thus the labelled gases added were enriched by 8.90 at.%
13C and depleted by 0.07 at.% 18O and 0.01 at.% 2H relative

to the ambient air.

The soil moisture was maintained at 100 % field capacity

and the relative air humidity was 74 % in order to promote

the back-diffusion of water into the leaves. The light intensity

was low (80± 25 µmol m−2 s−1 photosynthetic active radia-
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tion), and the CO2 concentration was kept at 508± 22 ppm

in order to maintain a high atmospheric carbon supply. The

day–night cycles were 12 h and the temperature within the la-

belling chamber was 31± 3 ◦C throughout the experiments.

2.3 Sample collection

The plant–soil systems were destructively harvested at five

sampling dates (three replicates each) to detect the dynamics

of the labelling over time. The first sampling was done 1 day

before the labelling experiment started (unlabelled control,

referred to as t = 0). Subsequently, plant–soil systems were

sampled after 1, 2, 8 and 14 days of continuous labelling.

At each sampling date the plant–soil systems were sep-

arated into leaves, petioles, stems, cuttings, roots (washed

with deionized water and carefully dabbed with tissue) and

bulk soil (visible roots were removed with tweezers). A sub-

sample of six leaves was sampled all along the stem (ho-

mogeneously distributed). The uppermost leaves, that were

newly formed and completely labelled during the experi-

ment, were excluded, since we wanted to study the tracer up-

take and translocation dynamics in already existing leaves

prior to the treatment. In one out of the three plant repli-

cates we took two leaf sub-samples from distinct positions

along the shoot. We sampled six leaves from the upper half

of the shoot and six leaves from the lower half hereafter re-

ferred to as “top” and “bottom”, respectivelyfvials in a water

bath. Leaves, stems, roots and bulk soil were collected in air-

tight glass vials and frozen immediately at −20 ◦C for later

cryogenic vacuum extraction of the tissue water. Cuttings and

petioles were dried for 24 h at 60 ◦C.

The tissue water was extracted with cryogenic vacuum ex-

traction by heating the frozen samples within the sampling

vials in a water bath at 80 ◦C under a vacuum (10−3 mbar)

for 2 h. The evaporating water was collected in U vials sub-

mersed in a liquid nitrogen cold trap. After thawing (within

the closed U vials), the water samples were transferred

into vials and stored frozen at −20 ◦C for later δ18O and

δ2H analysis. To study the water dynamics, additional wa-

ter vapour samples from the chamber air were collected by

Peltier-cooled water condensers in external air circuit con-

nected to the plant labelling chamber and analysed for δ18O

and δ2H.

The dried plant residues of the cryogenic vacuum extrac-

tion were used for isotopic bulk analyses as described below.

The water-soluble OM was extracted from the leaves by hot

water extraction. Sixty milligrams of milled leaf material was

dissolved in 1.5 mL of deionized water and heated in a wa-

ter bath (85 ◦C) for 30 min. After cooling and centrifugation

(10 000 g, 2 min), the supernatant was freeze-dried and anal-

ysed for δ13C. δ2H analyses were not possible on the hot wa-

ter extracts, that represent mainly sugars, due to incomplete

equilibration with ambient water vapour (Filot, 2010).

2.4 Isotopic and elemental analyses

All samples were milled to a fine powder with a steel ball

mill and weighed into tin (δ13C analyses) or silver (δ18O and

δ2H analyses) capsules and measured by isotope-ratio mass

spectrometers (IRMS). The δ13C samples were combusted

at 1700 ◦C in an elemental analyser (EA 1110, Carlo Erba)

and the resulting CO2 was transferred in a helium stream via

a variable open-split interface (ConFlo II, Finnigan MAT)

to the IRMS (Delta S, Thermo Finnigan; see Werner et al.,

1999). The samples for δ18O analyses were pyrolysed at

1040 ◦C in an elemental analyser (EA 1108, Carlo Erba)

and transferred via ConFlo III interface (Thermo Finnigan)

to the IRMS (Delta plus XL, Thermo Finnigan). The sam-

ples for δ2H analyses were equilibrated with water vapour of

known signature prior to the IRMS measurements in order

to determine the isotopic signature of the non-exchangeable

hydrogen (as described in Filot et al., 2006; Hangartner et

al., 2012). After equilibration the samples were pyrolysed

in a thermochemical elemental analyser (TC/EA, Thermo-

Finnigan) at a temperature of 1425 ◦C and the gaseous prod-

ucts were carried by a helium stream via a ConFlow II open

split interface (Thermo Finnigan) into the IRMS (Isoprime,

Cheadle). The amount of exchangeable hydrogen (25–27 %)

and oxygen (2–3 %) was measured for the leaf, stem and root

tissue using depleted water vapour to equilibrate the samples.

The measurement precisions of the solid sample analyses

were 0.12 ‰ δ13C, 0.54 ‰ δ18O and 1 ‰ δ2H and were as-

sessed by working standards measured frequently along with

the experimental samples. The precisions were lower than re-

ported for measurements of natural abundance, since highly

labelled sample material was analysed.

Elemental C, H and N content of solid samples was anal-

ysed in an elemental analyser (CHN-900, Leco Corp.), as

was the elemental O content (RO-478, Leco Corp.).

The liquid samples from the cryogenic vacuum extrac-

tion (tissue water) were pyrolysed in an elemental analyser

(TC/EA, Thermo Finnigan) and the evolving CO and H2

gases were transferred via the ConFlo III interface (Thermo

Finnigan) to an IRMS (Delta plus XL, Thermo Finnigan)

for oxygen and hydrogen isotope ratio analysis (Gehre et

al., 2004). The precision of the liquid sample measurement

was± 0.75 ‰ δ18O and± 1.59 ‰ δ2H.

