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Summary 1 

1. Effects of conspecific neighbours on survival and growth of trees have been found to be 2 

related to species abundance. Both positive and negative relationships may explain 3 

observed abundance patterns. Surprisingly, it is rarely tested whether such relationships 4 

could be biased or even spurious due to transforming neighbourhood variables or 5 

influences of spatial aggregation, distance decay of neighbour effects and standardization 6 

of effect sizes. 7 

2. To investigate potential biases, communities of 20 identical species were simulated with 8 

log-series abundances but without species-specific interactions. No relationship of 9 

conspecific neighbour effects on survival or growth with species abundance was expected. 10 

Survival and growth of individuals was simulated in random and aggregated spatial 11 

patterns using no, linear, or squared distance decay of neighbour effects. 12 

3. Regression coefficients of statistical neighbourhood models were unbiased and unrelated 13 

to species abundance. However, variation in the number of conspecific neighbours was 14 

positively or negatively related to species abundance depending on transformations of 15 

neighbourhood variables, spatial pattern and distance decay. Consequently, effect sizes 16 

and standardized regression coefficients, often used in model fitting across large numbers 17 

of species, were also positively or negatively related to species abundance depending on 18 

transformation of neighbourhood variables, spatial pattern and distance decay. 19 

4. Tests using randomized tree positions and identities provide the best bench marks by 20 

which to critically evaluate relationships of effect sizes or standardized regression 21 

coefficients with tree species abundance. This will better guard against potential 22 

misinterpretations. 23 

 24 

Key-words: community dynamics; multiple regression; neighbourhood model; population 25 

dynamics; tropical forest. 26 
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Introduction 27 

Whether or not conspecific negative density dependence (CNDD) at small 28 

neighbourhood scales shapes species abundances in tropical tree communities at larger scales 29 

is far from resolved and we probably should not even expect the answer to be simple. In 30 

principle, there are several possibilities. First, the strength of CNDD is unrelated to 31 

abundance. Second, the strength of CNDD is negatively related to abundance (strong CNDD 32 

for abundant but weak CNDD for rare species). This would prevent abundant species 33 

becoming even more abundant and thereby competitively excluding other species. Moreover, 34 

it would confer a rare-species advantage and possibly lead to a community compensatory 35 

trend (CCT, Connell et al. 1984). Third, the strength of CNDD is positively related to 36 

abundance (strong CNDD for rare but weak for abundant species). This would explain the 37 

rarity and low abundance of the species with strong CNDD and the high abundances of 38 

species with weak CNDD (Comita et al. 2010). There remain though two further possibilities 39 

which are that either a mix of positive and negative processes is operating, or the observed 40 

relationships are simply spurious (i.e. the result of a statistical artefact). 41 

In an empirical study, Newbery & Stoll (2013) showed negative effects of conspecific 42 

neighbours on absolute growth rate of medium-sized trees. The argument was that reduced 43 

growth of an individual tree will – other factors being equal – translate into survivorship and 44 

fecundity reductions and hence affect species abundances. Nevertheless, direct effects of 45 

conspecifics on survival could be more relevant for population dynamics of different species 46 

within communities. Therefore, the tests reported here simulate both individual survival and 47 

growth rate and use a framework of neighbourhood analysis similar to that of Newbery & 48 

Stoll (2013) to show that all possible relationships of the strength of CNDD and abundance 49 

may emerge without any species-specific or effects of abundances. Moreover, we show that 50 

potential biases do not depend on the nature of the dependent variable. 51 
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Relationships between the strength of CNDD and abundance were investigated using a 52 

simple, spatially explicit and individual-based, model which simulated identical species 53 

without any species-specific interactions. Thus, any relationships between the strength of 54 

CNDD and abundance in communities simulated under these assumptions would not be 55 

expected. Nevertheless, relationships do emerge because of interfering effects of spatial 56 

patterns and distance decay (i.e. the functional form relating neighbour effects to distance 57 

from focal trees, Fig. 1) and, perhaps more importantly, due to transforming (e.g. log-58 

transformation) and/or scaling (e.g. standardization or z-transformation) of the input 59 

variables. For example, if rare species have lower variability in the number of conspecifics in 60 

their local neighbourhoods compared to common species, scaling is expected to decrease 61 

effect sizes (or standardized partial correlation coefficients) of rare relative to common 62 

species, possibly leading to spurious negative relationships between the strength of CNDD 63 

and abundances. Scaling is recommended (e.g. Schielzeth 2010) and applied especially in 64 

hierarchical Bayesian modelling to speed up or even ensure numerical convergence (e.g. 65 

