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Abstract
Objectives—In low-income settings treatment failure is often identified using CD4 cell count
monitoring. Consequently, patients remain on a failing regimen, resulting in a higher risk of
transmission. We investigated the benefit of routine viral load monitoring for reducing HIV
transmission.

Design—Mathematical model

Methods—We developed a stochastic mathematical model representing the course of individual
viral load, immunological response and survival in a cohort of 1,000 HIV infected patients
receiving antiretroviral therapy (ART) in southern Africa. We calculated cohort viral load (sum of
individual viral loads) and used a mathematical relationship between individual viral load values
and transmission probability to estimate the number of new HIV infections. Our model was
parameterized with data from the IeDEA Southern African collaboration. Sensitivity analyses
were performed to assess the validity of the results in a universal ‘test and treat’ scenario where
patients start ART earlier after HIV infection.

Results—If CD4 cell count alone was regularly monitored, the cohort viral load was 2.6*106

copies/mL and the treated patients transmitted on average 6.3 infections each year. With routine
viral load monitoring, both cohort viral load and transmissions were reduced by 31% to 1.7*106

copies/mL and 4.3 transmissions, respectively. The relative reduction of 31% between monitoring
strategies remained similar for different scenarios.
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Conclusions—While routine viral load monitoring enhances the preventive effect of ART, the
provision of ART to everyone in need should remain the highest priority.

Keywords
mathematical model; Southern Africa; HIV transmission; viral load monitoring; therapy failure;
second-line therapy; test and treat

Introduction
In the year 2010, 2.7 million people were newly infected with human immunodeficiency
virus (HIV) [1]. The majority of infections occur in sub-Saharan Africa, where resources for
patient management remain limited. There is a strong association between plasma HIV viral
load and the risk of HIV transmission [2]: meta-analyses of studies of serodiscordant
couples showed that patients who were treated with antiretroviral therapy (ART) and had
undetectable viral load did not transmit HIV [3, 4]. A more recent randomized controlled
trial showed that early initiation of ART reduced transmission of HIV [5]. ‘Test and treat’,
which involves large-scale testing for HIV infection and immediate ART, is a subject of
debate [6–8]. The acceptability and feasibility of universal testing and treatment is unclear,
and modelling studies have yielded conflicting results [6, 9, 10]. In particular, it may be
difficult to achieve the necessary high levels of adherence to therapy and high-risk sexual
behaviours might increase.

Relatively little attention has been paid to the fact that with a ‘test and treat’ approach, not
only the number of people on ART, but the number of individuals failing ART will increase.
In high-income settings viral load is measured regularly to detect treatment failure and
counsel patients on adherence [11]. In sub-Saharan Africa and other low-income settings,
viral load monitoring is not generally available and ART programmes therefore rely on
immunological and clinical criteria to identify treatment failure [11]. The World Health
Organization (WHO) CD4 count criteria are, however, inaccurate predictors of virological
failure [12, 13]. In Malawi and Zambia, where monitoring is based on CD4 cell counts, a
study showed that few patients switched to second-line ART and many more remained on a
failing first-line regimen compared to ART programmes monitoring viral load in South
Africa [14]. Routine viral load monitoring may thus help to prevent new HIV infections by
reducing the number of patients on failing first-line regimens.

We developed an individual-based mathematical model to study the importance of routine
viral load monitoring versus CD4 cell monitoring on cohort viral load (CVL) and HIV
transmission in Southern Africa. We analyzed data from two sites participating in a
collaboration of HIV treatment programmes in Southern Africa to parameterize the model
and the results of these analyses are also presented.

Methods
Data sources, eligibility and definitions

The International epidemiological Databases to Evaluate AIDS in Southern Africa (IeDEA-
SA) is a collaboration of ART programmes in six countries in Southern Africa [15]. Data are
collected at ART initiation (baseline) and each follow-up visit, using standardized
instruments. All sites have ethical approval to collect data and participate in IeDEA-SA.

We restricted our analyses to the Gugulethu and Khayelitsha ART programmes in Cape
Town, South Africa, where viral load and CD4 counts are measured regularly. All
treatment-naïve patients aged ≥16 years who had started ART with at least two nucleoside
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reverse transcriptase inhibitors (NRTI) and one non-nucleoside reverse transcriptase
inhibitor (NNRTI) were included. Second-line ART was defined as a switch from an
NNRTI-based regimen to a protease inhibitor (PI)-based regimen, with at least one NRTI
changed.

