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Abstract

We study pathwise invariances and degeneracies of random fields with mo-
tivating applications in Gaussian process modelling. The key idea is that a
number of structural properties one may wish to impose a priori on functions
boil down to degeneracy properties under well-chosen linear operators. We
first show in a second order set-up that almost sure degeneracy of random
field paths under some class of linear operators defined in terms of signed
measures can be controlled through the two first moments. A special focus
is then put on the Gaussian case, where these results are revisited and ex-
tended to further linear operators thanks to state-of-the-art representations.
Several degeneracy properties are tackled, including random fields with sym-
metric paths, centred paths, harmonic paths, or sparse paths. The proposed
approach delivers a number of promising results and perspectives in Gaus-
sian process modelling. In a first numerical experiment, it is shown that
dedicated kernels can be used to infer an axis of symmetry. Our second nu-
merical experiment deals with conditional simulations of a solution to the
heat equation, and it is found that adapted kernels notably enable improved
predictions of non-linear functionals of the field such as its maximum.

Keywords: Covariance kernels, Linear operators, RKHS, Structural priors.
2000 MSC: 60G60, 60G17, 62J02.

∗Corresponding author
Email addresses: ginsbourger@stat.unibe.ch (David Ginsbourger),

roustant@emse.fr (Olivier Roustant), durrande@emse.fr (Nicolas Durrande)

1



1. Introduction

Whether for function approximation, classification, or density estimation,
probabilistic models relying on random fields have been increasingly used
in recent works from various research communities. Finding their applied
roots in geostatistics and spatial statistics with optimal linear prediction
and Kriging [1, 2], random field models for prediction have become a main
stream topic in machine learning (under the Gaussian Process Regression
terminology, see, e.g., [3]), with a spectrum ranging from metamodeling and
adaptive design approaches in science and engineering [4, 5, 6]) to theoretical
Bayesian statistics in function spaces (see [7, 8, 9] and references therein).

Often, a Gaussian random field model is assumed for some function f of
interest, and so all prior assumptions on f are accounted for by the corre-
sponding mean function m and covariance kernel k. The choice of m and k
should thus reflect as much as possible any prior belief the modeller wishes
to incorporate in the model. Such prior belief on f may of course include
classical regularity properties in the first place (continuity, differentiability,
Hölder regularity, etc.), but also more specific properties such as symmetries
[10, 11], sparse functional ANOVA decompositions [12, 13, 14], or degener-
acy under multivariate differential operators in the case of vector-valued ran-
dom fields. To take a concrete example, covariance structures characterizing
divergence-free and curl-free random vector fields have been recently pre-
sented and illustrated in [15]. Besides that, the idea of expressing structure
with kernels has been explored in [16], where a number of practical aspects
regarding positive-(semidefiniteness-preserving operations are addressed.

Here we shall discuss how the two first moments influence mathematical
properties of associated realisations (or paths), both in a general second or-
der set-up and in the Gaussian case. A number of well-known random field
properties driven by the covariance kernel are in the mean square sense, e.g.
L2 continuity and differentiability [17]. However, such results generally are
not informative about the pathwise behaviour of underlying random fields.
On the other hand, much can be said about path regularity properties of
random field paths (see, e.g., classical results in [18], [19]), based in partic-
ular on the behaviour of the covariance kernel in the neighbourhood of the
diagonal in the second order case. In the stationary case, it is then sufficient
to look at the covariance function in the neighboorhood of the origin (with
similar results for the variogram in the intrinsic stationary –but not neces-
sarily second order– case). More recently, [20] has taken a new look at path
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regularity of second-order random fields, and drew conclusions about a.s.
continuous differentiability in non-Gaussian settings. Also, we refer to [21]
for an enlightening exposition of state-of-the-art results concerning regularity
properties of random field sample paths in various frameworks.

Our focus in the present work is on pathwise mathematical properties of
second order random fields and statistical applications thereof in the context
of Gaussian process modelling. Motivated by several practical situations, we
pay a particular attention to random fields Z = (Zx)x∈D that are supported
by the null space of some linear operator T , i.e. for which

T (Z) = 0 (a.s.). (1)

As we first develop in general second-order settings, an impressive diversity of
path properties including invariances under group actions or sparse ANOVA
decompositions of multivariate paths can be encapsulated in the framework
of Eq. 1. Furthermore, in the particular case of Gaussian random fields, a
more general class of path properties (notably some degeneracy properties
involving differential operators) can be covered through the link between op-
erators on the paths and operators on the reproducing kernel Hilbert space
[22] associated with the random field, and also through an additional repre-
sentation of Z in terms of Gaussian measures on Banach spaces.

While Section 2 is dedicated to the exposition of the main results, proofs
are presented in appendix to ease the reading. Applications in the context of
random field modelling, and especially for Gaussian process modelling, are
then investigated throughout Section 3. In particular, we tackle zero-integral
random processes, random fields with paths invariant under group actions,
random fields with additive paths, random fields with harmonic paths, and
discuss further potential applications.

