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Voie des Vignes, 92295 Chatenay-Malabry, France, cInstitut Lavoisier de Versailles, Université de Versailles Saint Quentin
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Electron density is a fundamental quantity that enables understanding of the

chemical bonding in a molecule or in a solid and the chemical/physical property

of a material. Because electrons have a charge and a spin, two kinds of electron

densities are available. Moreover, because electron distribution can be

described in momentum or in position space, charge and spin density have

two definitions and they can be observed through Bragg (for the position space)

or Compton (for the momentum space) diffraction experiments, using X-rays

(charge density) or polarized neutrons (spin density). In recent years, we have

witnessed many advances in this field, stimulated by the increased power of

experimental techniques. However, an accurate modelling is still necessary to

determine the desired functions from the acquired data. The improved accuracy

of measurements and the possibility to combine information from different

experimental techniques require even more flexibility of the models. In this

short review, we analyse some of the most important topics that have emerged in

the recent literature, especially the most thought-provoking at the recent IUCr

general meeting in Montreal.

1. Introduction

Electrons are Fermion particles that adher to Pauli’s exclusion

principle, and their distribution in position or momentum

space represents a fundamental property for chemistry which

is at the heart of all reaction processes and molecular func-

tionalities.

Electrons have a charge, a spin, and because they have a

velocity and a mass, they possess a momentum. Consequently,

the probability of finding any of the electrons of a system at a

given position r in space implies an electron charge density

�(r) and an electron spin density ��(r) (= �"(r) � �#(r)). On

switching from position space to momentum space, the prob-

ability that any electron has a given momentum p implies a

total momentum charge density �(p) and a momentum spin

density ��(p). Whereas �(r) originates from the electronic

wavefunction in position representation, the so-called

momentum charge density �(p) is related to the wavefunction

in momentum representation. The two alternative repre-

sentations are related by a simple Fourier transform. There-

fore, by virtue of the Heisenberg indetermination principle,

the most delocalized electrons bring a dominant but very
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diffuse contribution to, for example, metallic or covalent

bonds in position space, while their momentum counterpart

exhibits a sharper feature that is much easier to identify and

model. A similar statement can be formulated for spin density

in position and momentum representations.

Electron distribution encompasses many sciences (chem-

istry, physics, biology, material science), but as the electron

density is better determined through experiments on crystal-

line solids, crystallography has always played a dominant role.

In fact, �(r) is a quantum mechanical observable, measurable

through scattering techniques: X-ray, �-ray or electron

diffraction for the charge part; polarized neutron diffraction

for the spin part; Compton scattering for the momentum

charge density and magnetic Compton scattering for the

momentum spin density. Due to this diversity, in order to

coordinate the research dealing with electron distribution, 40

years ago the IUCr set up a special commission on charge, spin

and momentum densities.

In order to explain the importance of modelling these

observables, let us focus on the electron charge density in

position space. In principle, one could directly obtain �(r) of a

crystal by Fourier summation over all Bragg structure factors

Fhkl, measured in X-ray diffraction experiments

�ðrÞ� � ¼ 1

V

X
h;k;l

Fhkle
�2�iðhxþkyþlzÞ: ð1Þ

However, this procedure has some practical limitations: (i) the

resolution of a diffraction experiment cannot be unlimited and

the reconstruction would be biased by the truncation; (ii)

while the structure factor modulus is measurable, its phase is

not (at least for experiments under kinematic approximation);

(iii) the scattering phenomenon actually depends on the

thermally averaged electron density, which means the electron

density averaged over all possible vibrational eigenmodes of

the lattice. In this respect, it is important to remember that

nuclei are not steady even at the hypothetical temperature of

0 K.

For these reasons, modelling is a necessity in order to obtain

a static electron density distribution, which can reliably

represent the quantum mechanical function, obtained with ab

initio calculations. Some methods, especially those based on

the maximum likelihood and Bayesian statistics, reconstruct

the thermally averaged electron charge density, a three

dimensional function that inherently contains the smearing

effect due to atomic vibrations. In principle, this is a more

straightforward image of the actual observable. However, for

many applications a proper deconvolution of the electron

(charge or spin) density from the nuclear probability function

is preferable.

Similar arguments would hold true for the determination of

electron spin densities. In momentum space, temperature

effects are not considered to be much of an issue.

Building a model means parameterizing the electron

density distribution in such a way that the measured quantities

enable the determination of these parameters. This process is

mostly a refinement through non-linear least-squares fitting.

Scientists have adopted the electron density analysis,

especially the charge density, for more than five decades, with

applications in many fields of chemistry, physics and biology.

The accurate modelling of charge distribution became possible

only when a significant theoretical background had been

developed. This dates back to the early seventies, when many

groups understood that the best way to describe the one

electron probability density �(r) was to project it into atomic-

like terms with a multipolar shape. Thanks to Kurki-Suonio

(1968), Stewart et al. (1975), Stewart (1976), Hansen &

Coppens (1978) and Hirshfeld (1977), this concept found

many similar, although not identical, formulations, which

allowed for practical applications of charge density analysis.

Thereinafter, analyses of electron density maps became very

popular, thanks also to the availability of computer programs

that could transform models into computable quantities

comparable with experimental measures. This has somewhat

mirrored the analogous advances made by chemical and

biological crystallography in producing software able to

rapidly and accurately solve and refine crystal structures.