We conducted statistical analyses on the cohort data and did literature searches to estimate
parameters. We used parametric and semiparametric models to estimate time to virological
failure (viral load over 1,000 copies/mL), immunological failure (according to WHO criteria
[16]), death or loss to follow-up. Observed mortality, loss to follow-up and non-HIV
background mortality according to the ASSA2008 model for Africans in Western Cape in
2007 [17] were used to calculate the corrected estimate for HIV-related mortality. Details on
the statistical and mathematical methods are given in the web appendix (1.1–1.2).

Mathematical model
We adapted a published model that simulated disease progression in a hypothetical cohort of
1,000 HIV-infected patients prior to starting ART [18]. In our model, individuals were
simulated independently of each other and the properties of the individual and the timing of
events were calculated probabilistically based on a series of rules and parametric
distributions. The model included a description of the time period before start of ART and a
detailed description of the time from ART start to either death or a fixed maximum follow-
up time. In the following paragraph we give a brief explanation of the structure of the
model: more details are found in the web appendix (3.1–3.2).

Modelling of treatment response and mortality—Each patient was assigned a
baseline age and gender and, based on these, an HIV-free life expectancy was determined.
Times of virological and immunological failure were defined by simulating from
distributions parameterized by the data. Depending on the chosen monitoring strategy either
viral load or CD4 cell count is measured every 6 months. Failures are observed at the next
visit after the true unobserved failure and confirmed in a second measurement three months
later. Once failure is observed, the patient switches to second-line ART. Second-line failures
are defined in the same way as first-line failures using parameters from data, but their
probability additionally depends on the time spent on a virologically failing first-line therapy
and the first-line immunological response.

Failure and switching events split the patient’s follow-up time into different portions, as
illustrated in Figure 1. Each patient spends the first three months in the initial stage, after
which she either enters a phase of successful treatment or she experiences immunological or
virological failure. After virological failure, the hazard of death is assumed to increase over
time [19]. Similarly, immunological failure increases the risk of death. After starting second-
line therapy the patient enters a three-month period during which the hazard of HIV-related
death returns to the level before failure, unless second-line failure occurs. The timing of
failures and switching define the mortality hazard, which again determines the time of HIV-
related death. To evaluate the level of viral load at the different stages of ART, we analysed
data from the two cohorts. The methods and results of these analyses are described in the
web appendix (1.4).

Cohort viral load and number of new infections—We calculated two measures for
potential transmission. We defined the cohort viral load (CVL) in a manner similar to the
community viral load by Das et al [20]. An explicit number of expected HIV transmissions
was calculated according to a relationship between individual viral load values and
infectiousness [2, 21]. Both methods are presented in more detail in the web appendix (2.1–
2.3).
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Main analysis—We ran 1,000 simulations for both monitoring strategies (CD4 monitoring
and routine viral load monitoring) and used the point estimates of the statistical analyses as
parameters. In both strategies, patients had measurements every six months. If failure was
observed, another measurement was taken three months afterwards. We calculated annual
CVL and transmission, from the last year before ART until the fifth year on ART. Mean
values were calculated over the five years on ART, which were used to estimate the relative
reduction in CVL and transmission for routine viral load monitoring compared to CD4 cell
monitoring. The results were presented as mean values over the 1,000 simulations with 95%
confidence intervals.

Sensitivity and uncertainty analyses—We conducted a range of sensitivity analyses
to explore the impact of our assumptions on the results (Table 1). In the first three analyses
we varied the assumptions about the course of the individual viral load values over time. In
two additional analyses we explored the consequences of earlier ART initiation, i.e. we
assumed lower early mortality rates and lower failure rates. In two final sensitivity analyses
we assumed that the time spent on a failing first line regimen would not affect the risk of
second-line failure and we changed our assumptions about the effect of virological failure on
mortality. To assess the impact of the variability of key parameter estimates on the results
we performed an uncertainty analysis, where we sampled key parameter values before each
simulation using Latin Hypercube Sampling. Details of this analysis are presented in web
appendix (4.2).

Results
We describe the outcomes of the mathematical model including all sensitivity analyses,
where hypothetical cohorts of 1,000 patients were simulated with either routine viral load or
CD4 monitoring to compare transmission. The baseline characteristics of the data are shown
in the web appendix (1.3; Table S1). The results of the statistical analyses and parameters
for the distributions of time to virological and immunological failure, time to switching to
second-line ART, and time to death are shown in Table 2. The hazard ratios for mortality
associated with virological and immunological failure are also shown.