In Section 4, we present two original numerical experiments where the
notions of degeneracy and invariance appear very useful in Gaussian process
modelling under two types of structural prior information. In the first case,
the objective function possesses an unknown axis of symmetry, which is in-
ferred by maximum likelihood, relying on a family of argumentwise invariant
covariance kernels. In the second case, we obtain an improved interpolation
of a solution to the heat equation thanks to a bi-harmonic kernel. The pro-
posed model enables performing harmonic conditional simulations, which has
very beneficial consequences in terms of estimation of the maximum. Sec-
tion 5 is dedicated to conclusions and perspectives. The main results are
finally proven in Appendix A.
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2. Main results

Let (D,D) be a measurable space, (Ω,A,P) be a complete probability space,
and Z = (Zx)x∈D be a measurable real-valued stochastic process over (Ω,A,P).
Let us further assume that the paths of Z belong with probability 1 to
some function space F ⊂M(D,R), where M(D,R) is the set of (D,B(R))-
measurable functions, and consider a linear operator T : F −→ F . Here both
Z and T (Z) are assumed second order, in the sense that their marginals pos-
sess a variance, and we aim at giving necessary and sufficient conditions in
terms of the two first moments of Z for the following degeneracy to hold:

P(T (Z) = 0) = P(∀x ∈ D T (Z)x = 0) = 1. (2)

We prove that in a variety of settings on T and Z, this is equivalent to having
that both m and k are in the null space of T in a sense to be discussed next.
In Section 2.1 we discuss equivalent conditions that do not involve any distri-
butional assumption, and we obtain a characterization of degeneracy under
a specific class of operators that prove useful for applications in Sections 3
and 4. In Section 2.2 we generalize the results to a wider class of operators
T in the specific framework of Gaussian processes and Gaussian measures.

2.1. Results in the second order framework

Proposition 1. Let T : F −→ F be a linear operator such that for all x ∈ D
there exists a signed measure νx : D −→ R satisfying

T (f)(x) =

∫
f(u)dνx(u), (3)

and assume that

sup
x∈D

∫
D

√
k(u,u) +m(u)2d|νx|(u) < +∞. (4)

Then the following are equivalent:

a) ∀x ∈ D P(T (Z)x = 0) = 1 (“T (Z) = 0 up to a modification”)

b) ∀x ∈ D T (m)(x) = 0 and (T ⊗ T (k))(x,x) = 0.

Assuming further that T (Z) is separable, a) and b) are also equivalent to

c) P(T (Z) = 0) = P(∀x ∈ D T (Z)x = 0) = 1 (“T (Z) = 0 almost surely”) .
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Proof. See Appendix A.

Remark 1. A special class of T ’s fulfilling the requirements of Proposition 1
is given by the “composition of composition operators” discussed in [23]:

T (f) =

q∑
i=1

αif ◦ vi, (5)

where the functions vi are assumed (D,D)-measurable (1 ≤ i ≤ q), and the
αi coefficients are scalars, that can be generalized to (D,B(R))-measurable
functions. As we will see in Section 3 and 4, this simple class of operators
is actually sufficient to cover a number of meaningful applications.

Remark 2. In Proposition 1, the part of condition b) concerning k seen as a
function of two arguments may be reformulated in terms of the {k(·,u),u ∈
D} functions. In particular, in cases where Mercer’s theorem [24, 25] applies
for some measure η on D, k may be expanded as

k =
+∞∑
i=1

λiφi ⊗ φi : (x,x′) ∈ D ×D −→
+∞∑
i=1

λiφi(x)φi(x
′) (6)

where the convergence is absolute and uniform on compact subsets of D,
and (λi, φi(·)) ∈ [0,+∞)×L2(η) are pairs of eigenvalues and eigenfunctions
associated with the Fredholm operator on L2(η) with kernel k. Equation 4
then guarantees that for any x ∈ D∫ +∞∑

i=1

λi|φi(u)||φi(v)|d(νx ⊗ νx)(u,v) < +∞, (7)

which is sufficient for `νx ⊗ `νxk =
∑+∞

i=1 λi`νx(φi)
2 to hold. The kernel part

of b) is then equivalent to the condition (`νx(φi) = 0 for all i : λi 6= 0) and
hence to (∀x′ ∈ D T (k(·,x′)) = 0) (“argumentwise degeneracy” of k).

2.2. The Gaussian framework

When Z is assumed Gaussian, Proposition 1 still applies since Gaussian
processes are systematically second order, but further results can be derived
regarding degeneracy with respect to more general operator classes.

The results enounced below are based on three closely related but differ-
ent approaches, each calling for specific assumptions: the Karhunen-Loève
expansion, the Loève isometry, and the Gaussian measure approach.
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Continuing first with the set-up of Remark 2 above, let us consider the set-
tings of the Karhunen-Loève expansion, in which Z decomposes as

Zx = m(x) +
+∞∑
i=1

√
λiζiφi(x), (8)

where ζi ∼ N (0, 1) independently and the pairs (λi, φi) satisfy

λiφi(·) =

∫
k(·,u)φi(u)dη(u) (i ≥ 1) (9)

Such expansion is guaranteed to exist notably in the case where D is compact
and k is continuous onD×D (See [26] but also [27] for recent generalizations).