Gelman & Hill 2007). 66 

Motivation to investigate the relationships between the strength of CNDD and 67 

abundance more carefully using simulations came from the opposite outcomes of two recent 68 

publications. A consistent negative relationship between the strength of CNDD (i.e. effect 69 

sizes derived from statistical neighbourhood models) and abundance (total basal area of 70 

species) in randomization tests was shown by Newbery & Stoll (2013). By contrast, a strong 71 

positive relationship between the strength of CNDD and abundance was found by Comita et 72 

al. (2010). Whilst such different results are interesting, and might be explained by different 73 

underlying biological mechanisms operating on different species at different locations, before 74 

making such a conclusion possible differences arising from artefacts and biases of the 75 

statistical methods should first be ruled out. 76 
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Materials and Methods 77 

A completely neutral forest without any species-specific effects was simulated. Initial 78 

size distributions of individuals (basal area, ba) were log-normal with mean 2 and standard 79 

deviation 1, and simulations were initialized with no spatial dependency in individual size. 80 

Individuals of 20 identical species with log-series abundances (i.e. 2827, 1408, 935, 699, 557, 81 

462, 395, 344, 305, 273, 248, 226, 208, 192, 179, 167, 157, 147, 139, 132) were placed on 82 

plots (200 x 400 m) either randomly or with aggregated spatial patterns. The aggregated 83 

pattern was realized by dispersing individuals around ‘parent trees’ (assigned random 84 

locations according to a homogeneous Poisson process), using a Gaussian dispersal kernel 85 

with mean 0 and standard deviation 3 m. Thus the species distributions were modeled as a 86 

Thomas cluster process, which in turn is a special case of a Neyman-Scott cluster process 87 

(Neyman & Scott 1952), and this method means species are spatially independent of one 88 

another.  89 

Individual survival was simulated in three steps. First, a linear predictor (y) for survival 90 

was simulated for individuals within a border of 20 m using the following multiple regression 91 

equation: 92 

 93 

y = ! 0 + !1 log(ba) + ! 2 heterospecific neighbours
r

" + ! 3 conspeci fic neighbours
r

" (1)  94 

 95 

with β0 tο β3 the regression coefficients, ba the initial size (basal area) of individuals 96 

and the two neighbour terms simply summing the number of heterospecific or conspecific 97 

neighbours within a neighbourhood radius (r) of 20 m without taking size or relative size 98 

differences between focal individuals and neighbours into account. The regression 99 

coefficients were chosen to lead to roughly 50% mortality for each species. Specifically, β0 = 100 

5, β1 = 2.5, and β2 = β3 = -0.05. Second, the linear predictor was converted to individual 101 
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survival probabilities using the inverse logit transformation. Third, binomially distributed 102 

errors were used to convert the probabilities to the binary variable survival (0’s and 1’s) by 103 

drawing from binomially distributed random numbers. Survival was then used in logistic 104 

regressions as the dependent variable. Regressions were run for each species separately. 105 

Standardized regression coefficients (b) were obtained from regressions with independent 106 

variables standardized (or scaled) by subtracting their mean and dividing by their standard 107 

deviation. Unlike in the neighbourhood analysis for absolute growth rate (agr) as dependent 108 

variable (see below), fitted neighbourhood radii were fixed for the logistic regressions at 20 109 

m, because best fitting neighbourhood radii for rarer species were sometime smaller than the 110 

simulated 20 m radius. To investigate effects of transformations, the same multiple regression 111 

approach as described above, but now with log-transformed neighbour terms was used: 112 

 113 

y = ! 0 + !1 log(ba) + ! 2 log(1+ heterospecif ic neighbours)
r

" + !3 log(1+ conspecif ic neighbours)
r

" (2)
 