The multipolar expansion models have further developed,

especially for extracting properties directly derivable from the

parameterized electron distribution, such as the electrostatic

moments, the electric potential, field and field gradients, the

electron density derivatives etc. Importantly, the multipolar

expansion was found useful not only to describe the charge

density, but also the spin density (Brown et al., 1979; Claiser et

al., 2005). In fact, the spin-polarized electron density distri-

bution can also be described in terms of atom-centered

multipoles, the coefficients of which are refined against

polarized neutron diffraction intensities or flipping ratios

(Boucherle et al., 1987; Ressouche et al., 1993; Ressouche,

1999).

Four decades after the first multipolar charge density

analyses the field has reached complete maturity, as testified

by the large number of research papers published every year

in this field, with applications ranging from biology and life

science to material science and physics.

The continuous progress of radiation sources and detectors

enable the mapping of ever finer features of the electron

density distribution. Nowadays, experiments are able to

challenge the well established theoretical models and reveal

their potential deficiencies (Fischer et al., 2011), so that new

strategies are currently being proposed and systematically

tested.

This article will briefly review some of the recent progress,

especially that emerging from the recent IUCr meeting in

Montreal (hereinafter IUCr2014), focusing on the extension

of traditional multipolar models, on the combination of

models for charge and spin densities and on the combination

of information from theory and experiment.

2. More information from modern experiments

An important issue in charge density analysis has always been

the accuracy of the measured data. In fact, because only a

small amount of electron density deviates from an ideally
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spherical distribution around the atoms of the structure, it is

extremely important that the scattered intensities be

measured with the highest accuracy and precision. Over the

years, the improved brilliance of the various sources and the

improved quality and rapidity of detectors have contributed to

ever more reliable measurements. However, while on one

hand there is always room for further progress, on the other

hand, good practices should not be abandoned.

In the 1990s, the availability of position-sensitive two-

dimensional detectors, charge-couple devices (CCD) or

imaging plates (IP) produced a major breakthrough, offering

more rapid and complete data sets. Nowadays, the new fron-

tier is that of single photon-counting area detectors that

enable rapid read-out, higher dynamic ranges and energy

discrimination. Wenger et al. (2014) have recently adapted a

pixel area detector on a laboratory diffractometer, showing

potential applications for charge density measurements as well

as for time-resolved diffraction experiments. An entire micro-

symposium was dedicated to this topic at IUCr2014.

In parallel, updated sources for laboratory scale appear

periodically on the market, especially after the so-called

micro-sources (i.e. X-ray sources generated by micro-focused

electron beams) have become so widespread. Schulz et al.

(2009) and Macchi et al. (2011) have independently analyzed

the pros and cons of these new sources, especially concerning

the optics used to focus the X-rays. Undoubted advantages

were recognized, although with the warning that contamina-

tion of low-energy photons should be carefully checked and

eliminated. The new frontier is probably best represented by

the liquid metal sources, able to provide an enormous bril-

liance, but so far only low-energy X-rays are available,

unfortunately not sufficient for the specific requirements of

charge density studies.

The radiation wavelength of the future is also a matter for

debate. For example, Krause et al. (2015) have recently

proposed criteria to ascertain for which type of crystals could a

high-energy radiation such as Ag K� be convenient. In fact,

the increased resolution available with a shorter wavelength is

undermined by the lower scattering power and lower detector

efficiency. However, they could demonstrate a clear benefit for

systems containing heavier elements, for which absorption can

still be problematic with Mo K�. More uncertain instead are

the advantages for organic crystals, for which data collections

would be very long in order to achieve the requested accuracy.

A chapter on its own is, of course, synchrotron radiation;

see, for example, the recent review by Jørgensen et al. (2014).

Sources are ever more brilliant and offer a very wide spectrum

of energies. Some beamlines at international facilities are

committed to providing a highly accurate dataset at a high

resolution, as it is necessary for charge density studies as in the

study of Sb3Co (Stokkebro Schmøkel et al., 2013). The most

relevant methodological outcome in recent years has been the

possibility of also obtaining accurate charge density from

powder samples; see, for example, Fischer et al. (2011).

The availability of the new technologies would not be

sufficient to obtain better results, if good practice and special

care were not used during data collection. In this sense, it is

remarkable that a number of methods to correct the data,

known already in the 1970s, are no longer applied when

integrating data measured with modern instruments. In part,

this is because the intensity of a given reflection may be

collected several times, at different Eulerian angles or on

symmetry equivalents. This high redundancy enables the

mediation of some common error sources (like beam

instabilities) or to empirically correct for them (for example

absorption, although a proper analytical correction would

always be preferable). On the other hand, repeated

measurements are not particularly helpful in tackling other

effects, such as thermal diffuse scattering, multiple scattering,

sample fluorescence etc. At IUCr2014, Sakakura et al. (2014)

presented a careful analysis of the effect of multiple scattering

on the determination of orbital populations in a series of metal

salts. In fact, multiple scattering is also one of those problems

that would require careful inspection of the data and that is

not normally taken into account by default integration soft-

ware. Herbst-Irmer (2014) instead analyzed the effect of data

rejection on the quality of a refined model and the problem of

over-fitting that could affect multipolar refinements. In this

respect, it is important to take into account that software for

accurate analysis of massive dataset is missing and the charge

density analysis would definitely benefit from such software.

