SUPPLEMENTAL INFORMATION

Direct parametrization and centered parametrization

In the Methods section we described two possible parametrization of a skew-normal distributed random
variable, the direct parametrization (DP) and the centered parametrization (CP). Here, we point out the
principles and the conversion between the two parametrizations.

The DP has the disadvantage that singularity problems occur if ¥ = 0 when estimating the parameters
by maximum likelihood estimation (Azzalini, 1985). Another representation was then proposed by
centering the parameters (Azzalini, 1985). The idea behind this centering is to reparametrize the problem
by

Y=u+az,
where Z is constructed from a Z ~ SN(0, 1, ¥) random variable in the following way: For y, = E(Z) =

\/% Y and o, = /1 —p2 let

1+y?

By using equation (5) in the main manuscript, i.e.
3/2
1 , v?
Y=5@-msi;]nV) | 70—z 5| -
2 pr(E-1y?

one obtains a measure of skewness. For the conversion of CP to DP the following formulae can be used
(Genton, 2004),
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Program code
In this section we provide the underlying program code for the statistical software R and Stata for the
censored skew-normal regression problem with delayed entry. The derivation of the likelihood function is

similar as described in (Azzalini and Capitanio, 1999) or (Genton, 2004) for uncensored observations.
We assume that a random variable Y is distributed as SN (u, o, w), which is equivalent to ¥ =

u+o (ZVE((ZZ))) = U+ oZy with Z ~ SN(0,1,y). Let D be the random variable indicating delayed
ar
entry. Note that (see e.g. Genton (2004))
2y 2 y?
E(Z)=\|——— d Var(Z)=1—-—-———. A2
(2) T it ar(Z) P T (A2)

We assume that each individual’s age ¥;, i < n, is identically and independently distributed as SN (u, &%, y)
and independent of censoring. Since Z; = E(Z;) 4+ /Var(Z;) (%) , a CP form of the likelihood function
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in equation (6) in the main manuscript for left-truncated observations D; is given as
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Since E(Z;) and Var(Z;) depend only on y and are independent of the index i, one obtains by using
equations (A2) the following log-likelihood function for uncensored observations
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and similarly for censored observations
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To get the skewness parameter y one simply converts ¥ by equation (5) in the main manuscript.

For MLE in R we first defined the negative likelihood function in a R function with five arguments
sn.lik.cen (param,y, X, cen, trun), where param are values for the vector of regression coef-
ficients and the scale and shape parameters from the skew-normal distribution ¢ and y given in (A3) or
(A4). y corresponds to the dependent variable, X the model matrix of covariates, cen is an indicator for
censored observations, and t run is the variable for delayed entry.
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sn.lik.cen <— function (param,y,X,cen,trun) {

k <— ncol (X)

beta <— param|[1:k]
alpha <— param[k+1]
psi <— param[k+2]

# Residual vectors

e <— y—X\%*\%beta
truncen <— trun—-X\%x\%beta
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# Log likelihood of uncensored observations

logl_uncen <— (I—cen)x*(

log(sqrt(l—2/pixpsi”2/(1+psi”~2))/alpha)
—0.5x(sqrt (2/pi)*xpsi/sqrt(l+psi”2)
+sqrt(l—2/pixpsi”2/(1+psi”2))x(e/alpha))”2

+log (pnorm(psi*(sqrt(2/pi)*xpsi/sqrt(l+alpha”2)
+sqrt(l—2/pixpsi”2/(1+psi”2))x(e/alpha))))

—log(l—psn(sqrt(2/pi)*xalpha/sqrt(l+psi”2)
+sqrt(l—2/pixpsi”2/(1l+psi”“2))x(truncen/alpha),

location=0, scale=1, shape=psi))

)

# Log likelihood of censored observations
logl_cen <— cenx(
log(l—psn(sqrt(2/pi)xalpha/sqrt(l+psi”~2)
+sqrt (1l —2/pixpsi”2/(1+psi”2))x(e/alpha),
location=0, scale=1, shape=psi)
—log(l—psn(sqrt(2/pi)*xalpha/sqrt(l+psi”~2)
+sqrt(l—2/pixpsi”2/(1l+psi”“2))x(truncen/alpha),
location=0, scale=1, shape=psi))

)

# Return negative log likelihood function
return(—sum(logl_uncen+logl_cen))

}

Within this function we used the probability density function psn from a skew-normal distribution
from the R package sn (Azzalini, 2011). In second step we maximized the negative log likelihood
function by the optim function available within the R core stats library, using a quasi-Newton
algorithm (option method="BFGS" within the opt im command).