114 

 115 

with β0 and β1 as above, and β2 = β3 = -1.3. The β’s of the neighbour terms needed to be 116 

adjusted in order to maintain 50% mortality. Again, unstandardized (β) and standardized (b) 117 

regression coefficients were estimated by logistic regressions (general linear models with 118 

binomially distributed error terms). Finally, β3 and b3, as well as variability in numbers of 119 

conspecific neighbours within the neighbourhood radius r for each species, were correlated 120 

with species abundances (i.e. log(number of individuals of each species at the plot level)). 121 

In the simulations of individual growth, different distance decays and relative size 122 

differences were also taken into account because competition is often size- and distance 123 

dependent. Size- and distance dependencies could also have been analysed for survival as 124 

dependent variable. However, since the parallel analyses yielded essentially similar 125 

conclusions, we present analyses with different distance decays for growth only.  For each 126 
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individual, one single growth increment (absolute growth rate, agr) was simulated for 127 

individuals within a border of 20 m using the following multiple regression equation: 128 

 129 

log(agr) = ! 0 + !1 log(ba) + ! 2 log (1+ baHETr
" / w) + !3 log(1+ baCON / w)r

" +error (3)
 

130 

 131 

with w = 1 (no distance decay), w = distance (linear distance decay) or w = distance2 132 

(squared distance decay, Fig. 1). The neighbourhood terms (baHET and baCON) summed the 133 

basal areas of bigger heterospecific (HET) or bigger conspecific (CON) neighbours within a 134 

neighbourhood radius (r) of 20 m. The random error term was N (0, 0.3). Regression 135 

coefficients were β0 = -0.1, β1 = 0.3 and β2 = β3 = -0.2. To verify the simulations, test runs 136 

with random errors set to N (0, 0) were performed. The simulations were realized using C++ 137 

(computer code is given in Appendix A of the supplementary material). 138 

Neighbourhood models (as in Stoll & Newbery 2005) were then fitted to the simulated 139 

data over all possible combinations of radii for HET and CON neighbours using R (R 140 

Development Core Team 2012) and parameter estimates taken from those models yielding 141 

the highest adjusted R2-values. Five runs with different seeds were performed and estimates 142 

of regression coefficients from best fitting neighbourhood models, effect sizes (Cohen 1988; 143 

Nakagawa & Cuthill 2007) or standardized regression coefficients (e.g. Warner 2012) 144 

averaged across the five runs. Effect sizes (i.e. squared partial correlation coefficients, t2 /[t2 + 145 

residual degrees of freedom], t = t-value) and standardized regression coefficients (b = β’s 146 

obtained from regressions with standardized variables by subtracting their mean and dividing 147 

by their standard deviation) were then correlated with species abundances (i.e. plot level 148 

basal area, BA, log-transformed). Standardized regression coefficients can also be calculated 149 

from unstandardized β’s as b = β * SDX, if the dependent variable itself is not standardized 150 

(e.g. survival). In the case of continuous dependent variables (e.g. agr), however, the 151 
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dependent variable itself is often also standardized as well. In these cases, variability in the 152 

dependent variable is also involved in standardizing regression coefficients and b = β * SDX / 153 

SDY. In both cases, a positive correlation of b with abundance implies that less abundant, rare 154 

species have stronger CON effects – β is more negative – (as in Comita et al. 2010), whereas 155 

a negative relationship implies more abundant species have stronger CON effects (as in 156 

Newbery & Stoll 2013). Note, however, that possible correlations of b with abundance may 157 

be biased due to correlations of SDX (or additionally SDY) with abundance. But if β’s are 158 

negative, large SDX lead to more negative b-values and the relationship with abundance may 159 

switch direction not because of a difference in the strength of conspecific interactions 160 

between rare and common species, but because of differences in the variability of number 161 

and abundance of conspecific neighbours. Moreover, because the simulations and analyses 162 

for both survival and agr as dependent variables are based on a multiple regression approach, 163 

the basic consequences described above (i.e. possible biases in standardized regression 164 

coefficients because of differences in SDX between rare and common species) are essentially 165 

the same independent of the nature of the dependent variable. 166 

 167 

Results 168 

There were no significant regressions for conspecific density-dependent effects 169 