Proposition 2. Let η be a measure on D, Z be a Gaussian random field
indexed by D possessing a Karhunen-Loève expansion with respect to η (as
defined by Equations 8 and 9), and T be a bounded operator of L2(η). Let
furthermore m ∈ L2(η). Then, the following are equivalent:

a) T (m) = 0 (η-a.e.) and ∀i : λi 6= 0, T (φi) = 0 (η-a.e.)

b) P(T (Z) = 0 η − a.e.) = 1

Proof. See Appendix A.2.

Another way of looking at things, involving yet a different kind of as-
sumption on T , is to appeal to the Loève isometry such as presented in [22].
Let us review it briefly before stating our associated result.

Assuming that Z is a centred Gaussian random field with covariance
kernel k, a crucial state-of-the-art result is that the reproducing kernel Hilbert
space H associated with k is isometric to the Hilbert space generated by Z,

L(Z) = span(Zx,x ∈ D),

where the closure is taken with respect to the usual L2(P) norm on equiva-
lence classes of square-integrable random variables. More precisely, the map
Ψ : H → L(Z) defined by Ψ (k(·,x)) = Zx for all x ∈ D and extended by
linearity and continuity, is a canonical isometry between L(Z) and H, often
called the Loève Isometry [22]. In Proposition 3 below, instead of demanding
from T to be bounded on some prescribed normed vector space as in Propo-
sition 2, we rather focus again on a class of T solely fulfilling a marginal
property, namely that for any x ∈ D, T (Z)x ∈ L(Z).
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Proposition 3. Let T : F → RD be an operator such that T (Z)x ∈ L(Z)
for any x ∈ D. Then, there exists a unique operator T : H → RD satisfying

cov(T (Z)x, Zx′) = T (k(·,x′))(x) (x,x′ ∈ D) (10)

and such that T (hn)(x) −→ T (h)(x) for all x ∈ D and hn
H−→ h. Further-

more, the following conditions are equivalent:

(i) ∀x ∈ D T (Z)x = E(T (Z)x) = 0 (a.s.)

(iii) ∀x′ ∈ D T (k(·,x′)) = 0

(iii) T (H) = {0}

Proof. See Appendix A.2.

Remark 3. Proposition 3 holds with a non-zero mean such that T (m) = 0.

Finally, let us consider the set-up of Gaussian measures on function spaces.
Given a real separable Banach space (F , || · ||F) and its topological dual F?,
a probability measure µ on B(F) is called Gaussian if for any continuous
linear form x? ∈ F?, the image measure x?]µ (or pushforward of µ by x?,
characterized by x?]µ(B) = µ(x? ∈ B) for B ∈ B(R)) is a Gaussian measure
on B(R). The link between Gaussian processes and Gaussian measures has
been established for long [28], and it has been notably shown for several stan-
dard classical function spaces that Gaussian processes which paths belong to
these spaces induce Gaussian measures supported by them, and conversely.

A key device for working with such Gaussian measures µ is their charac-
teristic functional (see, e.g.,[29]) µ̂ : F? −→ C, defined for x? ∈ F? by

µ̂(x?) =

∫
F

exp (ix?(x)) dµ(x). (11)

In the case where µ is a Gaussian measure on F , it is known that

µ̂(x?) = exp

(
i〈mµ, x

?〉 − 1

2
〈Cµx?, x?〉

)
, (12)

where mµ ∈ F is the mean of µ, Cµ : F? −→ F is its covariance operator,
and 〈x, x?〉 := x?(x)(x ∈ F , x? ∈ F?) denotes the duality bracket.

A useful fact for our purposes is that, for any bounded operator T : F −→
F , the image measure T]µ is Gaussian with mean T (mµ) and covariance
operator TCµT

?, where T ? : F? −→ F? is the adjoint of T . Thanks to this
powerful tools, we obtain the following degeneracy result without difficulty.
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Proposition 4. Let µ be a Gaussian measure on F with mean mµ ∈ F and
covariance operator Cµ : F? −→ F , and T : F −→ F be a bounded operator.
Then, the following are equivalent:

i) µ(T = 0F) = 1

ii) T (mµ) = 0F and TCµT
? = 0F?−→F

We now close the section with a result concerning the propagation of
degeneracy properties to conditional distributions, that both proves relevant
in applications and illustrates the power of the Gaussian measure approach.
The following proposition is an adaptation of [29, Theorem 3.11]:

Proposition 5. Let F ,G be real separable Banach spaces, µ be a Gaussian
measure on B(F) with mean zero and covariance operator Cµ. Let T : F −→
F be a bounded linear operator such that TCµT

? = 0F?−→F . Let A : F −→ G
be another bounded linear operator and A]µ be the image of µ under A. Then
there exist a Borel measurable mapping m : G −→ F , a Gaussian covariance
R : F? −→ F with R ≤ Cµ and a disintegration (qy)y∈G of µ on B(F) with
respect to A such that for any fixed y ∈ G, qy is a Gaussian measure with mean
m and covariance operator R satisfying T (m) = 0F and TRT ? = 0F?−→F .