2.5 Calculations

Isotopic ratios were expressed in delta (δ) notation as the

deviation (in ‰) from the international standards Vienna

Pee Dee Belemnite (V-PDB, 13C / 12C= 1.11802× 10−2)

and Vienna Standard Mean Ocean Water (V-SMOW,
18O / 16O= 2.0052× 10−3 and 2H / 1H= 1.5575× 10−4).

The significance of changes in isotopic signature between the

sampling dates and the unlabelled control (t = 0) were sta-

tistically tested via t tests performed by R software (R Core

Team, 2014).

www.biogeosciences.net/12/1865/2015/ Biogeosciences, 12, 1865–1879, 2015
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In the following paragraphs we describe first the calcula-

tions for the leaf water source partitioning (Eqs. 1–4). These

equations are given for the oxygen isotope (18O), but they

also apply for hydrogen (2H). Then we describe the calcula-

tions for the relative recovery of the isotopes (18O / 13C and
2H / 13C) in the bulk OM (Eqs. 5–7).

The leaf water isotopic signature (at steady state) can be

described by a model of Dongmann et al. (1974) to calcu-

late leaf water H18
2 O enrichment, a derivative of Craig and

Gordon (1965) (Eq. 1). According to this model, the isotopic

signature of the leaf water (L) is the result of kinetic (εk)

and equilibrium (ε∗) fractionation processes during evapora-

tion of the source water (S) within the leaves and the back-

diffusion of atmospheric water vapour (V) into the leaves as

affected by relative air humidity (h).

δ18OL = δ
18OS+ ε

k
+ ε∗+

(
δ18OV− δ

18OS− ε
k
)
·h (1)

We used a two-source isotope mixing model (Eq. 2, prin-

ciples described in Dawson et al., 2002) to assess the con-

tribution of the two main water pools (soil and atmospheric

water) to the leaf water based on its isotopic signatures. An

overview on the input data for the mixing model is given in

Appendix A (Fig. A1).

fsource,2 =
δ18Oleaf,water− δ

18Osource,1

δ18Osource,2− δ18Osource,1

, (2)

where δ18Oleaf,water is the isotopic signature (in ‰) of wa-

ter extracted from the leaves at a specific sampling date and

δ18Osource,1 and δ18Osource,2 are the theoretical isotopic sig-

natures of the leaf water if all of the water were to originate

from either the soil (source 1) or the atmospheric (source 2)

water pool.

The first source, hereafter referred to as “evaporating

source”, represents the water taken up from the soil by the

roots, which is transported via the xylem to the leaf, where it

evaporates. The isotopic signature of the evaporating source

(Eq. 3) is estimated by the maximum leaf water enrichment

that would occur at 0 % relative air humidity, i.e. by the first

part of the Dongmann approach (solving Eq. 1 with h= 0).

δ18Osource,1 = δ
18Ostem,water+ ε

k
+ ε∗atm, (3)

where δ18Ostem,water is the isotopic signature (in ‰) of the

water extracted from the stem tissue (approximating the

xylem water) and εk and ε∗atm are the kinetic and equilib-

rium fractionation terms, respectively, at the specific sam-

pling date.

The second source, hereafter named “condensation

source”, refers to the water vapour that diffuses from the at-

mosphere into the leaves and condenses on the cell walls. The

contribution of this source would be maximal at 100 % rela-

tive humidity, which results in Eq. (4) when solving Eq. (1)

with h= 1.

δ18Osource,2 = δ
18Oatm,vap+ ε

∗
atm

= δ18Oatm,cond− ε
∗

pelt+ ε
∗
atm, (4)

where δ18Oatm,vap is the isotopic signature of the water

vapour of the chamber atmosphere and ε∗atm is the equilib-

rium fractionation inside the chamber at the specific sam-

pling date. The signature of the atmospheric water vapour

was measured on its condensate (δ18Oatm,cond) collected in

the Peltier water trap, which was therefore corrected with

the equilibrium fractionation during condensation inside the

Peltier-cooled water condenser (ε∗pelt).

The kinetic fractionation due to the difference in molec-

ular diffusivity of the water molecule species (εk = 20.7 ‰

δ18O and 10.8 ‰ δ2H) was estimated according to Cappa

et al. (2003) for a laminar boundary layer (Schmidt number

q = 2/3; Dongmann et al., 1974). The equilibrium fraction-

ation due to the phase change during evaporation and con-

densation at different temperatures was calculated as in Ma-

joube (1971) with the conditions present at the specific day.

The condensation (dew point) temperature inside the Peltier-

cooled water condenser (Tpelt,DP) was determined based on

the remaining humidity and the air pressure of the air leav-

ing the condenser (details on the calculation are given in Ap-

pendix B). The equilibrium fractionation factors during the

labelling experiment were on average ε∗atm = 8.9± 0.2 ‰ for

δ18O and 72.7± 2.7 ‰ for δ2H at T = 31.3± 2.7 ◦C inside

the labelling chamber and ε∗pelt = 11.1± 0.2 ‰ for δ18O and

103.3± 3.3 ‰ for δ2H at Tpelt,DP = 6.0± 2.5 ◦C inside the

water condenser.

We compared the distribution of the assimilated labels

(13C, 18O, 2H) in the leaf, stem and root tissue by its iso-

topic ratios. Therefore we converted the δ notation to atom

fraction (Eq. 5) according to Coplen (2011).

x(13C)t=x =
1

1+ 1

(δ13Ct=x/1000+1)×RV−PDB

, (5)

where δ13Ct=x is the isotopic signature (in ‰) of the bulk

tissue at sampling date x and R is the ratio of the heavier to

the lighter isotope (13C / 12C) of the international standard

V-PDB. The atom fraction of 18O and 2H was calculated ac-

cordingly but using RV-SMOW as a reference and neglecting

the 17O isotope amount.