We can conclude that a clear outcome from the recent

literature on charge density analysis is that datasets collected

using modern technologies undoubtedly contain more infor-

mation than would be exhausted by models which are too

restrictive. For this reason, improvements are being proposed,

as summarized in the next few paragraphs.

3. More flexible multipolar models for charge density

The topic of this review article concerns the possibility to

extract more information from experimental data, which

necessarily means challenging well established models and

testing extensions, corrections or even alternative routes. As

universally recognized, the ‘standard’ in charge density is the

multipolar model, in particular, the formulation proposed by

Hansen & Coppens (1978). Many program packages, devel-

oped over the years like MOLLY (Hansen & Coppens, 1978),

MoPro (Jelsch et al., 2005), XD2006 (Volkov, Macchi et al.,

2006), JANA (Petricek et al., 2014), allow this model to be

refined against experimentally measured X-ray diffraction

data. Scattering factors measured with radiation different

from X-rays (e.g. electrons or �-rays) can also be used, with

minor adjustments.

According to the Hansen & Coppens (1978) model, elec-

tron density in a unit cell is first expanded in atomic contri-

bution (as for standard structural refinement)

�unit cellðrÞ ¼
X
i

�iðr� riÞ; ð2Þ

where ri is the position of the nucleus of atom i. Each atomic

term i is further expanded as
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�iðrÞ ¼ Pi;core�i;coreðrÞ þ Pi;valence�
3
i �i;valenceð�irÞ þX

l¼0;lmax

X
m¼0;l

Pi;lm�ylm�ðr=rÞ�03i;lm�Ri;lm�ð�0i;lm�rÞ; ð3Þ

where P are population parameters, � are radial scaling

factors, R(r) are radial density functions, �(r) are spherically

averaged density functions for core and valence, and y(r/r) are

spherical harmonics. The indices l and m run over the angular

and azimuthal numbers of spherical harmonic functions,

respectively. In the standard Hansen and Coppens model, all

population parameters of equation (3) are typically refined,

but core populations are kept fixed. Symmetry or chemical

constraints may be applied, so that the number of refined

parameters is actually smaller. In particular, radial scaling

parameters of all multipoles with l > 0 (�0ilm�) are normally

constrained to be the same for a given atom and all atoms of a

given element-type share the same set of � and �0 and R(r)

functions.

Since the very beginning it was clear that some limitations

of the atom-centered multipolar expansion could have

undermined the possibility of retrieving the most sophisticated

features of electron density. Here we summarize these

limitations:

(a) The ‘two-center electron density’ is not accounted for.

In fact, the electron density from the product of the orbitals

centered on two atoms is approximated by combinations of

one-center functions. Noteworthy is the expansion of electron

density in atomic terms which means a more severe approx-

imation compared with the expansion of molecular orbitals as

combinations of atomic orbitals (as adopted in most of the

quantum chemical calculations). The approximation could

affect the precise description of the bonding electron density

(Bentley & Stewart, 1973). While this component is often

mildly considered when pure position charge (or spin) densi-

ties are the primary point of interest, its importance (as

detailed below) can no longer be ignored when momentum

space is to be accounted for.

(b) The angular expansion is truncated. In principle, the

electron density expansion would be exact if each center had

an infinite number of spherical harmonics, which is obviously

not feasible. On the other hand, in order to obtain suitable

convergence through least-squares refinement, the expansions

are usually limited to the hexadecapolar level for main group

and transition elements. The hexadecapolar expansion is

strictly mandatory for d-block elements, because the product

of d-orbitals implies a combination of spherical harmonics up

to l = 4 in equation (3). For p-block elements, this is not

mandatory. However, the strong two-center character of the

electron density in organic molecules requires an expansion

well above the simple product of s and p atomic orbitals

(which formally implies only monopole, dipole and quad-

rupolar functions). Elements of f-block would instead require

a hexacontatetrapole expansion [i.e. up to l = 6 in equation

(3)], which is however seldom used due to the lack of a

sufficient amount of data. JANA (Petricek et al., 2014) and

MoPro (Jelsch et al., 2005) enable such high expansion.

(c) The radial part is poorly described. Only one radial

function per each orbital density is used or, at best, a

contracted multiple-zeta function. This is a clear limitation,

especially for the valence density. In quantum chemical

calculations, single zeta basis sets rarely produce sufficiently

accurate results and are normally not adopted. Interestingly,

this subject was initially discussed exactly in one of the seminal

papers on the multipolar model, the famous Hansen &

Coppens (1978) paper, where correct exponents for the

valence shell of S atoms were tested. The issue remained quite

silent for sometime, until some studies in the late 1990s

reopened the debate.

(d) The core electron density is frozen. In order to minimize

the number of parameters, charge density studies typically

neglect distortions of core electrons, keeping the population

and the radial distribution fixed to that calculated for the atom

in isolation. Nevertheless, as anticipated since the 70s (Bentley

& Stewart, 1974), core distortions could occur and become

visible with X-ray diffraction experiments if the quality of the

data and the resolution collection were improved.

(e) Position and thermal motion of H atoms are inaccurate.

In basic crystallographic courses, it is usually taught that H

atoms are invisible under X-rays. This is not exactly true,

although it is obvious that their modeling is more problematic.