Remark 4. The results still hold with a non-centred measure µ, provided that
T (mµ) = 0F . While Cµ is unchanged, the conditional mean then becomes
mn(y) = mµ +

∑n
i=1〈y − A(mµ), y?i 〉Cµx?i and similar arguments apply.

3. Applications in random field modelling and related

3.1. On processes with paths integrating to zero

Lemma 1 of Appendix A ensures that the almost sure nullity of `ν(Z) can
be characterized through the nullity of `ν(m) and `ν ⊗ `ν(k), provided that
the function u ∈ D −→

√
k(u,u) +m(u)2 ∈ R is ν-integrable. In practice,

assuming that this integrability condition is fulfilled —as it is notably the case
for compact D and continuous m and k— it suffices to check that `ν(m) = 0
and `ν(k(·,x′)) = 0 for arbitrary x′ ∈ D. Taking for instance the settings of
[30] where ν is a finite (positive) measure and a kernel k0 of the form

(x,x′) −→ k0(x,x
′) = k(x,x′)− `ν(k(x, ·))`ν(k(·,x′))

`ν ⊗ `ν(k)
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is considered, we can directly check that `ν(k0(·,x′)) = 0 for arbitrary x′ ∈ D.
Hence, any squared integrable centred random field possessing k as covariance
kernel is equivalent to a random field with ν-centred paths, be it Gaussian or
not. To give a concrete application in the Gaussian framework, Karhunen-
Loève expansions of mean-centered Wiener processes were derived in [31]:

Wt −
∫ 1

0

Wudu =
+∞∑
j=1

ζj

√
2 cos(jπt)

jπ
, (13)

where the unnormalized eigenfunctions t −→ cos(jπt) integrate to zero,
which is sufficient for this process to have zero-mean paths by Proposi-
tion 2. Alternatively, one can also use the closed form expression k(s, t) =
min(s, t) − s − t + 1

2
s2 + 1

2
t2 + 1

3
to check that `ν(k(·, t)) = 0 for arbitrary

t ∈ [0, 1], guaranteeing the zero-mean property following Proposition 1.

3.2. On combination of composition operators and more

Combinations of composition operators T such as recalled in Equation 5 fit
into the settings of Proposition 1 since they can be written as

T : f ∈ F −→ T (f) =

∫
D

f(u)dνx(u), (14)

where νx =
∑q

i=1 αiδvi(x). Of course, αi and vi should be chosen such that
the functions x −→

∑q
i=1 αif(vi(x)) be in F . Note that such class may be

extended without difficulty (under similar precautions concerning the image
space) to functional vi’s, and also to infinite sums. However, the basic set-up
with q <∞ and scalar coefficients suffices to cover several interesting cases.

First, let us consider a finite group G acting measurably on the domain D
through some group action Φ : (g,x) ∈ G×D −→ D. A function f : D −→ R
is said invariant under Φ if f is constant over the orbits of Φ, i.e.

∀x ∈ D ∀g ∈ G f(x) = f(Φ(g,x)) = f(g.x), (15)

where the notation g.x = Φ(g,x) is used for simplicity when there is no
reason to confuse several actions of G on D. Such invariance functions can be
characterized by the fact that they coincide at each point with the arithmetic
mean of their values on the corresponding orbit, or in other words that

∀x ∈ D f(x) =
1

q

∑
g∈G

f(g.x), (16)

9



where q = Card(G) stands for the order of G. Now, Equation 16 may be
reformulated in terms of signed measures: ∀x ∈ D

∫
f(u)dνx(u) = 0 where

νx = δx −
∑

g∈G
1
q
δg.x. The function x −→ 1

q

∑
g∈G f(g.x) being measurable,

the invariance property can be cast as a particular case of Proposition 1. We
conclude that a random field with mean m and kernel k has paths equivalent
to Φ-invariant functions if and only if m and k(·,x′) are Φ-invariant for all
x′ ∈ D. Furthermore, for suitable definitions of F (such as the space of
continous function over a compact set, endowed with the sup norm), the
corresponding operator turns out to be bounded, so that Property 5 can
be applied, and almost sure pathwise invariance results concerning Z and
its conditional distributions can be obtained without further effort. Note
that different options are available for constructing argumentwise invariant
kernels, such as double averaging over the orbits or projecting on fundamental
domains. More on these questions and some numerical experiments involving
Gaussian random fields with invariant paths can be found in [11] and [16].

Remark 5. This characterization of pathwise group invariance relying on
Proposition 1 can actually be extended to actions of locally compact topological
groups, such as considered in [10]. Denoting by νG the Haar measure of such
group, the invariance condition writes f(x) =

∫
f(g.x)dνG(g) which can be

reformulated as f(x) =
∫
f(u)dνx(u) where νx = Φ(·,x)]νG.