For the van Krevelen approach we calculated the elemen-

tal ratios. The relative label distribution within the plant or-

ganic matter (tissue, OM), hereafter referred to as 18O / 13C

and 2H / 13C ratio, was calculated based on the excess atom

Biogeosciences, 12, 1865–1879, 2015 www.biogeosciences.net/12/1865/2015/
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fraction measured in each tissue (Eq. 6).

xE
(

18Otissue,OM

)
t=x/t=0

xE
(

13Ctissue,OM

)
t=x/t=0

=
x
(

18Otissue,OM

)
t=x
− x

(
18Otissue,OM

)
t=0

x
(

13Ctissue,OM

)
t=x
− x

(
13Ctissue,OM

)
t=0

, (6)

where xE(18O)t=x/t=0 and xE(13C)t=x/t=0 are the excess

atom fractions of the labels detected at a specific sampling

date (t = x), relative to the unlabelled control (t = 0). Equa-

tions (6) and (7) were analogously calculated for the 2H / 13C

ratio.

In a second step we corrected the isotopic ratios (18O / 13C

and 2H / 13C) with the maximum label strength of the precur-

sor of the plant OM, i.e. the maximum label strength of fresh

assimilates (Eq. 7). The maximum label strength was approx-

imated by the excess atom fraction relative to the unlabelled

control (xE) measured in the leaf water-soluble organic mat-

ter (wsOM) and the leaf water for the 13C and the 18O and
2H label strength, respectively. The leaf water is the direct

source of hydrogen in assimilates and the indirect source of

oxygen via the atmospheric CO2 dissolved in water (Schmidt

et al., 2001, 2003). The oxygen isotope composition of dis-

solved CO2 equilibrates immediately with the leaf water sig-

nature, whereby carbonic anhydrase catalyses this process

and induces a temperature-dependent kinetic 18O fraction-

ation (Gillon and Yakir, 2000; Uchikawa and Zeebe, 2012).

The fractionation was assumed to be constant in this exper-

iment with controlled temperature and was thus omitted by

the calculation of the excess atom fraction.

xE
norm

(
18Otissue,OM

)
t=x/t=0

xE
norm

(
13Ctissue,OM

)
t=x/t=0

=

xE
(

18Otissue,OM

)
t=x/t=0

xE
(

13Ctissue,OM

)
t=x/t=0

×

xE
(

13Cleaf,wsOM

)
t=x/t=0

xE
(

18Oleaf,water

)
t=x/t=0

(7)

3 Results

3.1 Labelling of the leaf water and water-soluble OM

The 18O and 2H label added as water vapour to the cham-

ber atmosphere (δ18O=−370, δ2H=−813 ‰) was mixed

with transpired water, which was isotopically enriched com-

pared to the added label (Fig. 1). The isotopic signature of

the water vapour within the chamber air stabilized after 4

days at a level of −112± 4 ‰ δ18O and −355± 7 ‰ δ2H.

Thus the atmospheric water vapour signature was depleted

in 18O by 94± 4 ‰ and in 2H by 183± 7 ‰ compared to the

unlabelled atmosphere.

The leaf water was strongly depleted and its isotopic sig-

nature was stable at a level of −64± 7 ‰ for δ18O and
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Figure 1. Temporal dynamics in the water isotopic signatures of the

plant–soil–atmosphere system during continuous 2H18
2

O labelling

(a) δ18O and (b) δ2H signature (in ‰) of the depleted water la-

bel added as water vapour to the atmosphere (solid line), the water

added to the soil (dashed line), the resulting water vapour in the

chamber atmosphere (black circles) and the extracted leaf (grey cir-

cles) and stem water (white circles). Error bars on the leaf water

indicate ± 1 standard deviation of three plant replicates.

−158± 13 ‰ for δ2H after 2 days of labellin with the de-

pleted water vapour (Fig. 1). The leaf water was thus on aver-

age depleted by 63± 7 ‰ for δ18O and 126± 14 ‰ for δ2H

compared to the unlabelled leaf water signature and was be-

tween the signature of the atmospheric water vapour and the

water added to the soil (δ18O=−9± 0, δ2H=−74± 2 ‰).

This indicates that a substantial amount of the leaf water

originated from the atmospheric water pool, suggesting that

it entered the leaf via diffusion through the stomata. The

depletion of the water within a leaf was dependent on its

position on the shoot (Fig. 2c, e). The leaf water of the

leaves sampled in the upper half of the shoot was 7± 2 and

18± 8 ‰ less depleted in δ18O and δ2H than the leaves sam-

pled at the lower half. The isotopic signature of the stem wa-

ter (δ18O=−10± 0 and δ2H=−74± 4 ‰), as well as the

root (δ18O=−6± 1 and δ2H=−58± 4 ‰) and the soil wa-

ter (δ18O=−6± 1 and δ2H=− 63± 3 ‰), was not signifi-
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Figure 2. Incorporation of the gaseous labels (enriched 13CO2, de-

pleted 2H18
2

O) into the plant matter. (a, b) δ13C, (c, d) δ18O and (e,

f) δ2H signature (in ‰) within leaves sampled at the top (solid line,

black triangles), or at the bottom (dashed line, white triangles) of

the shoot. Illustrated are the signatures of (a) the leaf water-soluble

OM, (b, e, f) leaf biomass and (c, e) leaf water.

cantly depleted and reflected the signature of the water added

to the soil (Fig. 1).