(regression coefficient β3 in Eq. 1) on survival and species abundance (Fig. 2) regardless of 170 

whether untransformed or log-transformed number of conspecific neighbours were used to 171 

quantify the neighbourhood. However, variability in number of conspecific neighbours was 172 

positively correlated with abundance if untransformed (Eq. 1) but negatively related if log-173 

transformed (Eq. 2). Consequently, standardized regression coefficients were negatively 174 

correlated with abundance if number of conspecific neighbours was quantified on the 175 

untransformed but positively correlated with abundance if number of conspecific neighbours 176 
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were log-transformed. Frequency distributions for the rarest (n = 132) and most common (n = 177 

2827) simulated species on untransformed and log-transformed scales (Fig. 3) demonstrate 178 

that log-transforming the number of conspecific neighbours for rare species (small values) 179 

expands variability but compresses the variability in number of conspecific neighbours for 180 

common species (large values). This variability in number of conspecific neighbours (SDX) 181 

increases from rare to common species on untransformed scales but decreases from rare to 182 

common species on transformed scales. 183 

There were no significant regressions for conspecific density-dependent effects on 184 

growth (regression coefficient β3 in Eq. 3) and species abundance (plot level basal area) 185 

regardless of distance decay or spatial pattern (Fig. 4). Variation in parameter estimates was 186 

largest for squared distance decay and random spatial pattern. Best fitting radii for bigger 187 

conspecific neighbours were unbiased in neighbourhood models without distance decay and 188 

random spatial pattern (Table 1). However, in the aggregated pattern and with linear distance 189 

decay they were slightly underestimated. With estimates (mean ± SD) of 15.9 ± 2.6 in the 190 

random spatial pattern and 14.5 ± 3.2, the underestimation was more pronounced with 191 

squared distance decay. 192 

Variability in local conspecific neighbour density (within 20 m) varied depending on 193 

distance decay and spatial pattern (Fig. 5). A strong negative regression with abundance 194 

emerged without distance decay in both spatial patterns. With linear distance decay, the 195 

regression was not significant with random spatial pattern but still negative in the aggregated 196 

pattern. With squared distance decay, the regression switched to positive in the random 197 

pattern, but it was not significant in the aggregated pattern. 198 

As a consequence of variation in local conspecific neighbour density, effect sizes (Fig. 199 

6) and standardized regression coefficients (b3, Fig. 7) showed various relations with 200 

abundance depending on distance decay and spatial pattern. Without distance decay both 201 
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effect sizes and standardized regression coefficients were positively related with abundance, 202 

regardless of spatial pattern. This was also the case for effect sizes and linear distance decay, 203 

whereas standardized regression coefficients were not significantly related with abundance in 204 

random spatial pattern but still positively related with abundance in the aggregated pattern. 205 

For squared distance decay, both effect sizes and standardized regression coefficients were 206 

negatively related with abundance in random spatial patterns but unrelated in aggregated 207 

patterns. Apparently, the squared distance decay cancelled the effect of aggregation. 208 

 209 

Discussion 210 

The simulations and neighbourhood analyses with individual survival or growth as 211 

dependent variable showed that estimates of regression coefficients (β) were unrelated to 212 

species abundances independent of transformations, spatial pattern and distance decay —  as 213 

expected based on the simulations of identical species without species-specific interactions. 214 

However, variability in local density of conspecifics (SDX) showed various relationships with 215 

species abundances depending on transformations of neighbourhood variables, degree of 216 

spatial pattern and form of distance decay. As a consequence (i.e. b = β * SDX), relationships 217 

between effect sizes, or standardized regression coefficients (b), and species abundances were 218 

either non-significant, positive or negative. 219 

If untransformed scales are used to quantify conspecific neighbourhoods, relationships 220 

with variability and abundance are expected to be generally positive (Fig. B2 in Appendix B) 221 

at least in the cases and range of abundances investigated here. In these cases, relationships 222 

between standardized effect sizes with abundance will be negative. If, however, log-223 

transformed scales are used to quantify conspecific neighbourhoods, relationships with 224 

variability and abundance (Fig. B2) can be modified in all possible ways, i.e. be absent, 225 

positive or negative, depending on spatial pattern, exact form of distance decay, but also on 226 
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whether or not relative size differences are taken into account. There are many and 227 

sometimes rather non-transparent possibilities making it very difficult to systematically 228 

evaluate the published literature on neighbourhood models and possible relationships 229 

between the strength of CNDD and species abundance, especially where details of how 230 

variables were handled are incompletely reported, and data have not been archived to allow 231 

independent checks. 232 

By using neighbourhood models without distance decay and unstandardized input 233 

variables, in single-species analyses, a negative relationship between CNDD and forest-level 234 

abundance was found, at least for the first of the two 10-year periods analyzed (Newbery & 235 