Beyond group-invariance, Proposition 1 also has implications about the
sparsity of multivariate random field paths, e.g., additivity. By additivity, we
mean the property for f : D ⊂ Rd −→ R with D =

∏d
i=1Di for some Di ⊂ R

to decompose as a sum of univariate fi’s: ∀x = (x1, . . . , xd) ∈ D, f(x) =
f1(x1) + · · ·+ fd(xd). The additivity assumption lies at the heart of popular
statistical methods (See [32] and references therein) and has been recently
researched on in the framework of Gaussian Process models [13], where it was
shown that kernels of the form k(x,x′) = k1(x1, x

′
1) + · · · + kd(xd, x

′
d) lead

to centred Gaussian random field with additive paths. Proposition 1 enables
a characterization of second order random fields possessing such property in
terms of their mean function and covariance kernel. The key is to notice that
being additive can be encoded as being in the null space of an operator such
as required. Given a ∈ D, one can show that f is additive if and only if

f(x) = f(v1(x)) + · · ·+ f(vd(x))− (d− 1)f(vd+1(x)), (17)

where vi(x) := (a1, . . . , ai−1,
ith coordinate︷︸︸︷

xi , ai+1, . . . , ad), and vd+1(x) := a. Re-
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formulating Equation 17 in terms of signed measures, we get∫
fd

(
δx −

d∑
i=1

δvi(x) + (d− 1)δvd+1(x)

)
= 0, (18)

and so Proposition 1 applies with νx = δx−
∑d

i=1 δvi(x) +(d−1)δvd+1(x), lead-
ing to random fields with additive mean and argumentwise additive kernels.
Such argumentwise additive kernels actually coincide with kernels of sums of
correlated univariate processes.

Example 1. Let us consider the following kernel over Rd × Rd:

k(x,y) =
d∑

i,j=1

∫
R
κi(xi − u)κj(yj − u)du (19)

where the κi are smoothing kernels over R. [33] ensures that k is a valid
covariance kernel. Furthermore, k is argumentwise additive. According to
Proposition 1, a random field with such kernel has additive paths, with uni-
variate components exhibiting possible cross-correlations.

3.3. On some differential operators

While Proposition 1 focuses on integrals, many operators appearing in
functional analysis involve derivatives. In particular, linear partial differen-
tial equations can be written as Tf = g for some differential operator T on
F and some g ∈ F . Here we discuss examples where degeneracies under a
differential operator can be incorporated into a Gaussian field model, be it
through Proposition 3 or Proposition 5. This includes the case of Gaussian
fields with harmonic paths, as illustrated in Section 4, but also Gaussian
vector fields with divergence-free and curl-free paths as introduced in [15].

A first crucial point in connection to Proposition 3 is that mean-square
(“m.s.”) derivatives of a random process, whenever they exist, do systemat-
ically belong to the Hilbert space generated by this process.

As recalled in detail in [15, Section 2], m.s. derivatives are obtained as
L2(P) limits of increments, and hence in L(Z). Another important fact con-
cerns the relation between m.s. and pathwise derivatives: even though m.s.
differentiability neither implies nor requires that Z has differentiable sample
paths [15], it is also known that for k-th order m.s. differentiable separable
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Gaussian fields, a.s. pathwise k-th order differentiability can be guaranteed
(see. e.g., [26], and [20] for non-Gaussian extensions) under the condition
that the k-th order m.s. derivatives be themselves a.s. pathwise continuous
(see. e.g., Theorem 5.3.16 of [21] for a sufficient condition). Denoting by
∂
∂e
Zx the pathwise directional derivative of Z in direction e ∈ Rd, we obtain

∂
∂e
Zx ∈ L(Z). In particular for a centred Gaussian Z with x −→ k(x,x′)

twice continuously differentiable for all x′ ∈ D and such that Z has twice
continuously differentiable paths a.s., we obtain that ∀x ∈ D ∆Zx ∈ L(Z).
Applying Proposition 3 with T = ∆ yields that

(∀x ∈ D ∆Zx = 0 a.s.)⇐⇒ (∀x′ ∈ D ∆k(·,x′) = 0).

Note that one may also appeal to the Gaussian measure approach since the
Laplace operator is bounded from H2(η) to L2(η). Lemma 1 and Propo-
sition 5 then directly yield almost sure harmonicity and its propagation to
disintegrations. We give in Section 4.2 below a numerical example of GP
modelling for the heat equation, and demonstrate how taking a harmonic
kernel drastically improves modelling over a Gaussian covariance kernel.

4. Numerical experiments

4.1. Estimation of a symmetry axis

We now consider the following test function over D = [0, 1]2:

f : (x1, x2) ∈ D → cos(
√

2(x1 + x2) + 0.4) + sin(3(x1− x2))2 + x1− x2. (20)

This function is symmetric with respect to the axis defined by the equa-
tion x2 = −x1 − 0.1

√
2. Given noisy evaluation results of f at 20 points,

and assuming a priori that f is symmetric with respect to some axis ∆
(parametrized by its angle with the ordinate axis λ ∈ [0, π) and its distance
to the origin δ ≥ 0), we aim at both reconstructing f and recovering the
equation of this axis by using a Gaussian random field approach with a ded-
icated argumentwise invariant covariance kernel. Hereafter, the evaluation
points are given by a Latin hypercube design with maximin criterion [34].