At the second sampling date, the leaf water seemed to

be more depleted than the water vapour within the chamber

air (Fig. 1). This is the result of different sampling proce-

dures. The leaf sampling was performed at one point in time

(3 h after the light switched on), while the atmospheric wa-

ter vapour collected by condensation represents an average

for the previous 24 h. Therefore the depletion of the water

vapour is underestimated before the equilibrium of the iso-

topic signature in the atmosphere was reached. In the follow-

ing the average values of signatures detected after the equi-

librium was reached are given (t = 8 and t = 14). We esti-

mated the contribution of the atmospheric water vapour that

enters the leaf by diffusion to the leaf water isotopic signa-

ture with a two-source mixing model (Table 1). The results

were obtained for the two water isotopes 18O and 2H sep-

arately. Both indicated a substantial contribution of the at-

mospheric water vapour to the leaf water isotopic signature,

whereby the estimates based on the oxygen isotope yielded

a higher contribution (69± 7 %) than the hydrogen estimates

(58± 4 %). The estimates for the leaves sampled at different

position on the shoot varied by 5 %, whereas the contribu-

tion of atmospheric water to the leaf water was higher in the

leaves sampled at the bottom (71± 4 % based on 18O and

60± 2 % based on 2H) than in the leaves at the top (66± 2

and 55± 0 %, respectively) of the shoots.

The 13C-CO2 added (8938 ‰ δ13C) was presumably also

strongly diluted by respired 12C-CO2, but we did not mea-

sure the isotopic signature of the CO2 within the chamber

air. The leaf water-soluble OM was significantly enriched as

early as 1 day after labelling and levelled off towards the end

of the experiment. On the last two sampling dates its isotopic

signature was on average 1346± 162 ‰ δ13C.

3.2 Labelling of the bulk OM

All three applied labels could be detected in the plant bulk

material (Table 2). We measured the isotopic signature of

the non-exchangeable hydrogen, which was estimated to be

74± 1 % of the total OM. After 14 days of continuous la-

belling, the leaves, petioles, stems and roots were enriched

by 650–1150 ‰ in δ13C, and depleted by 4–17 ‰ in δ18O

and 6–31 ‰ in δ2H. Thus the plant biomass was significantly

labelled even under the extreme environmental conditions

(high temperature and low light availability) that were critical

for net C assimilation (increasing tissue respiration and re-

ducing photosynthesis, respectively). However, the labelling

was not strong enough to trace the OM within the large OM

pools of the cuttings and soil OM, in which the change in

isotopic signature was close to the detection limit or could

not be detected. The measured depletion in 18O of the bulk

soil can be accounted for natural variability, since the same

effect has been observed in non-treated soil (data not shown

here).

The labelling of the leaf bulk OM occurred in parallel to

the labelling of the leaf water and water-soluble OM (Fig. 2).

The leaf OM was enriched in 13C after 1 day (Fig. 2b) and

depleted in 18O and 2H after 2 days (Fig. 2d, f). The incor-

poration of the label into the leaf OM was, like the labelling

of the leaf water, dependent on the position on the shoot. The

biomass of the leaves at the top was more enriched in 13C (by

up to 673 ‰) than the biomass of the leaves at the bottom of

the shoots and, in contrast to the leaf water, more depleted

in 18O and 2H (by up to 9 and 21 ‰, respectively) at the top

than at the bottom. This indicates a higher overall assimila-

tion in the leaves at the top of the shoot.

3.3 Atomic and isotopic ratios to characterize OM

The atomic ratios of the plant bulk OM were in the range of

13.7–115.4 C /N, 0.70–0.83 O /C and 1.56–1.72 H /C (Ta-

ble 3). The leaf OM was characterized by the lowest C /N

and O /C ratios and concurrently by highest H /C ratios

(Fig. 3a). The other plant tissues indicated a linear trend in

decreasing O /C and H /C and increasing C /N ratios in the

order of stems, petioles, roots and cuttings.

The recovery of the three isotopes varied between the

leaf, stem and root tissue, while they were similar between

the sampling dates (Fig. 3b). The isotopic ratios of the ex-

cess atom fractions were 3.5± 0.4× 10−3 18O / 13C and

5.3± 0.5× 10−4 2H / 13C in the leaves, 1.4± 0.1× 10−3
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Table 1. Diffusion of atmospheric water vapour into the leaf water. δ18O and δ2H signatures of leaf water and its two sources: (i) the

evaporating source (Eq. 3), estimated by the stem water signature plus kinetic and equilibrium leaf water enrichment (assuming full evapora-

tion without back-diffusion), and (ii) the condensation source (Eq. 4), assessed by the atmospheric water vapour signature plus equilibrium

fractionation to account for the gas–liquid phase change. The contribution of the second source (diffusion and condensation of atmospheric

water vapour) to the leaf water (fsource,2/leaf, water) was estimated by a two-source isotope mixing model for 18O and 2H separately (Eq. 2).

Presented are the average values of three plant replicates for each sampling date ± 1 standard deviation.

Sampling Leaf watera Source 1: Source 2: f b
source,2/leaf, water

date (days) evaporating condensation

sourceb sourceb

δ18O δ2H δ18O δ2H δ18O δ2H 18O 2H

(‰) (‰) (‰) (‰) (‰) (‰) (%) (%)

0 −1.0 −32.0 21.3 10.9 −8.8 −99.7 74.2 38.8

(±0.5) (±1.8) (±0.4) (±2.6) (±1.2) (±0.3)

1 −11.7 −53.0 19.5 10.3 −27.3 −143.3 66.6 41.2

(±1.8) (±5.9) (±0.3) (±3.2) (±3.9) (±3.2)

2 −65.6 −162.3 20.0 14.4 −47.6 −196.0 126.6 84.0

(±6.5) (±8.6) (±0.6) (±2.1) (±9.8) (±4.1)

8 −65.2 −159.9 20.0 5.3 −98.6 −274.8 71.8 59.0

(±2.0) (±3.8) (±0.7) (±3.9) (±1.5) (±0.8)

14 −60.4 −152.3 19.3 9.5 −101.8 −275.8 65.8 56.8

(±10.7) (±21.2) (±0.4) (±5.1) (±8.7) (±6.8)

a Directly measured. b Calculated.