Stoll 2013). Using no distance decay, yet standardizing before fitting their models, Lin et al. 236 

(2012) found positive relationships over their dry-season interval. Using an exponential 237 

distance decay, Comita et al. (2010) centered (subtracted the mean) but did not standardize 238 

(divide by standard deviation) their input variables (L. Comita, pers. comm.) and found a 239 

strong positive relationship too. Whereas Lin et al. (2012) fitted mixed models using  240 

maximum likelihood estimation, i.e. without any prior information being involved, Comita et 241 

al. (2010) used a hierarchical Bayesian analysis with non-informative priors distributed 242 

according to the scaled inverse-Wishart function. This conjugate distribution models the 243 

covariance matrix of the species-level regression. Nevertheless, both studies did find positive 244 

relationships, thereby apparently supporting one another’s conclusions. 245 

The specific scale and distribution of the priors used by Comita et al. (2010) might 246 

have introduced additional critical information that determined in part the estimation of their 247 

coefficients, in a similar way as standardization did in our simulations, and may also have 248 

done for Lin et al. (2012). Gelman & Hill (2007) discuss the use of the inverse Wishart 249 

distribution in some detail, and highlight in particular the need to confirm that Bayesian 250 

priors are indeed non-informative across the same ranges of independent variables that result 251 



 12 

in the posterior probabilities. Dennis (1996) has discussed fundamental issues concerning the 252 

use of non-informative priors and Bayesian analysis for ecology in general. 253 

The results of Newbery & Stoll (2013) dealt with effects of conspecific neighbours (as 254 

large tree abundance) on growth of small trees, whereas those of Comita et al. (2010) 255 

concerned conspecific neighbour effects (as either local tree seedling density or tree 256 

abundance) on survival of those seedlings. Their result could be more generally important if 257 

confirmed to be fully robust to statistical treatment. It might then support the notion that 258 

fundamentally different density dependent processes are likely operating at the seedling as 259 

opposed to the small-tree stage in tropical forest dynamics (Uriarte et al. 2004 a, b; Newbery 260 

& Stoll 2013). 261 

Because of conceptual similarities of neighbourhood analyses of Comita et al. (2010) 262 

and those of others (e.g. Uriarte et al. 2004a, b; Lin et al. 2012), the analysis presented here 263 

could be more widely relevant. Since standardization can lead to spurious relationships 264 

between CNDD and species abundances, its potential influence needs to be carefully 265 

considered when interpreting relationships of small-scale effects of conspecific neighbours 266 

on larger scale abundance patterns within diverse tree communities. Similarly, care should be 267 

taken when specifying and justifying prior information in hierarchical Bayesian analyses. Our 268 

recommendation, following from Newbery & Stoll (2013), is that tests that randomize tree 269 

positions and identities indeed provide the best benchmark by which to critically evaluate and 270 

judge relationships between effect sizes, or standardized regression coefficients, and tree 271 

species abundances. 272 

 273 
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Supplementary Materials 276 

Appendix A 277 

Documented computer code used for the simulations. A detailed description of input 278 

parameters and simulation output is provided in the file named growth_files.rtf. 279 

Appendix B 280 

Relationships of variability in local neighbourhoods with species abundances in different 281 

competitive scenarios, spatial patterns and various distance decays. 282 
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TABLE 1. Average best fitting radii ± standard deviation (SD) for bigger conspecifics in 319 

neighbourhood models (Eq. 3) across 20 species with identical initial size distributions 320 

and log-species abundances and random or aggregated spatial patterns. 321 

 322 

 Spatial pattern 

Distance decay random aggregated 

no 20.0 ± 0.0 19.8 ± 0.4 

linear 19.6 ± 0.5 19.1 ± 1.0 

squared 15.9 ± 2.6 14.5 ± 3.2 

 323 
324 
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Figure legends 324 