We denote by πλ,δ the symmetry with respect to ∆ and by Φ the action
of G = Z/2Z on D defined by Φ(1̄,x) = πλ,δ(x). Symmetric functions
over [0, 1]2 with respect to ∆ are characterized by f(x) = f(πλ,δ(x)) for all

12
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Figure 1: Left. Predicted GP mean with the kernel of Eq. 21 given observa-
tions at the solid bullets points. The estimated symmetry axis (solid black
line) is indistinguishable from the actual symmetry axis of the test function
(dashed blue line). Right. Log-likelihood function in the vicinity of the op-
timum as a function of the axis parameters. The star and the bullet point
respectively stand for the true parameter values and their estimates.

x ∈ D, i.e. being invariant under Φ or, equivalently, in the null space of
T : f → f − f ◦ πλ,δ. For any covariance kernel k, it is straightforward that

ksym : (x,x′)→ k(x,x′) + k(x, πλ,δ(x
′)) + k(πλ,δ(x),x′) + k(πλ,δ(x), πλ,δ(x

′))
(21)

is a valid covariance kernel satisfying T (ksym(.,x′)) = 0 for all x′ ∈ D so
that, by Section 3.2, centred random fields with covariance kernel ksym have
their paths invariant under Φ almost surely. We will now focus on a case
where k is a squared exponential covariance kernel:

k(x,x′) = σ2exp

(
−(x1 − x′1)2

θ21
− (x2 − x′2)2

θ22

)
, (22)

where σ2 and the θi’s are respectively called variance and length-scale pa-
rameters. The kernel ksym thus depends on five parameters (σ2, θ1, θ2, λ, δ)
that can be estimated by maximizing their likelihood given the observations.
The obtained predicted mean and estimated symmetry axis are shown in the
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left panel of Figure 1. Additionally, on the right panel, the log-likelihood is
plotted as a function of λ and δ, the other parameters being fixed to their
maximum likelihood estimates. The actual symmetry axis of f is here well
recovered by maximum likelihood under our proposed GP model with degen-
erate (argumentwise invariant) covariance kernel. For this and the following
example, dedicated R codes were used. Some results were then checked and
speeded up with the novel kergp R package [35].

4.2. Interpolating a solution to the heat equation and estimating its maximum
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Figure 2: Left: Mean predictor and design points (bullets) for the heat
equation interpolation problem of Section 4.2. Right: Prediction errors. Top:
with a harmonic kernel. Bottom: with a Gaussian kernel. In both cases,
covariance parameters are estimated by maximum likelihood.

We now focus on the heat (or “Laplace”) equation ∆f = 0 over the unit
disc D = {x ∈ R2 : ||x|| ≤ 1}. Solutions to this equation are harmonic. As
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Figure 3: Mean predictor (solid black line) and 95% pointwise prediction
intervals (dashed black line) on the lower half boundary (points with coor-
dinates (cos(θ), sin(θ)) for the heat equation interpolation problem of Sec-
tion 4.2. For the sake of comparison the actual value of ftest is shown in solid
red. Left: harmonic covariance kernel. Right: Gaussian covariance kernel.

discussed in [36], the symmetric positive definite kernel

k(x,x′) = σ2exp

(
x1x

′
1 + x2x

′
2

λ2

)
cos

(
x2x

′
1 − x1x′2
λ2

)
(23)

is harmonic as a function of each of its arguments, the other one being fixed
to any arbitrary value: ∀x′ ∈ D ∇k(·,x′) = 0. Following the discussion held
in Section 3, sample paths of centred Gaussian random fields with such a
covariance kernel k also satisfy the heat equation with probability 1.

We now consider 30 observations from a harmonic test function ftest(x) =
cos(1−x1) exp(−x2) and we compare predictions under two GP models based
on a) the harmonic kernel of Equation 23 and b) a standard Gaussian kernel.
The mean predictors and the prediction errors obtained with the two models
are shown in Figure 2: It appears that the prediction errors of the two models
differ by one order of magnitude. Besides this, since the test function and the
harmonic mean predictor are harmonic, the prediction error of this model is
also harmonic, which explains why the extrema of the errors are necessarily
located at the domain boundaries. Details of the model predictions on the
lower half of the unit circle are highlighted in Figure 3.
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Next we investigate how the estimation of a non-linear functional such as
the maximum can be improved by injecting structural information into the
kernel. Assume to this end that we wish to estimate the maximum of ftest
relying on our two candidate GP models. For this we appeal to a Monte
Carlo approach by using conditional simulations of the two GP models given
the 30 observations. For each GP model, 1000 conditional simulations are
performed. Two such simulations for each model are illustrated on Figure 4.
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Figure 4: Conditional simulations of solutions to the heat equation problem
of Section 4.2. For an improved readability, the mean component of the
model has been removed. Top: Harmonic kernel. Bottom: Gaussian kernel.

For each simulated realization, a realization of the maximum is obtained.
Histograms of the two 1000-element samples of maxima obtained under both
hypotheses on k are illustrated in Figure 5. It can be seen on this example
that taking into account the knowledge that the test function is harmonic
improve drastically both the mean predictions of the function and the esti-
mation of the maximum obtained by stochastic simulation.
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Figure 5: Sample of maxima obtained by Gaussian random field conditional
simulations under the two candidate models of Section 4.2. The actual max-
imum value of the test function is denoted by the straight dashed line.