18O / 13C and 2.9± 0.6× 10−4 2H / 13C in the stems and

1.0± 0.2× 10−3 18O / 13C and 1.0± 1.4× 10−4 2H / 13C in

the roots after the equilibrium in the leaf water and water-

soluble OM labelling was reached. Thus the 18O / 13C ratios

were on average 2.6 (±0.2) times lower in the stems and 3.8

(±0.7) times lower in the roots than in the leaves (Table 3)

and the 2H / 13C ratios were 1.9 (±0.2) and 3.1 (±0.6) times

lower in the stems and roots, respectively, than in the leaves.

The isotopic ratios were in the range of 0.17–0.43
18O / 13C and 0.14–0.23 2H / 13C after the correction for

the maximum label strength, approximated by the 18O, 2H

and 13C excess atom fraction within the leaf water and the

water-soluble OM, respectively. The normalized isotopic ra-

tios were thus in the order of magnitude of the atomic ratios

reported for OM compounds (Table 3, Fig. 3c) but they were

in the range characteristic for condensed hydrocarbons and

thus lower than expected for fresh OM.

4 Discussion

4.1 Diffusion of atmospheric water vapour into the leaf

The strong depletion in δ18O and δ2H observed in the

leaf water indicates a high back-diffusion of labelled water

vapour from the atmosphere into the leaf. The diffusion is

dependent on the gradient between atmospheric and leaf wa-

ter vapour pressure and the stomatal conductance (Parkhurst,

1994). The higher the atmospheric water vapour pressure

(the smaller the gradient), the more water molecules diffuse

back into the leaf. The latter is further enhanced the larger

the stomatal conductance is (Reynolds Henne, 2007). Here

we maintained the atmospheric vapour pressure constant at a

high level, ensuring a high back-diffusion at a given stomatal

conductance. In our experiment the leaf water δ18O and δ2H

signature is determined by (i) the signature and the amount

of labelled (depleted) water vapour diffusing into the leaf in-

tercellular cavities; (ii) by the enrichment due to transpira-

tion (kinetic and equilibrium fractionation); and (iii) by the

influx of xylem water, which is isotopically enriched rela-

tive to the labelled water vapour. The latter is proportionally

enhanced by increasing transpiration rates as a result of the

diffusion convection process of H2O (Péclet effect; Farquhar

and Lloyd 1993).

The distinct label signal in the water sampled in leaves

at different positions on the shoot indicates differences in

the transpiration rate. Meinzer et al. (1997) demonstrated in

large poplar trees that shading or lower irradiance leads to

lower stomatal conductance and transpiration rates. Thus the

back-diffusion in the leaves on the bottom might have been

reduced due to lower stomatal conductance. However, the in-

creased transpiration in the leaves at the top led to an even

stronger dilution of the isotopic signal in the leaf water due

to (i) increased evaporative leaf water enrichment and (ii) the

Péclet effect (enhanced influx of xylem water, which was en-

riched compared to the labelled atmospheric water vapour).

The amount of leaf water that entered the leaf by back-

diffusion was estimated to be 58–69 %. This result is in con-

tradiction to the common perception that most of the leaf

water is taken up from the soil via roots. However it is
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Table 2. Multi-isotope labelling of bulk OM. δ13C, δ18O and δ2H signatures (in ‰) of the plant–soil compartments (three replicates ± 1

standard deviation) measured before and after 1, 2, 8 and 14 days of continuous labelling. A significant enrichment (δ13C) and depletion

(δ18O, δ2H) compared to the unlabelled control (t = 0) is highlighted with * (t test, P < 0.05). The degree of labelling is indicated by the

change in the isotopic signature of the last sampling date (t = 14) compared to the control (t=0).

Sampling date (days)

δ13C (‰) 0 1 2 8 14 14–0a

Leaves −30.8 161.5* 189.7 570.7* 812.5* 843.3

(±0.4) (±37.4) (±128.7) (±81.0) (±235.0) (±235.0)

Petioles −32.8 163.9* 212.8* 908.5* 941.9* 974.7

(±0.2) (±56.2) (±75.2) (±277.3) (±292.7) (±292.7)

Stems −31.4 209.6* 281.3* 1093.7* 1119.9* 1151.3

(±0.6) (±84.2) (±87.6) (±402.2) (±367.6) (±367.6)

Cuttings −31.2 −27.0* −26.9 −14.6 −14.5* 16.8

(±0.3) (±1.6) (±1.9) (±15.8) (±2.1) (±2.1)

Roots −30.8 98.1* 90.8 646.5 618.0* 648.8

(±0.7) (±12.5) (±62.9) (±335.1) (±310.9) (±310.9)

Bulk soil −28.0 −27.9 −27.8 −27.5 −27.5 0.5

(±0.1) (±0.0) (±0.2) (±0.5) (±0.2) (±0.3)

δ18O (‰) 0 1 2 8 14 14–0a

Leaves 25.9 25.2 21.9 15.0* 9.0* −16.9

(±0.8) (±0.8) (±2.0) (±0.4) (±3.0) (±3.2)

Petioles 21.0 20.4 19.5* 14.3* 12.8* −8.2

(±0.2) (±0.4) (±0.4) (±1.6) (±2.3) (±2.3)

Stems 22.4 22.2 20.6* 14.7* 13.3* −9.1

(±0.4) (±0.1) (±0.8) (±2.4) (±2.8) (±2.8)

Cuttings 21.3 21.9 21.8 21.5 21.5 0.2

(±1.5) (±0.1) (±0.4) (±0.3) (±0.4) (±1.5)