Figure. 1. Distance decay of neighbourhood effects. In the cut-off model (dashed), the sizes 325 

of bigger neighbours with a distance < cut-off are summed. In the linear distance decay 326 

(black), the sizes of bigger neighbours are weighed by 1/distance. This is similar to an 327 

exponential distance decay (red), which, however, gives somewhat more weight at 328 

intermediate distances. A decay of 1/distane2 (blue) yields a very rapidly decreasing function. 329 

Beyond 20, all three functions give essentially zero weights. 330 

 331 

Figure. 2. Regressions of conspecific effects (regression coefficient, β3 in Eq. 1) on 332 

individual survival, variability in number of conspecific neighbours within neighbourhood 333 

radius (r = 20), and standardized regression coefficients (b3) against species abundances 334 

(number of individuals at plot level). Twenty species with identical initial size distributions 335 

and log-series abundances were simulated in a random spatial pattern. Note that in the panels 336 

of the bottom row, the number of neighbours was log-transformed. Data points are means (± 337 

1 SD) from five replicate simulations. The simulated input value of β3  (dotted lines) was -338 

0.05 (top left) and -1.3 (bottom left). Continuous lines indicate significant (P < 0.05) positive 339 

(blue) or negative (red) regressions. 340 

 341 

Figure. 3. Frequency distributions of number of conspecfic neighbours within neighbourhood 342 

radius r (20 m) for individuals of rare (n = 132) and common (n = 2827) species in simulated 343 

communities with random spatial patterns. Note that the x-axis in the panels of the top row 344 

have identical scales. This is also true for the panels of the bottom row. Moreover, the 345 

number of conspecific neighbours was log-transformed in the panels of the bottom row. SD 346 

indicates the standard deviation of each distribution. 347 

 348 
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Figure. 4. Regressions of conspecific negative density dependence (regression coefficient, β3 349 

in Eq. 3) and species abundances (plot level basal area). Twenty species with identical initial 350 

size distributions and log-series abundances were simulated without, linear (1/distance) or 351 

squared (1/distance2) distance decay of conspecific neighbour effects within 20 m radius in 352 

random or aggregated spatial patterns. Data points are means (± 1 SD) from five replicate 353 

simulations. The simulated input value of β3 was -0.2 (green line). 354 

 355 

Figure. 5. Regressions of variation in conspecific neighbour density (expressed as SD in basal 356 

area of bigger conspecifics, baCON within 20 m) and species abundances (plot level basal 357 

area). Twenty species with identical initial size distributions and log-series abundances were 358 

simulated with random or aggregated spatial patterns without, linear (1/distance) or squared 359 

(1/distance2) distance decay of conspecific neighbour effects. Data points are means (± 1 SD) 360 

from five replicate simulations. Continuous lines indicate significant (P < 0.05) negative (red) 361 

or positive (blue) regressions. 362 

 363 

Figure. 6. Regressions of effect sizes (squared partial correlation coefficients of β3 in Eq. 3) 364 

and species abundances (plot level basal area). Twenty species with identical initial size 365 

distributions and log-series abundances were simulated with random or aggregated spatial 366 

patterns without, linear (1/distance) or squared (1/distance2) distance decay of conspecific 367 

neighbour effects within 20 m radius. Data points are means (± 1 SD) from five replicate 368 

simulations. Continuous lines indicate significant (P < 0.05) positive (blue) or negative (red) 369 

regressions. 370 

 371 

Figure. 7. Regressions of standardized regression coefficients (b3) and species abundances 372 

(plot level basal area). Twenty species with identical initial size distributions and log-series 373 
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abundances were simulated with random or aggregated spatial patterns without, linear 374 

(1/distance) or squared (1/distance2) distance decay of conspecific neighbour effects within 375 

20 m radius. Data points are means (± 1 SD) from five replicate simulations. Continuous 376 

lines indicate significant (P < 0.05) positive (blue) or negative (red) regressions. 377 
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