5. Conclusions and perspectives

This article focuses on the control of pathwise invariances of square-
integrable random field through their covariance structure. It is illustrated
on various examples how a number of features one may wish to impose on
paths such as multivariate sparsity, symmetries, or being solution to a vast
class of homogeneous ordinary or partial differential equations may be cast
as degeneracy or invariance properties under linear operators.

One of the main results of this work, given in Proposition 1, relates sam-
ple path degeneracy to argumentwise degeneracy of the covariance kernel, in
cases where evaluating the image of a function f by the underlying operator
T at some point boils down to integrating f with respect to a signed measure.
It turns out that a subclass of these operators, made of combinations of com-
position operators, suffices to encode various properties such as invariances
under finite group actions, or additivity. This allows us to extend recent
results from [13] by giving a complete characterization of kernels leading to
centred random fields with additive paths, and also to retrieve another result
from [11] on kernels leading to random fields with paths invariant under the
action of a finite group. Perhaps surprisingly, the obtained results linking
sample paths properties to covariance kernels apply to squared-integrable
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random fields and do not restrict to the Gaussian case.

Turning then to the particular case of Gaussian random fields, we obtain
in Propositions 2 and 3 generalizations of Proposition 1 to broad classes of
T ’s, that enables constructing Gaussian fields with paths invariant under
various integral and differential operators. Proposition 3 is essentially based
on the Loève (canonical) isometry between the Hilbert space generated by
the field and its reproducing kernel Hilbert space. Finally, Proposition 5
complements the previous results in measure-theoretic settings, with some
statement about the propagation of invariances to conditional distributions.

Taking degeneracies and invariances into account in random field mod-
elling is of practical interest, as illustrated in Section 4. Examples involving
different kinds of structural priors show how GP prediction may be dras-
tically improved by designing an appropriate kernel. In particular, it was
shown how degenerate kernels allow estimating an axis of symmetry by max-
imum likelihood, but also how it can improve stochastic simulation techniques
for estimating non-linear functionals such as the maximum. Perspectives of
future work include designing kernels adapted to larger scale interpolation
problems where degeneracies or invariances are assumed, but also defining
new families of kernels to account for “approximate” invariances, and esti-
mate features or the degree of invariance for predefined classes thereof.

Acknowledgements: the authors would like to thank Dominic Schuh-
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ments on previous versions of this paper. They are also very grateful to the
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Appendix A. Proof of the main results

Appendix A.1. About the second order framework

Before proving the main result of this section (Proposition 1), that con-
cerns a class of operators acting on second order stochastic processes, let us
first focus on a simpler but crucial case involving linear forms.

Let ν be a signed measure on D, |ν| = ν++ν− be its variation, and denote
by `ν the linear form over L1(ν) = {f ∈ M(D,R) :

∫
|f(u)|d|ν|(u) < +∞}

defined by `ν(f) =
∫
f(u)dν(u).

Lemma 1. Let us assume that m : x ∈ D −→ m(x) = E[Zx] and k :
(x,x′) ∈ D ×D −→ Cov[Zx, Zx′ ] satisfy∫

D

√
k(u,u) +m(u)2d|ν|(u) < +∞. (A.1)

Then m and k are respectively ν- and (ν ⊗ ν)-integrable, Z’s trajectories are
P-almost surely ν-integrable, and `ν(Z) is a squared-integrable real-valued
random variable with first and centred second order moments

E[`ν(Z)] = `ν(m) =

∫
m(u)dν(u), (A.2)

and Var[`ν(Z)] = `ν ⊗ `ν(k) =

∫
D×D

k(u,v)d(ν ⊗ ν)(u,v). (A.3)

Consequently, the following are equivalent:

a) P(`ν(Z) = 0) = 1

b) `ν(m) = 0 and `ν ⊗ `ν(k) = 0.

Proof of Lemma 1. Equation A.1 entails that m and k are respectively ν- and
(ν ⊗ ν)-integrable as

∫
|m(u)|dν(u) ≤

∫
D

√
k(u,u) +m(u)2dν(u) < +∞ by

Equation A.1, and
∫
D×D |k(u,v)|d(ν ⊗ ν)(u,v) ≤

(∫
D

√
k(u,u)dν(u)

)2
<

+∞ using ∀(u,v) ∈ D2 |k(u,v)| ≤
√
k(u,u)

√
k(v,v) and Equation A.1

again. Similarly, a successive application of Tonelli’s theorem, Cauchy-
Schwarz inequality, and Equation A.1 delivers that E[`ν(|Z|)] < +∞ whereof
P
(∫
|Zu|dν(u) < +∞

)
= 1, and so Z’s trajectories are P-almost surely ν-

integrable. Equations A.2 and A.3 are similary obtained by applying Fubini’s
theorem. Noticing that a) is equivalent to E[`ν(Z)2] = 0, we finally get

E[`ν(Z)2] = Var[`ν(Z)] + E[`ν(Z)]2 = `ν ⊗ `ν(k) + `ν(m)2 (A.4)
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so we conclude that a) holds if and only if `ν(m) = 0 and `ν ⊗ `ν(k) = 0.