Cohort viral load and number of transmissions
The results during the first 5 years on ART are shown in Figure 2. We assumed six-monthly
CD4 monitoring alone (left panels) or routine viral load monitoring (right panels). The top
panel A shows the number of patients alive at the beginning of each year in three viral load
categories, panel B shows CVL, and panel C the expected number of new infections. In the
last year before starting ART, CVL was 4.0×108 copies/mL, with most patients (99%)
having viral load values above 10,000 copies/mL (results not shown). During the first year
on ART CVL was similar with both monitoring strategies (7.6×106 copies/mL). During
subsequent years, CVL ranged between 1.0×106 and 1.5×106 copies/mL with CD4
monitoring and between 2.3×105 and 2.9×105 copies/mL with routine viral load monitoring.
The annual number of transmissions dropped from over 110 during the pre-ART period to
approximately 9 during the first year of ART. After this, the number of annual new
infections ranged between 3 and 4 with routine viral load monitoring and 5 and 6 with CD4
monitoring. Routine viral load monitoring therefore reduced the number of new infections
by about 30% (Table 3).

Sensitivity and uncertainty analyses
Of the various sensitivity analyses (Table 3), the assumed level of the viral load value after
failure (analysis 2) had the largest impact on the benefit of viral load monitoring relative to
CD4 monitoring: Assuming 1,000 copies after failure resulted in a 5% reduction in CVL and
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a 16% reduction in number of new infections, relative to CD4 monitoring. If the viral load at
failure was assumed to be similar to that at ART start, the corresponding reductions were
65% and 45%. Increasing the level of undetectable viral load to 100 copies/mL (analysis 1)
led to an increase in CVL and the number of new infections. The benefit of routine viral
load monitoring decreased: instead of 31% only 18% of infections were prevented, while the
CVL decreased only slightly from 31% to 29%. The time that viral load started to increase
before reaching the failure threshold value did not affect CVL or number of transmissions
(analysis 3).

Lower mortality, which would be more realistic in a universal ‘test and treat’ strategy, did
not affect CVL or number of transmissions (analysis 4). If failure rates were lower, both
CVL and transmissions were reduced (analysis 5). If failure rates were assumed to be
equally low in CD4 and viral load sites, 21% of transmissions were prevented and the
reduction in CVL dropped to 22%. Assuming a lower failure rate in sites with routine viral
load monitoring only, would prevent 37% of infections and lead to a 40% reduction in CVL.

The results of the two remaining sensitivity analyses (analyses S1 and S2) and the
uncertainty analysis are shown in the web appendix (4.1–4.2).

Discussion
There is an ongoing debate on the benefit of routine viral load monitoring. Regular viral
load measurements help to detect treatment failure earlier and may therefore reduce
mortality and HIV transmission. Our model shows that routine viral load monitoring reduces
cohort viral load substantially as compared to CD4 monitoring (currently the standard of
care in many low-income countries [22, 23]). Compared to CD4 monitoring, viral load
measurements reduced the average cohort viral load by more than 30% over five years, and
the reduction in transmissions was similar.

At the end of 2009, ART coverage was below 40% in sub-Saharan Africa [24]. The time
from HIV infection to ART eligibility is typically several years [25]: most people are tested
too late for HIV [26] and the majority of the HIV infected population remains untreated. The
proportion of new infections from treated individuals is therefore small, and even large
reductions in transmission from treated individuals would hardly reduce the viral load at the
population level. However, there is a trend towards earlier ART initiation: recently, WHO
increased the CD4 threshold for ART eligibility from 200 to 350 cells/μL [16], and there is
evidence of clinical benefits for starting ART with CD4 values above 350 [27–29]. An even
more fundamental change to the treatment policy would be the implementation of the ‘test
and treat’ strategy [6–8].

Our results should also be valid in a ‘test and treat’ situation. Although they are based on
patients starting ART with low CD4 values, the sensitivity analyses showed that similar
benefits can be achieved when patients start ART earlier. Lower mortality did not have an
impact on the benefit of routine viral load monitoring. Decreasing the rate of virological
failure reduced the benefit of viral load monitoring but this was offset by better adherence
with viral load monitoring. Due to the current WHO guidelines, to our knowledge no data on
mortality and virological failure rates have been published for people starting ART shortly
after diagnosis of HIV. The available data do however suggest that the reduction in mortality
due to higher CD4 count becomes minimal above 350 cells/μL [30], and several studies
have found no association between baseline CD4 cell counts and risk of virological failure
[31, 32].