The single electron of H, entirely involved in the chemical

bonding (including maybe hydrogen bonding), is obviously

very elusive and the large and often anharmonic motion of H

increases the ambiguity. Over the years, many models have

been proposed to partially solve this problem. Stewart (1969)

in a seminal paper proposed a generalized scattering factor for

an atom covalently bonded and he used in fact H as a refer-

ence. The method was later included in the program VALRAY

(Stewart et al., 2000) and could be used to estimate surpris-

ingly accurate positions of the H atoms based on X-ray data

only.

Most of these issues did not concern too much the charge

density studies of the 70s, 80s and early 90s, mainly because the

data accuracy was not sufficient to reveal model deficiencies. It

was only after the introduction of modern detector techniques

that some of them emerged and fostered the search of alter-

native solutions.

While for a proper description of the two-center density,

point (a), alternative models are necessary; all the other issues

have been somewhat included in modified versions of the

original Hansen & Coppens (1978) formalism. In fact, angular

expansion is in principle unlimited, although practical reasons

restrict the model refined to l = 4. Easier availability of higher

resolution datasets enables such an extension. Many studies

have proposed more flexible radial functions for the aspherical

terms of equation (3) (Iversen et al., 1997; Volkov et al., 2001),

although their introduction could be at the expense of the

stability of the refinement procedure. In fact, many recipes

have been proposed to reduce the flexibility by applying

sensible constraining, especially important for the � para-

meters (Volkov et al., 2001). In the past few years, some studies

have investigated the deformations of the core electron

density. By default this is kept spherical, as in equation (2), but
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a straightforward modification of the model enables the

refinement of a set of multipoles and contraction/expansion

parameters for the core as well. The first interesting results

concerned diamond and silicon (Fischer et al., 2011; Bindzus et

al., 2014). Although based on powder diffraction data, the

accuracy of the measurements was sufficient to enable

detailing the effects of chemical bonding on core electron

densities. At IUCr2014, Wahlberg et al. (2014) reported on a

similar investigation of the isomorphic BN solid, although

refinements on this species are statistically less stable than

those on silicon and diamond.

4. Charge and spin densities in position representation
from combined X-ray and polarized neutron diffraction

One of the most challenging goals in modeling the electron

density is a simultaneous refinement of charge, spin and

momentum distributions. Within this framework, many efforts

were spent in developing a model able to jointly correlate the

experimental information from different sources (X-ray

diffraction, polarized neutron diffraction and Compton scat-

tering). At the present stage, an intermediate step has been

presented by Claiser et al. (2014) and Deutsch et al. (2014),

namely the simultaneous refinement of charge and spin

density distribution, obtained by refining the parameters of a

multipolar model against X-ray and polarized neutron

diffraction (PND) data.

While XRD and non-polarized neutron diffraction data

consist of integrated intensities of Bragg reflections, PND

measures ‘flipping ratios’ [hereafter denoted FPNDðQÞ]. They

are defined as the ratio between the diffracted intensities for

spin up and spin down incident neutrons. PND gives access to

magnetization density that is the sum of pure spin density and

orbital contribution (Schweizer, 2006). From the above

considerations, it appears quite clearly that XRD and PND

consider electron distribution from different and comple-

mentary perspectives. XRD enables the reconstruction of total

electron distribution, �(r), while PND provides information

which yield the spin density, ��(r)

�ðrÞ ¼ �"ðrÞ þ �#ðrÞ ð4Þ

��ðrÞ ¼ �"ðrÞ � �#ðrÞ: ð5Þ

It is therefore obvious that a combined analysis of accurate

high-resolution X-ray and polarized neutron diffraction data

should yield unprecedented access to spin-resolved electron

densities for crystals with significant magnetic properties.

In order to achieve such a joint analysis, a ‘spin-split

pseudo-atoms model’ was adopted, derived from the above

mentioned Hansen–Coppens model (Deutsch et al., 2012).

�(r) then writes

�iðrÞ ¼ �i;coreðrÞ þ P
"
i;valence�

"3
i �i;valenceð�"i rÞ

þ P
"
i;valence�

"3
i �i;valenceð�"i rÞ

þ
X

l¼0;lmax

�0"3
i Ri;lð�0"i;lrÞ

X
m¼0;l

P
"
i;lm�ylm�ðr=rÞ

þ
X

l¼0;lmax

�0#3
i Ri;lð�0#i;lm�rÞ

X
m¼0;l

P
#
i;lm�ylm�ðr=rÞ; ð6Þ

where P" and P# refer to spin up and spin down parameters,

respectively. Thus, the challenge consisted of the determina-

tion of P" and P#, as well as �" and �#, against XRD and PND

data in a unique refinement procedure with an appropriate

weighting scheme. The method has been successfully tested on

a dicopper complex in which the Cu2+ ions are coupled by two

azido bridges (N3
�) (Aronica et al., 2007). Spin up and spin

down electron multipole density maps have been calculated

for the first time, which has made it possible to successfully

discriminate the density probability distribution of spin up and

spin down electrons. Density functional theory calculations [at

the B3LYP/6-31++G(d,p) level] were carried out on an

isolated molecule in its experimental geometry. The theore-

tical and experimental distributions compare extremely well.