We are now in position to prove Proposition 1.

Proof of Proposition 1. That a) and b) are equivalent is a direct conse-
quence of Lemma 1 by noticing that for any given x ∈ D, T (Z)x = `νx(Z),
T (m)(x) = `νx(m), and (T ⊗ T (k))(x,x) = `νx ⊗ `νx(k). The separability
assumption (See [37]) on T (Z) finally suffices to deduce c) from a), while the
reciprocal is direct.

Appendix A.2. About the Gaussian framework

Proof of Proposition 2. If a) holds, then we obtain by boundedness of T and
almost sure convergence of the Karhunen-Loève expansion in L2(η) that, with
probability 1, T (Z) = T (m) + T (

∑+∞
i=1

√
λiζiφi) = 0 +

∑+∞
i=1

√
λiζiT (φi) =

0 (η-a.e.). Conversely, b) implies that P(||T (Z)||2L2(η) = 0) = 1 and so

E(||T (Z)||2L2(η)) = 0. Now,

E(||T (Z)||2L2(η)) = E

(
+∞∑
i=0

+∞∑
j=0

√
λiζi
√
λjζj〈T (φi), T (φj)〉L2(η)

)

= ||T (m)||2L2(η) +
+∞∑
i=1

λi||T (φi)||2L2(η),

(A.5)

with the convention λ0 = 1, ζ0 ∼ δ1, and φ0 = m. From this we get that
||T (m)||L2(η) = 0 and ∀i ≥ 1, λi||T (φi)||2L2(η) = 0, so that a) is fulfilled.

Proof of Proposition 3. First, let T : H → RD be an operator satisfying (10)
and the pointwise convergence condition. Since Zx′ = Ψ(k(.,x′)), we have:

T (k(.,x′))(x) = cov(T (Z)x,Ψ(k(.,x′))) (x,x′ ∈ D)

This is immediately extended in a unique way toH by linearity and continuity
of the isometry Ψ, leading to:

T (h)(x) = cov(T (Z)x,Ψ(h)) (x ∈ D, h ∈ H). (A.6)

Conversely, using again properties of Ψ, one easily checks that Eq. A.6 defines
a linear operator satisfying Eq. 10 and the pointwise convergence condition.

Finally, assuming that for any x ∈ D, T (Z)x = E(T (Z)x), we get that
∀x′ ∈ D T (k(·,x′))(x) = Cov(T (Z)x, Zx′) = 0 and so, by density of the
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k(·,x′) functions in H, that T (H) = {0}. Conversely, assuming that T (H) =
{0} we get that Cov(T (Z)x,Ψ(h)) = 0 for all h ∈ H. For the special case
h = Ψ−1(T (Z)x), we obtain that Var[T (Z)x] = 0 and so T (Z)x = E(T (Z)x)
(a.s.). Since Z is assumed centred and T (Z)x ∈ L(Z), E(T (Z)x) = 0.

Proof of Proposition 4. We know that T]µ is a Gaussian measure with mean
T (mµ) and covariance operator TCµT

?, so that T]µ = δ0F if and only if
T (mµ) = 0F and TCµT

? = 0F?−→F (that a Gaussian measure is null if and
only if its mean and covariance operator are null can be seen as a consequence
of Equations 11 and 12). In other words, i)⇔ ii).

Proof of Proposition 5. The existence of a Gaussian disintegration (qy)y∈G
and the definitions of m and R follow from [29, Theorem 3.11]. More pre-
cisely, given an infinite CA]µ-representing sequence (y?i )i∈N\{0} and writing
x?i = A?y?i , m is defined as limit when n→ +∞ of mn(y) =

∑n
i=1〈y, y?i 〉Cµx?i

for y ∈ G such that mn(y) converges in F , and 0 else. Similarly, R = Cµ−R1

where ∀x? ∈ F? R1x
? =

∑+∞
i=1 〈Cµx?i , x?〉Cµx?i . Hence there remains to show

that T (m) = 0 and TR1T
? = 0F?−→F . For the mean, it is sufficient to show

that T (mn(y)) = 0 (n ≥ 1) as T is bounded and the property passes to the
limit for y such that (mn(y))n≥1 converges in F . Now, we have

T (mn(y)) = T

(
n∑
i=1

〈y, y?i 〉Cµx?i

)
=

n∑
i=1

〈y, y?i 〉TCµx?i = 0F ,

as TCµ = CµT
? = 0F?−→F since TCµT

? = 0F?−→F by assumption. Besides
this, for arbitrary x? ∈ F?,

TR1T
?x? = T

(
+∞∑
i=1

〈Cµx?i , T ?x?〉Cµx?i

)
=

+∞∑
i=1

〈TCµx?i , x?〉TCµx?i = 0F ,

and so TR1T
? = 0F?−→F , implying that TRT ? = 0F?−→F .
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