Roots 21.2 20.6 20.9 18.2 17.5* −3.7

(±0.6) (±0.6) (±0.4) (±1.5) (±1.7) (±1.8)

Bulk soil 14.8 14.0 13.8* 13.0* 13.5 −1.3

(±0.4) (±0.3) (±0.4) (±0.1) (±0.8) (±0.9)

δ2H (‰) 0 1 2 8 14 14–0a

Leaves −146.6 −158.1 −169.2* −178.0* −31.3

(±2.5) (±7.8) (±5.5) (±9.4) (±9.7)

Petioles −138.3 −150.9 −12.6

(±1.8) (±6.7) (±7.3)

Stems −129.2 −136.3 −153.3 −152.9* −23.7

(±4.2) (±4.7) (±14.8) (±9.4) (±10.3)

Cuttings −167.3 −172.8 −5.5

(±2.8) (±6.3) (±6.9)

Roots −129.7 −134.0 −137.0 −135.9 −6.2

(±6.4) (±12.5) (±6.8) (±7.7) (±10.0)

Bulk soil −101.5 −101.9 0.4

(±1.1) (±1.3) (±1.7)

a Isotopic difference after 14 days of continuous labelling.

in line with the observations made by Farquhar and Cer-

nusak (2005), who modelled the leaf water isotopic compo-

sition in the non-steady state and estimated the contribution

of atmospheric water to the leaf water to be approximately

two-thirds of the total water supply. Althoug, our estimates

are based on a modelling approach that does not take into

account the Péclet effect or daily fluctuations in the isotopic

signatures as described below, our estimates correspond very

well to the findings of Farquhar and Cernusak (2005).

The model used to estimate the quantitative contribution

of the two water sources is based on the measured signa-

ture of the leaf water (δ18Oleaf,water) and the estimated sig-
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Table 3. Atomic and isotopic ratios of the labelled bulk OM. C/N,

O/C and H/C atomic ratios and 18O/13C and 2H/13C isotopic ra-

tios (of the excess atom fraction) measured in different plant com-

partments after the equilibrium in the atmospheric labelling was

reached. Indicated are average values of two sampling dates (t = 8

and 14) with three plant replicates each (± 1 standard deviation).

Compartment C/N O/C H/C 18O/13Ca 2H/13Ca

Leaves 13.7 0.70 1.72 0.43 0.41

(±0.4) (±0.01) (±0.04) (±0.07) (±0.06)

Petioles 35.4 0.77 1.64 0.18 0.14

(±1.3) (±0.01) (±0.01) (±0.03) (±0.03)b

Stems 32.0 0.83 1.71 0.17 0.23

(±4.0) (±0.01) (±0.02) (±0.03) (±0.06)

Cuttings 115.4 0.72 1.56 n.c.c n.c.c

(±7.2) (±0.01) (±0.02)

Roots 29.9 0.73 1.61 0.12 0.07

(±2.0) (±0.02) (±0.02) (±0.03) (±0.11)

a Ratio of excess atom fraction normalized by the maximum label strength (Eq. 7).
b Only the last sampling date was measured (t = 14).
c Not calculated (no consistent 18O and 2H depletion detected in the tissue).

natures of the water at the evaporating and condensation

site (δ18Osource,1 and δ18Osource,2, respectively). The “dilu-

tion” of the (laminar) leaf water with the relatively enriched

xylem water through the Péclet effect is included in the

δ18Oleaf,water. This explains the lower contribution of atmo-

spheric water (−5 %) estimated in the leaves sampled at the

top (due to the Péclet effect resulting from higher transpira-

tion rates) compared to the leaves sampled at the bottom of

the shoot.

Some inaccuracy in the two-source mixing model es-

timates might have been introduced by daily fluctuations

in the environmental and labelling conditions. The mixture

(δ18Oleaf,water) was sampled after 3 h of light, whereas the

estimation of the two sources (δ18Osource,1 and δ18Osource,2)

is based on daily average values of environmental param-

eters and the atmospheric water vapour (δ18Oatm,vap) label

strength. In our experiment, fluctuations in δ18Oatm,vap were

caused by adding the labelled vapour mainly during night-

time, when transpiration was low. Thus the atmospheric la-

bel strength was presumably highest before the lights were

switched on and gradually diluted during the day by tran-

spired water vapour. Hence the actual δ18Oatm,vap at the time

of plant sampling was probably more depleted than the mea-

sured average signature. Therefore δ18Osource,2 and its con-

tribution to the leaf water was slightly overestimated. The

effect of the temperature fluctuations (±3 ◦C) via changes in

the equilibrium fractionation was minor for the outcome of

the mixing model < 1 %.

Nonetheless, the strong depletion of the leaf water in 2H

and 18O proves that back-diffusion of atmospheric water

vapour into the leaf is an important mechanisms for leaf wa-

ter uptake. This supports the hypothesis that atmospheric wa-

ter vapour diffusion might be as important as the flux of wa-

ter from the xylem into the leaf (at least under humid condi-
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Figure 3. Atomic and isotopic ratios to illustrate change in OM

characteristics. (a) Atomic and (b, c) isotopic ratios of oxygen and

hydrogen to carbon within the leaves (black circles), petioles (white

circles), stems (black triangles), stem cutting (white triangles) and

roots (black squares). The circles overlain on the plots in (a) and (c)

indicate atomic ratios characteristic for different compound classes

(adapted from Sleighter and Hatcher, 2007). Panel (a) illustrates the

atomic ratio of all tissues measured (15 replicates ± 1 standard de-

viation, panel (b) the isotopic ratios of the 13C, 18O and 2H ex-

cess atom fraction (relative to the unlabelled tissues) measured after

equilibrium in the labelling (see Fig. 1 and 2) was reached (t = 8 and

14, six replicates ± 1 standard deviation) and panel (c) shows the

isotopic ratios after normalization with the maximum label strength

detected in the leaf water (18O, 2H) and water-soluble OM (13C).

tions) and be an important mechanisms for the reversed wa-

ter flow observed in the tropics (Goldsmith, 2013). Further-

more, these results demonstrate that the leaf water isotopic

composition is strongly affected by the atmospheric signa-

ture at humid conditions and that thus the applicability of
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the dual-isotope approach (Scheidegger et al., 2000), e.g. to

reconstruct past climate conditions by tree ring analysis, is

only valid if the source water and atmospheric vapour δ18O

are similar. The back-diffusion of atmospheric vapour at high

humidity could be another factor in addition to the evapo-

rative enrichment (as demonstrated by Roden and Farquhar,

2012) to overshadow the effects of stomatal conductance on

the leaf δ18O signature.