For MLE in Stata we first defined the likelihood five parameter function sn with parameters: 1ogl,
the log likelihood function; mu, the location parameter used for centering the dependent variable by the
linear combination of covariates X' B; alph and psi, the scale and shape parameter from the skew-
normal distribution & and y given in (A3) or (A4). Censored observations and the variable for delayed
entry are indicated by the 1local censor and local ltrun macro. No cdf program function exists
in Stata for a skew-normal distribution. We used a conditioning method on a bivariate normal cdf (see e.g.
Genton (2004), Proposition 1.2.2) to get the corresponding cdf of a skew-normal distribution. In the second
step the log likelihood function was maximized by the m1 model 1f [...], technique (nr)
command using a Newton-Raphson algorithm, followed by m1 max to obtain the parameter estimates.
ml places the name of a dependent variable in a global macro, denoting internally the dependent variable
as $ML_y 1. The likelihood function is defined with the program define command as follows.

program define sn_cen
args logl mu alph psi

local censor ”$S_cen”
local ltrun ”$S_ltrun”

quietly replace ‘logl’=cond( ‘censor’==0,

* ‘censor '==0: Log likelihood of uncensored observations
In(sqrt(l1—2/pix‘psi’ " "2/(1+ “psi’"2))/ “alph”’)
—0.5%(sqrt (2/pi)* ‘psi’/sqrt(l+°psi’"2)
+sqrt(l1—=2/pi*x‘psi’ "2/(1+ “psi’"2))
*(($ML_yl—‘mu’)/ “alph *))"2
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+In(normal ( “psi  *(sqrt (2/pi)=* ‘psi’/sqrt(l+‘psi’"2)
+sqrt(l—=2/pix‘psi’"2/(1+ “psi’"2))
#(($ML_yl—‘mu’)/ “alph *))))
—In (1 —2%(binormal (0,sqrt (2/pi)* ‘psi’/sqrt(l+ psi’"2)
+((‘ltrun’—‘mu’)/ “alph )
xsqrt(l—=2/pi*‘psi’"2/(1+ “psi’"2)),
—*psi */( sqre(l+°psi®*2) )))),

* ‘censor '==1: Log likelihood of censored observations
In(l1—-2%(binormal (0O, sqrt (2/pi)* “psi ’/sqrt(l+‘psi’"2) /[//
+sqrt (1l —=2/pix‘psi’ " 2/(1+ “psi’"2))
*(($ML_yl—‘mu’)/ ¢ alph ),
—‘psi 7/ ( sqrt(l+°psi’~2) ))))
—In (1 —2%(binormal (0,sqrt (2/pi)* ‘psi’/sqrt(l+ psi’"2)
+((‘ltrun’—‘mu’)/ “alph )
xsqrt(l—=2/pix‘psi’"2/(1+ “psi’"2)),
—psi’/( sqrt(l+‘psi’"2) ))))
)

end

There could be situations where the MLE has convergence problems, mainly in data sets with small
to moderate sample size. This problem has been described (Azzalini and Capitanio, 1999) and could be
solved by an EM algorithm. In larger data sets, especially the analyzed data within this manuscript, this

situation did not occur.

We compared the output from our own written program codes with the results of the available MLE
function for skew-normal regression for the uncensored case. In R we used within the package sn the
function sn.mle () (Azzalini, 2011). In Stata we used the skewnreg function from the available
suite for skew-normal regression (Marchenko and Genton, 2010). All obtained results were similar up to

negligible numerical approximation differences.
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