The spin up distribution in the vicinity of the copper nucleus is

spherical, while the down spin distribution shows maxima in

the dxy direction of the ligands. Thus, most of the electron

anisotropy around the Cu atom should be attributed to spin

down electrons. This is confirmed by a d-type function analysis

(Holladay et al., 1983): 30% of spin down electrons lie in the

dxy-type function with corresponding dx2�y2 depletion (8%),

while all dxz, dyz and dz2 are almost equally populated. One

utmost consequence of the spin-resolved model is that it is

shown for the first time that the valence spin " density is 5%

more contracted than the spin # density [�" = 0.998 (1), �# =

0.943 (1); Deutsch et al., 2014], in agreement with some

theoretical predictions. As reported by Claiser et al. (2014) at

IUCr 2014, this method has been successfully applied to an

organic radical.

5. Charge and spin density information from NMR

Within crystallography, the number of studies based on NMR

spectroscopy is increasing. In fact, in structural chemistry and

biology, NMR (including solid-state NMR) is the most

complementary technique for diffraction methods. Although

the electron density community has made only very little use

of NMR spectroscopy, normally limited to finding confirma-

tion of atomic charge states, at IUCr2014 combined X-ray and

NMR investigations of the structural and magnetic properties

of materials have appeared in a dedicated micro-symposium.

In the following, we will briefly review the basic concepts of

solid-state NMR, highlighting possible source interplay with

electron density analysis.

In solid-state NMR, a constant magnetic field polarizes the

nuclear magnetic moments and subsequent application of a
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radio-frequency magnetic field induces transitions between

magnetic states of the nuclei. In addition to the splitting of

energy levels induced by the constant magnetic field, all the

interactions occurring within the structure that could perturb

the nuclear magnetic moments affect the energy levels as well.

These interactions are inherently anisotropic; therefore, they

depend on the relative orientation with respect to the applied

magnetic field (the ‘space part’ of the interaction), on the

magnetic state of the nuclei, and on the orientation of

nuclear magnetic moments with respect to the main

magnetic field (the ‘spin part’ part of the interaction). The

anisotropic character of the interactions leads to a general

decomposition into irreducible spherical tensors. The

observed transitions of nuclear magnetic states provide all

the information on internal interactions, and therefore about

the nuclear position. Solid-state NMR possesses phase

coherence and takes advantage of the continuously modu-

lated orientation of the sample in the magnetic field. This

leads to the different schemes of sample reorientation, with

a special emphasis on magic angle spinning. Sample reor-

ientation selectively averages the various Hamiltonians

depending on the symmetry of the pulse sequence. When its

spin part evolution is properly aligned, all spin can be

coherently manipulated. This is the basis of high-resolution

NMR that allows one to ‘edit’ different components of the

Hamiltonians using a proper pulse sequence.

The geometry of a crystal (i.e. the relative positions of

nuclei) becomes visible by analyzing interactions that define

the various energy levels. Each interaction implies a given

energy; therefore, it is associated with a Hamiltonian operator,

and it contains a space and a spin component

ĤH� ¼ C� A�
00T̂T

�
00 þ A�

20

� �L
T̂T�

20

� �Ln o
ð7Þ

C� is a number defining the relation between the dimen-

sionless A (space part) and T (spin part) terms and the

effective energy. Usually, these terms contain geometrical

information, i.e. distances, angles or connectivity neighbors.

The A00T00 term defines the isotropic part of an interaction

(when it exists) and the A20T20 term defines the anisotropic

part. The latter can be modulated by space or spin manip-

ulation.

Many interactions � may be simultaneously active on

each nucleus. To mention a few, the shielding produced by

electron current (or chemical shift interaction), the indirect

nuclear spin coupling mediated by electrons spin coupling,

the direct dipolar nuclear spin coupling, the quadrupolar

interaction between the nucleus and the electrical field

gradient generated by anisotropic charge distribution, the

hyperfine interaction between nuclei and electrons, the

Knight shift between conduction electron and nuclei. A

detailed theoretical description of all these interactions

characteristic of the sample would result in an infinite

number of terms in equation (7). To overcome these

intrinsically unlimited levels of complexity, all the interac-

tions, written as irreducible spherical tensors, can be

systematically engineered selecting the physical measure-

ments that will define them, the pulse sequence, and their

relation to the geometry of the interactions that are

extracted.

Because each interaction forms an extremely complex set of

energy levels, their selective editing is the rational way to

unravel this complexity. Actually, the adapted choice of the

sequence allows, ideally, the suppression of all interactions but

the one of interest. The strategy is therefore unique compared

with diffraction methods, for which there is no space or time

resolution of the diffraction event in the sample (at least with

standard techniques). In an NMR investigation, each struc-

tural parameter may be associated with a separate signal.

Diffraction provides directly high statistics on the set of

distances, and separation of different diffracting lines is best

achieved with a single crystal by separating each orientation

one by one (i.e. by rotating the crystal). In NMR, statistics are

done in a sense afterwards, because many interactions have

the same irreducible spherical tensor for the space part. Thus,

geometrical information appears redundant in the different

NMR observables edited by different experiments, increasing

the reliability of the space part of the interactions (Taulelle,

2009).

All these interactions carry information on thermally

smeared electron density, i.e. averaged over all possible

vibrational eigenmodes, which is an apparent static electron

density. Each interaction can be edited into pieces with the

selection of its symmetry by proper selection of combined

motion of a sample and its synchronized motion of nuclear and

electron spin. Modeling these interactions might become a

formidable task, but can be broken into smaller pieces and

recombined afterwards into a picture, the accuracy of which

could be tuned depending on the needs. Much improvement in

modeling has been achieved especially using gauge-included

Projector augmented wave computing methods (Bonhomme

et al., 2012).