4.2 Tracing OM

The O /C and H /C ratio of the plant bulk material was close

to the signature of cellulose (Fig. 3a). The leaves had a lower

O /C ratio with a constant high H /C ratio, indicating that its

OM contains more reduced compounds such as amino sugars

or proteins, which is also supported by its low C /N ratio.

The trend of decreasing O /C and H /C ratios observed in

the other tissues is in the direction of condensation reactions.

This trend most likely indicates the increasing lignification

of OM from shoots, to roots, to cuttings.

The same trend has been observed in the ratios of the labels

added from the leaf, to the stem, to the root OM (Fig. 3b, c).

The lower isotopic O /C and H /C ratios in the root and stem

tissue compared to the leaf tissue could indicate the utiliza-

tion of the labelled assimilates for the synthesis of more con-

densed compounds (e.g. lignin) in those tissues. However,

other factors affecting the isotopic ratios of the OM are the

maximum label strength, the exchange of hydrogen and oxy-

gen with xylem water during transport and biosynthesis, and

the isotopic fractionation during metabolism.

The isotopic ratios (Fig. 3b) were around three orders of

magnitudes smaller than the expected atomic ratios of OM

(Sleighter and Hatcher, 2007). This is mainly due to the dif-

ferent maximum label strength, which was highest for the
13C and lowest for the 2H. After correction for this factor,

the isotopic ratios were in the range of the atomic ratios char-

acteristic for condensed hydrocarbons (Fig. 3c). The isotopic

ratios might be lower than expected due to inaccurate approx-

imation of the maximum label strength of fresh assimilates

(by the leaf water and water-soluble OM) or be the result of
18O and 2H label losses during transport and biosynthesis.

One reason for the label loss might be the use of other

(more enriched) sources during biosynthesis. For example,

O2 (enriched by 23 ‰ δ18O) has been identified as a further

source of aromatic compounds, such as phenols and sterols

(Schmidt et al., 2001). However, for hydrogen, water is the

only known source (Schmidt et al., 2003) and therefore the

use of other O or H sources during biosynthesis can not ex-

plain the (major) loss of the 18O and 2H label.

Another potential reason could be the kinetic fractiona-

tion during biosynthesis that leads to distinct isotopic sig-

natures of different OM compounds (described in Schmidt

et al., 2001, 2003; Badeck et al., 2005; Bowling et al., 2008).

However, assuming constant isotopic fractionation during the

experiment with constant environmental conditions, the iso-

topic ratios would not be affected, since they are based on the

excess atom fraction relative to the unlabelled OM.

A third reason for the loss of the 18O and 2H label could

be the exchange of hydrogen and oxygen atoms with water.

O and H exchanges with tissue water during transport and

the synthesis of new compounds (as recently discussed for

oxygen in phloem sugars and cellulose in Offermann et al.,

2011, and Gessler et al., 2013). O of carbonyl groups (Bar-

bour, 2007; Sternberg et al., 1986) and H in nucleophilic OH

and NH groups or H adjacent to carbonyl groups (Augusti

et al., 2006; Garcia-Martin et al., 2001) exchange with wa-

ter. Thus biochemical reactions lead to different isotopomers

of organic compounds (Augusti and Schleucher, 2007). The

proportion of O and H exchanged can be considerable; for

example, during cellulose synthesis, around 40 % of O and

H is exchanged with the tissue water (Roden and Ehleringer,

1999; Yakir and DeNiro, 1990). The exchange with water ex-

plains to some extent the stronger relative 18O and 2H signal

in the leaf OM compared to the stem and root OM, since

the leaf water was labelled, while the stem and root water

was not. The 18O / 13C isotopic ratios in particular were in-

creased in the leaf OM compared to the relations observed

in the atomic ratios (Fig. 3a). The leaf OM had the lowest

O /C atomic ratios but the highest 18O / 13C isotopic ratios

of all plant compartments (Table 3). This effect is less ex-

pressed for the 2H / 13C ratios, since only the fraction of hy-

drogen that does not exchange with ambient water vapour

was measured. The non-exchangeable fraction (74 %) is hy-

drogen bound to carbon (Filot et al., 2006), which is hardly

exchanged with xylem water.

5 Conclusions

We present a new technique to label OM at its place of for-

mation by the application of labels through the gaseous phase

(13CO2 and 2H18
2 O). In this study we were able to show that,

in a humid atmosphere, the atmospheric water vapour iso-

topic signature dominates the leaf water signature due to a

strong back-diffusion of water vapour into the leaf. Further,

we detected differences in the relative distribution of 13C,
18O and 2H in the leaves, stems and roots. This could indicate

the synthesis of different compounds in the particular tissues

and thus a change in OM characteristics, but it could also

be the result of exchange and fractionation processes during

transport and biosynthesis. To further test these two possibil-

ities, a better estimation of the maximum label strength by

compound-specific sugar analysis would be needed, which

has been further developed for δ13C (Rinne et al., 2012) and

for δ18O (Zech et al., 2013) recently but does not yet exist

for δ2H analysis.