We investigated two different ways of estimating HIV transmission and both have
advantages and disadvantages. Correlation between community viral load and HIV
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incidence has been described by Das et al in San Francisco [20]. However, it is not clear if
community viral load is a good proxy for HIV incidence in low-income settings, especially
when assuming that most patients would be treated. The main advantages of cohort viral
load (CVL) are that it is easy to calculate and it is independent of risk behaviour. One of the
main limitations is that CVL does not take into account the number of individuals: 100,000
patients with undetectable viral load (of 10 copies/mL), 1,000 patients with a detectable viral
load of 1,000 copies/mL and one patient with a very high viral load of 1,000,000 copies/mL
will all contribute the same amount to CVL, but the transmission potential will probably
differ. The actual numbers of transmissions may therefore vary substantially between
cohorts with similar CVL but different viral load distributions.

The other method we used to calculate transmissions assumes a linear relationship between
log10 viral load values and HIV transmission. The resulting number of new infections is
more intuitive than CVL. It can, for example, be directly transformed into costs, or other
measures including the number needed to treat (NNT) or the cost of preventing one HIV
infection. However, calculating the absolute number of prevented transmissions is
challenging as it is highly sensitive to behavioural factors, which often are difficult to
estimate.

Furthermore, the approximate reduction of 30% in transmissions should be applicable for
different risk behaviour scenarios. In our calculations we assumed relatively high risk
behaviour. Individuals with fewer sexual acts and higher rate of condom use would transmit
less, but the relative reduction would remain the same. The rate of partner change is also not
a key factor, since the per-act transmission probabilities are low (see web appendix, 2.3 for
more details).

Our model focused on a group of treated patients without considering the entire population,
and this approach limited us in several ways. Because the main focus was on comparing
monitoring strategies on ART, we did not model the pre-ART period in detail. Therefore our
results remain dependent on local characteristics, including HIV prevalence, ART coverage
and ART eligibility criteria.

Transmission during the acute stage of infection has recently been estimated to contribute to
about 38% of new infections [33] but various other estimates exist [34] and the acute phase
may remain an important source of transmission in a ‘test and treat’ strategy. We did not
take into account an increase in risk behaviour after ART start [35] and we did not consider
behavioural differences that could result from different monitoring strategies apart from
adherence. For example, patients from CD4 monitoring sites with unobserved virological
failure and high CD4 counts may be more likely to engage in unprotected sex because they
are unaware of the risk of transmitting the virus. If this was taken into account, probably
even more infections could be prevented by viral load monitoring.

Similarly we did not investigate the effect of possible worse adherence in patients starting
ART with higher CD4 cell counts. The higher virological failure rates, which remain partly
undetected in CD4 sites, would increase the benefit of viral load monitoring further. We also
did not consider (primary) drug resistance that could complicate the treatment of newly
infected individuals [36]. The assumption that the virologic failure rate, due to improved
adherence counselling, would be 50% lower in viral load sites compared to sites without
viral monitoring may appear high. It was an arbitrary choice that cannot be verified in our
data. But a recent systematic review has shown that virologic failure rates vary substantially
in sub-Saharan Africa [37] and they are also highly variable in viral load sites of the IeDEA-
SA collaboration. Our results are only applicable short term. To investigate the longer term
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evolution of the epidemic, one would need a dynamic transmission model in which
susceptible people get HIV infected and partnerships are modelled.

Our study was based on almost 10,000 adult patients from two public sector treatment
programmes in South Africa. Results should therefore be applicable to many other patients
in the region most heavily affected by HIV. We acknowledge that these treatment
programmes will not be representative of all programmes in southern Africa: they are
located in urban areas, are equipped with electronic medical record systems, and have access
to regular CD4 cell determination, viral load monitoring and second-line therapy.

The availability of viral load monitoring may have led to an underestimation of
immunologic failure rates, since patients should have switched after detection of virological
failure. However, many patients never switched and the median time to switching from the
estimated time of failure was 22 months. Moreover, limitations in the data required us to
make assumptions about factors such as the effect of virological failure on mortality and the
effect of the delay between failure and switching on second-line efficacy. However, in
sensitivity analyses we found that these assumptions had little effect on the results (see web
appendix, 4.1 for details).