These measurements can be organized like the pieces of a

puzzle. They may give access first of all to several partial

distance matrices using the direct dipolar coupling between

nuclei of the same (homonuclear) atoms or of heteronuclear

nature and different homo- or heteroradial distribution

functions. Qualitative connectivity can be edited by indirect

couplings, providing topological organization of the crystal.

Then electron distribution in their different wavefunctions can

be described by all anisotropic interactions of nuclei with

electrons. This progressive building of a crystal picture can be

mapped onto a picture extracted from diffraction methods.

The averaging of methods over space and time is different so

the pictures must not coincide. Most diffraction methods

would extract the symmetrically periodic part of the crystal

structure, while NMR may average in space without periodic

filtering. From such differences furthering of the crystal

description can be carried out, see Taulelle et al. (2013) and

Martineau (2014).

So far, crystallographers have made limited use of the spin

density information available from a NMR measurement,

nevertheless the increasing number and quality of experi-

ments will likely offer more opportunities.
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6. The interplay between position and momentum
space

When attempting to give a thorough description of electron

distribution in solids and its influence on the nature of

chemical bonds, one should bear in mind that, notwithstanding

its obvious connection to our representation of the world,

position space is not the only particular representation that is

offered for a quantum state. Over the last 40 years, and more

specifically since the advent of high brilliance synchrotron

radiation sources, inelastic X-ray scattering in the high-energy

and momentum transfer regime, i.e. X-ray Compton scat-

tering, has become an increasingly popular method to observe

electrons from a momentum perspective (Hayashi et al., 2002;

Cooper et al., 2004).

Since they originate from two different representations of

an N-particle wavefunction, electron charge (or spin) densities

in position and momentum spaces are not related in a

straightforward manner. As it turns out, the shortest path that

connects those two quantities has long been established

(Coulson, 1960) to go through the one-electron Reduced

Density Matrix (1-RDM)

�1 x1; x
0
1ð Þ ¼

X
q

PqN

Z
 �

qðx1; x2; :::; xNÞ qðx01; x2; . . . ; xNÞ

� d4x2 . . . d
4xN; ð8Þ

where Pq is the temperature-dependent probability for a pure

state represented by the N-particle wavefunction

 qðx1; x2; :::; xNÞ with xj representing both the position rj and

the spin coordinate of electron j. The position charge density is

thus obtained by merely setting x1 ¼ x01, while a particular X-

ray Compton scattering spectrum, corresponding to a given

direction u of the scattering vector, yields the so-called

Directional Compton Profile Jðu; qÞ. As the latter is nothing

but the projection of electron density in momentum space

onto the scattering vector, its relationship to the 1-RDM

writes (Weyrich, 1996; Schmider et al., 1992, 1993)

J u; qð Þ ¼ 1

2�h-

Z
�1 r; rþ u � tð Þ:uð Þeiqu�td3rd3t: ð9Þ

This expression shows quite clearly that Compton scattering

observes a different part of the 1-RDM than X-ray diffraction.

While the latter gives access to the diagonal part:

�ðrÞ ¼ �ðr; rÞ, the former offers an indirect measurement of its

off-diagonal regions. Therefore, this difference in the probing

abilities of each technique also emphasizes their respective

roles in our understanding of the wavefunction. On one hand,

charge density gives an accurate description of the local

behavior, where it takes its largest values, i.e. the immediate

surroundings of each nucleus. On the other hand, the

momentum description highlights the delocalized structures of

the wavefunction and the coherent contributions of each site.

Of course, there is no clear-cut frontier and, as both quantities

address some mean electron behavior, one should expect the

combination of these two points of view to bring a mutual

reinforcement in the accuracy of each electron density

representation.

The power of X-ray diffraction and position space repre-

sentation of charge density has clearly been stated above. On

the other hand, it is well accepted that there are numerous

obstacles in interpreting Compton profiles on their own and

on an absolute scale: more often than not, for example,

differences between profiles have to be performed (Sakurai et

al., 2013). Moreover, it is not easy to think of the chemical

bond machinery from a momentum perspective and, to this

day, there is no generic model, equivalent to the one brought

by Hansen & Coppens, for a momentum density interpretation

of Compton scattering data. One is thus often left with no

other choice than a simple, but informative, comparison with

ab initio quantum computations (such as CRYSTALv; Erba &

Pisani, 2012). With the exception of some modest attempts

(Gillet, 2007), it is even more true for a joint interpretation of

directional Compton profiles and structure factors in terms of

the 1-RDM elements. On many occasions during IUCr2014,

there were many discussions and remarks underlining the

necessity of considering Compton scattering as a precious

additional contribution to a fair description of electronic

behavior in molecules and solids. Despite the technical diffi-

culties in making it effective, the community acknowledges

that such a joint approach should be further explored, in

particular, when delocalized mechanisms are to be evoked,

such as in the case of spin magnetism.

7. Merging theory and experiments

In an orthodox interpretation of a science, experimental

observations should be as independent and unbiased as

possible from the theoretical predictions and vice versa.