The multi-isotope labelling technique can be used to as-

sess the amount of vapour diffusing into the leaves and to

trace the dynamics of the labelled OM. It could be applied

in soil sciences, as for example to track the decomposition
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pathways of soil OM inputs or in the field of plant physiol-

ogy and palaeoclimatic reconstruction, for example to further

investigate the O and H exchange and fractionation processes

during transport and metabolic processes or the importance

of the ambient air humidity besides its isotopic composition

for the climate signal stored in tree-ring cellulose. Further-

more, the multi-isotope labelling technique has the potential

to make changes in OM characteristics visible (e.g. C alloca-

tion into the non-structural vs. structural pool), for example

after a change in climatic conditions, and to trace the labelled

OM during its decomposition within the soil.
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Appendix A

Leaf water source 2(2) !
(condensation source)!
δ18Osource,2 = -100 ± 2 ‰!
δ2Hsource,2   = -275 ± 1 ‰!

Water condenser (peltiers)!
Tpelt    = 2.2 ± 1.0 °C!
Tpelt,DP= 6.5 ± 1.6 °C!

Humidifier(4) !

Chamber atmosphere(2) !
δ18Oatm,vap = -109 ± 2 ‰!
δ2Hatm,vap   = -349 ± 2 ‰ !

AH = 34.4 ± 2.3 mmol mol-1!
RH = 87 %!

(1) Sampled after 3/12 hours daylight; errors represent variability between plant individuals (three plant replicates each sampling date).!
(2) Integrated value over 2-3 days (water trap analysed at day 6, 8, 11 and 14), errors represent variability between sampling date 8 and 14. !
(3) Average of all watering dates (day 0, 2, 6, 8, 11); errors represent variability between sampling dates. !
(4) Measured at the beginning of the experiment!

Water trap(2) !

Troom = 27.8 ± 0.3 °C!

Tatm = 30.4 ± 2.5 °C!
AH  = 34.4 ± 2.3 mmol mol-1!
RH   = 75 %!

AH = 10.2 ± 1.2 mmol mol-1!
RH  = 26 %!

ε*pelt = 11 ‰ δ18O,  
           103 ‰ δ2H!

Leaf water source 1(1) !
(evaporating source)!
δ18Osource,1 = 20 ± 1 ‰!
δ2Hsource,1   = 7 ± 5 ‰!

ε*atm = 9 ‰ δ18O,  
  74 ‰ δ2H!

ε*room = 9 ‰ δ18O,     
    76 ‰ δ2H!

εk
atm = 21 ‰ δ18O,  

           11 ‰ δ2H!

Leaf water mixture(1) !
δ18Oleaf,water  = -63 ± 7 ‰!
δ2Hleaf,water    = -156 ± 14 ‰!

Stem water(1) !
δ18Ostem,water = -10 ± 1 ‰!
δ2Hstem,water    = -77 ± 4 ‰!

δ18Oatm,cond = -98 ± 2 ‰!
δ2Hatm,cond   = -246 ± 3 ‰!

δ18Osoil,water = -6 ± 1 ‰!
δ2Hsoil,water   = -64 ± 3 ‰!

δ18Olabel,cond = -361 ‰!
δ2Hlabel,cond   = -737 ‰!

Labelled water vapour(4) !
δ18Olabel,vap = -370 ‰ !
δ2Hlabel,vap   = -813 ‰!

Belowground water pools(1) !
δ18Oroot,water = -6 ± 1 ‰!
δ2Hroot,water   = -56 ± 4 ‰!

Water added to the soil(3)!

δ18Owatering = -9 ± 1 ‰!
δ2Hwatering   = -74 ± 2 ‰!

Leaf water!

Calculations!
!

! 

"18Olabel,vap ="18Olabel,cond #$ room
*

! 

"18Osource,1 ="18Ostem,water +# k +# atm
*

! 

"18Osource,2 ="18Oatm,vap +# atm
* ="18Oatm,cond $# pelt

* +# atm
*

Figure A1. Overview of the input data of the two-source isotope mixing model. δ18O and δ2H signatures of the water pools of the chamber

system are presented as average values after equilibrium in the labelling was reached (t = 8 and 14 days). The monitored environmental con-

ditions (T = temperature, AH= absolute humidity and RH= relative humidity) are shown in grey. The equilibrium and kinetic fractionation

factors, highlighted in blue, were calculated according to Majoube (1971) and Cappa et al. (2003), respectively. The fractionation factors

were used for the calculations (green box) of the signatures in the non-directly measured pools and the isotopic signatures of the evaporating

and condensation source of the leaf water (red box). The equations are given for δ18O but apply for δ2H analogously. Please note that the

data reported here are average values of the last two sampling dates, while in the results section we present the data of single sampling dates

or average values of the whole labelling experiment (environmental conditions, equilibrium fractionation factors).
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Appendix B: Calculation of the relative air humidity

and the dew-point temperature

The dew-point temperature, i.e. the temperature at which

the water condensed inside the Peltier-cooled water con-

denser (Tpelt,DP), was calculated by solving Eq. B1 with the

humidity measured in the air after the condenser (10± 1

mmol mol−1 AH, 26 % RH).

RH(T )=
e

e(T )
× 100, (B1)

where RH is the relative air humidity (in %), e is the partial

pressure of water vapour (calculated according to Eq. B2)

and e(T ) is the saturation vapour pressure (in kPa, calculated

according to Eq. B3).

e =
AH

1000
×p, (B2)

where AH is the absolute humidity given as the mole frac-

tion of water vapour (mmol mol−1) and p is the atmospheric

pressure (in kPa).

e(T )= 0.61365× e
17.502×T
240.97+T , (B3)

where T is the room air temperature (in ◦C).
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