The main barrier in providing routine viral load monitoring is its high cost. A recent
randomized controlled trial estimated the difference in the unit cost between viral load and
CD4 measurement to be approximately $25. Therefore, the extra annual cost of treating
1,000 patients with two viral loads instead of CD4 measurements per year would be about
$50,000. The net cost of preventing a new infection depends on the number of infections
that can be prevented, as well as the total cost of treating and managing a new HIV infected
patient. In the United States, the discounted lifetime cost of a new HIV infection has been
estimated to be over $300,000 [38]. In low-income countries, these costs are much lower:
for example, in Uganda, the total cost of treating a patient with ART and CD4 monitoring
for a year is $467. Assuming that patients spend on average at least 20 years on ART [39],
the lifetime treatment costs would be around $10,000. A detailed cost-effectiveness analysis
is needed to evaluate whether routine viral load monitoring would be cost-effective or even
cost-saving in the long term. Such an analysis would however require more detailed
information on sexual behaviour.

Conclusions
After 15 years of antiretroviral therapy and close to a decade of widespread ART use in low-
income settings it is still not clear if, when and how often viral load should be measured to
optimize treatment outcomes. We found that viral load monitoring could be an important
factor in reducing mortality [14], and could prevent HIV infections. Continuous evaluation
of the role of routine viral load monitoring in terms of costs and effectiveness is necessary as
new technologies are developed and new research findings become available. We emphasize
that while the first priority should be providing ART, viral load monitoring could provide an
additional benefit for ART as a preventative measure.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Flow chart showing possible transitions between risk stages after start of antiretroviral
therapy (ART)
In each stage, the patient is exposed to specific risk of death and loss to follow up.
Transitions between stages are assigned randomly according to the failure and switching
rates observed in the Gugulethu and Khayelitsha ART programmes in Cape Town, South
Africa. The flow chart is simplified: the nature of immunological failure (with or without
preceding virological failure) will influence outcome of second-line ART. As treatment
failures are rare, most patients stay on successful first-line ART during the entire follow-up
period.
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Figure 2. Number of patients in different viral load categories (A)*, cohort viral load (B) and
expected number of new infections (C)
rVL, routine viral load; CVL, cohort viral load; ART, antiretroviral therapy.
*) The same individuals were followed up through the entire 5 years, and because of
mortality the total number of patients decreases over time.
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Table 1
Key assumptions of main and sensitivity analyses

For results of analyses S1 and S2, see web appendix (4.1). The parameter values of the main analyses are
shown in Table 2.

1) Level of undetectable viral load

Main scenario: undetectable viral load is 10 copies/mL

Sensitivity analysis: undetectable viral load is 100 copies/mL

2) Level of viral load after failure

Main scenario: the median viral load after failure is 10,000 copies/mL

Sensitivity analyses: the median viral load after failure is either 1,000 copies/mL or 100,000 copies/mL

3) Time from undetectable viral load until reaching failure threshold

Main scenario: viral load starts to increase 3 months before reaching failure threshold of 1,000 copies/mL

Sensitivity analysis: viral load starts to increase 1 month before reaching failure threshold 1,000 copies/mL

4) Mortality (HIV related)

Main scenario: Time to HIV related death is estimated from the cohorts; a double Weibull distribution (weighted sum of two
Weibull distributions: one with decreasing, one with constant or increasing hazard) is used to reflect the high mortality early after
ART start

Sensitivity analysis: Time to HIV related death is estimated from the cohorts, but the first component of the double Weibull
distribution, which represents the high risk of death in the first months after ART initiation, is omitted

5) Virological failure

Main scenario: Time to virological failure is estimated from the cohorts; a Weibull distribution is used

Sensitivity analysis: Time to virological failure is estimated from the cohorts, but the scale parameter of the Weibull distribution is
increased to correspond to a 50% lower hazard than in the main analysis. This is in accordance with studies showing a lower risk
of virologic failure in people starting ART earlier with higher CD4 cell counts [40]

S1) Resistance penalty for risk of second line failure

Main scenario: The time from switching to second line failure depends on the amount of time spent on a failing first line ART
regimen (i.e. assuming a resistance penalty)

Sensitivity analysis: No resistance penalty is included (i.e. risk of 2nd line failure after switching is the same as the risk of 1st line
failure after ART start)

S2) Effect of virological failure on mortality

Main scenario: Hazard ratio of HIV-related mortality (virologically failing compared to successful ART) increases over time

Sensitivity analysis: Hazard ratio of HIV-related mortality (virologically failing compared to successful ART) is constant over
time
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