However, in modern crystallography, this entanglement is

already quite tight and almost inseparable, even for routine

crystal structure determinations. In fact, while chemists

normally consider the refined geometries as the result of pure

‘observations’, they do, in fact, contain a large amount of

theory: for example, the atomic form factors used for the

calculations of structure factors are not ‘observed’, but come

from the Dirac–Fock wavefunctions computed for all atoms in

isolation (Maslen et al., 1992). When considering charge

density analysis, the influence of theory is even larger because

almost all the functions used in equation (3) to describe the

electron density models have a theoretical origin. Core and

spherical valence terms are typically taken from Roothan’s

expansion of atomic orbitals, calculated on isolated atoms at

the Hartree–Fock level or, in order to include relativistic

effects, at he Dirac–Fock level. In this context it is difficult,

therefore, to state that an experimental electron density is

truly 100% experimental. Nevertheless, there is a consensus to

consider as ‘experimental’ the valence density obtained during

a multipolar refinement, given that, in general, the flexibility

of a multipolar model is sufficiently high. On the other hand,

the core electron density is typically kept frozen, apart from in

the recent studies aimed, in fact, at investigating core polar-

izations.

In the past two decades, some methods have been proposed

to even strengthen the connection between experimental
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measurements and calculations. Among these methods, the X-

ray constrained wavefunction proposed by Jayatilaka (1998),

Jayatilaka (2012) and Jayatilaka & Grimwood (2001) has

received much attention and is still under constant develop-

ment. The method is based on a modified self-consistent-field

approach to obtain a pseudo-quantum mechanical wavefunc-

tion. Instead of minimizing the expectation value of the

Hamiltonian operator, this approach includes a restraint to the

residual electron density. Thus, the calculated wavefunction is

the one that minimizes the energy under the condition of also

minimizing the difference between calculated and measured

X-ray structure factors with an appropriate weight. The link is

applied through a Lagrangian multiplier, which determines

how much the experimental data should be used. While the

wavefunction is calculated for an isolated molecule, the link to

experimental structure factors implies accounting for crystal

field effects as well. Therefore, this procedure introduces a

multifaceted perturbation to the molecular wavefunction

through the experimental measure; in particular, the effect of

a crystal field and the effect of the (exact) electron correlation.

At IUCr2014, Genoni (2014) reported on new develop-

ments of this approach, namely the X-ray constrained extre-

mely localized molecular orbital approach (Genoni, 2013a,b;

Dos Santos et al., 2014). Following Jayatilaka’s method, the

wavefunction is calculated with the additional constraint that

molecular orbitals are centered on atoms or bonds, following

the scheme proposed by Stoll et al. (1980). The novelty of

Genoni’s approach is that the X-ray constrained wavefunction

would preserve the chemical interpretability of the multipolar

approach, because simple atoms or fragments could be

extracted. This is very useful for the portability of the calcu-

lated coefficients, a topic that has attracted much interest

within the transferable data bank approaches (see below).

Another method that is emerging, again combining theo-

retical calculations and experimental measures, is the Hirsh-

feld Atom Refinement (HAR), proposed by Jayatilaka &

Dittrich (2008) and by Capelli et al. (2014). HAR is based on

the Hirshfeld stockholder partitioning of the electron density

(Hirshfeld, 1977), through which one can define an atom in a

molecule and therefore a scattering factor. In the HAR

refinement, theoretical calculations provide the aspherical

atomic scattering factor, used for refining other parameters. In

particular, Capelli et al. (2014) were able to challenge the

statement by Hirshfeld (1976) that atomic thermal motion of

H atoms cannot be determined from X-ray diffraction data.

8. Applications of the electron density

From the previous paragraphs, it is clear to the reader that

obtaining an accurate electron density distribution is a rather

complex, although feasible, task. These efforts would be,

however, wasted if significant and useful information were not

extracted from the refined models. In fact, the electron density

determines a number of properties that reflect the main

features of a system, such as atomic charges, electric moments,

magnetic moments, bonding electron density, electric forces

acting on atoms and molecules etc. A comprehensive overview

is beyond the scope of the article and the reader is referred to

some recent literature (Gatti & Macchi, 2012; Macchi, 2013).

In the charge density analysis, the applications mainly

concern the analysis of the chemical bonding, especially within

the framework of the quantum theory of atoms in molecules

(QTAIM; Bader, 1990), or the determination of electrostatic

properties and interactions.

The QTAIM has been quite systematically adopted on

experimentally refined models of charge density for the past

two decades. A known limitation of the information available

from standard multipole models is that some quantities typi-

cally used in theoretical QTAIM analyses, such as energy

densities and electron delocalization indicators, are not

directly available from expansion of equation (3), because

they would require knowledge of the whole first-order

reduced density matrix and not only its trace (i.e. the electron

charge density itself). These limitations are somewhat over-

come if X-ray constrained wavefunctions are calculated

(Genoni, 2014) or, in principle, if reduced charge density

matrix components are directly refined (Gillet, 2007). More-

over, Abramov (1997) demonstrated the possibility to

approximate the kinetic energy density based only on charge

density, its gradient and Laplacian, therefore quantities

directly available from standard multipolar models. The

Abramov approximation has enabled dissociation energies of

hydrogen-bonded (HB) aggregates to be quantified, as

originally proposed by Espinosa et al. (1998). Brezgunova et al.

(2012) recently used the same approximation for other inter-

molecular interactions, such as halogen bonding.

More complicated is the possibility of retrieving informa-

tion on electron delocalization, knowing only multipolar

charge density. In an attempt to overcome these limitations,

Gatti (2012) proposed the use of the source function S(r,r0),

developed by Bader & Gatti (1998), which is an influence

function (Arfken, 1985) for the electron density

Sðr; r0Þ ¼ �ð4� � r� r0
�� ��Þ�1 � r2�ðr0Þ: ð10Þ

By integrating S(r,r0)dr, the total electron charge density �(r)

results. Although the source function depends on the charge

density and its derivatives only, it is supposed to reflect, at

least in part, the electron delocalization occurring in molecules

(Gatti, 2012). This interpretation has actually received some

criticism (Farrugia & Macchi, 2009), although it has been

applied in quite a number of experimental studies. At

IUCr2014, Gatti et al. (2014) proposed a spin-polarized source

function, able therefore to increase the information by

defining the influence function for each spin-density compo-

nent. Although only theoretical examples have been proposed

so far, the spin-polarized source function could be straight-

forwardly calculated from joint charge and spin density

multipolar models (Deutsch et al., 2014) refined against

experimental data.

The connection between the topology of charge density and

chemical reactivity is another issue that is currently attracting

interest, see for example Ayers et al. (2015). The possibility of

extracting from charge density suitable indicators not only of
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the chemical bond strength but also of the chemical reactivity

is obviously a long standing issue, and ongoing efforts may

finally enable various theories to be unified. Other attempts

were made to evaluate non-covalent interaction energy from

electron density parameters. This should enable one to esti-

mate the lattice energy of a crystal as the sum of inter-

molecular interaction energies. Shishkina et al. (2013), for

example, showed that the obtained value for the lattice energy

was in reasonable agreement with both the experimental

sublimation energy and the ab initio lattice energy.

The other important outcome of a charge density analysis is

the determination of electrostatic properties of atoms and

molecules and the evaluation of electrostatic interactions

between them, in aggregation. Thanks to Su & Coppens

(1992), Stewart & Craven (1993), Ghermani et al. (1993, 1992)

and Volkov, King et al. (2006), electric potential and deriva-

tives can be derived from the multipolar expanded electron

density. These studies have opened new opportunities for

research in this field, in particular, for the recognition of

electrophilic and nucleophilic regions in a molecule, packing

effects in crystals, docking in proteins (Jelsch et al., 2011;

Muzet et al., 2003; Li et al., 2002), surface charges in solids,

polarizabilities of molecules and optical properties of crystals

etc.

The most widespread analyses are based on molecular

electrostatic potential, used since the 1980s (Politzer &

Truhlar, 1981; Gadre & Shrivastava, 1991) to anticipate reac-

tive sites of molecules and packing efficiencies of molecules in

crystals. Originally based only on theoretically computed

electrostatic potentials, these studies found many applications

also using experimental charge densities (see, for example,

Bouhmaida et al., 1997; Fournier et al., 2009). The analyses of

experimentally derived electric potential focused on mole-

cular recognition, especially hydrogen bonding and, more

recently, halogen bonding (see Bui et al., 2009; Pavan et al.,

2013).

In recent years, attention was also concentrated on the first

derivative of the electric potential, namely the electric field

(EF), see Volkov, King et al. (2006). Being a vector, the EF

visualizes the forces and therefore their directionality, giving a

more comprehensive picture of the mutual perturbation

produced by interacting molecules. Bibila Mayaya Bisseyou et

al. (2012) have, for example, computed the total forces acting

on atoms in coumarin, by means of an experimental multipole

model and a transferable multipole database (Domagała et al.,

2011). At IUCr2014, Guillot et al. (2014) stressed the impor-

tance of these results, especially if applied to structural

biology. In addition, they demonstrated the importance of

visualization tools, useful to better appreciate the information

available from the calculated electrostatic field. An interactive

tool to explore the electric fields in a crystal seems to be

feasible now, following, for example, the analogous system

proposed by Haag et al. (2014) to explore the chemical reac-

tivity.

New interpretative tools based on electron density are also

emerging that enable the assessment of a broad spectrum of

intermolecular interactions, not only those based on electro-

static forces. In particular, reduced density gradients (RDG)

and the corresponding non-covalent interaction plots have

attracted much attention (Johnson et al., 2010). Like the

source function, reduced density gradient analysis is also

based on charge density and its derivative only; in fact

RDG ¼ r�ðrÞ�� ��
2ð3�Þ1=3�ðrÞ4=3

: ð11Þ

The easy formulation of RDG implies that ab initio calculated

or multipolar refined electron densities are interchangeable

(Saleh et al., 2013). Attempts to extract information on the

actual energy associated with the RDG features have recently

been proposed by Saleh et al. (2015). They used approximated

energy density functions (Abramov, 1997) which provide some

correlations with characteristic NCI plots. This area is still

quite unexplored and applications will certainly be tested in

the near future.

9. Conclusions and outlook

This review article focused on the potential of electron density

analysis in view of the latest advances. In particular, we

showed that the various synergies currently available, mixing

different experimental techniques or experiment and theory,

really confirm that the whole is more than the sum of its parts.

In fact, the information available from combined techniques

goes beyond individual methods and offers a broader over-

view on the features of a given material.

In particular, recent works proposed: (a) a combination of

X-ray and neutron diffraction for joint charge and spin density

refinement; (b) calculations of variational wavefunctions

constrained to fit experimental data, which enable the range of

properties available from experimental density to be

extended; (c) combination of X-ray scattering and NMR

shielding.

It is clear that much work has still to be done to complete

the framework combining all possible sources of information.

Nevertheless, the results which have appeared in the last few

years are extremely promising and certainly encourage further

research.
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