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1 Introduction

The integrability of 2D non-linear sigma models such as O(N)-invariant relativistic field

theory [1, 2] has been extensively studied in various contexts (for a comprehensive book,

see [3]). A prominent example is the AdS/cft correspondence [4]. The Green-Schwarz

action of type IIB string theory on AdS5×S5, which is often abbreviated as the AdS5×S5

superstring, was constructed in [5] and has been shown to be classically integrable in the

sense that the Lax pair exists (i.e. kinematical integrability) [6]. For related topics, see the

review [7].
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The study of integrable deformations of integrable non-linear sigma models is an in-

teresting topic. Deformations of S3 and AdS3 have been well investigated [8–14, 17–34].1

A systematic way is the Yang-Baxter sigma model approach proposed by Klimcik [11–13].

It was originally invented for principal chiral models based on the modified classical Yang-

Baxter equation (mcybe). It was generalized to coset spaces [22] and then extended to

the standard classical Yang-Baxter equation (cybe). In particular, squashed S3 [8] and 3D

Schrödinger spacetime [35] are associated with the mcybe and the cybe, respectively.2

An important application of the Yang-Baxter sigma model description is integrable

deformations of the AdS5 × S5 superstring. A q-deformation with a classical r-matrix sat-

isfying the mcybe has been studied in [36, 37]. Jordanian deformations based on the cybe

have been proposed in [38]. In the latter case, there are a lot of classical r-matrices satisfy-

ing the cybe and some of them are associated with well-known gravitational backgrounds,

such as Lunin-Maldacena-Frolov backgrounds [39, 40], gravity duals for non-commutative

gauge theories [41, 42], Schrödinger spacetimes [43–47] and gravity duals for dipole theo-

ries [48–52], as shown in a series of works [53–57]. Very recently, the reality of the classical

action has been revisited in [58] and a unified picture of deformed integrable sigma models

has been provided in [59].

It should be remarked that the Yang-Baxter sigma model approach works well even for

non-integrable deformations. The case of AdS5 × T 1,1 is known to be non-integrable [60].

However, deformations of this background [39, 61] can be reproduced as Yang-Baxter

deformations [62]. The above relations between gravity solutions and classical r-matrices

may be called the gravity/cybe correspondence (for a brief summary, see [63]).

It would be very interesting to generalize a correspondence of this type to the case

of flat space, instead of AdS5 × S5 . In particular, one expects a relationship between

certain classical r-matrices and Melvin twists [64]. Therefore, in this paper, we consider

Yang-Baxter deformations of 4D Minkowski spacetime. For flat space, we however im-

mediately encounter a problem if we employ the familiar coset Poincaré group/Lorentz

group, namely the degeneracy of the bilinear form. A possible resolution3 is to consider

instead a slice of AdS5 by embedding the 4D Poincaré group into the 4D conformal group

SO(2, 4), making a truncation and then deforming the resulting theory. This embedding

appears to work well, as we can reproduce the deformed metric and B-field associated to

well-known backgrounds such as T-duals of Melvin backgrounds [67–69], Hashimoto-Sethi

backgrounds [70], time-dependent backgrounds of Spradlin-Takayanagi-Volovich [71], the

T-dual of Grant space [72], pp-wave backgrounds, and T-duals of dS4 and AdS4 , as Yang-

Baxter deformations. Finally we consider a deformation based on a classical r-matrix of

Drinfeld-Jimbo type [73–75] and explicitly derive the associated metric and B-field.

In the following, we embed most of these 4D σ-models into string theory. In doing so,

one can hope to understand the integrability of said models from a string theory perspective.

We start with the simplest ansatz, in which we assume the extra six dimensions to be flat

1Recent work on λ-deformations can be found in [14–16].
2Both backgrounds can also be obtained via TsT -transformations [23, 82].
3Another way is to employ a generalized symmetric two-form [65]. For a generalization to Schrödinger

spacetimes, see [66].
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(as resulting from a T 6-compactification). Here, we will be looking for solutions which

contain only a dilaton and no Ramond-Ramond-fields. It turns out that for a large class

of the models studied, such a string theory embedding can be found. They all turn out to

be TsT transformations of flat space.4 As we are starting from an integrable background

(i.e. flat space with identifications) and T-duality preserves integrability [76–82], this fact

explains the integrability of these models from a string theory point of view.

For other classes of r-matrices, this is not the case, but they can instead be related to

known integrable models with dS4 or AdS4 target space via T-duality. In order to complete

them to full string theory solutions, the introduction of RR-fields is necessary (in the case

of dS4, even imaginary RR-form fields are needed), so these models cannot be captured

with the simplest possible ansatz. A similar approach in the case of the AdS2×S2 geometry

has been discussed in [83], where type II theories are reduced to 4D theories plus a T 6 .

We would like to stress that there are two distinct parts to this article. The first

part treats deformations that are clearly integrable, which can be verified independently

from the method presented here. From section 4 on, however, the general statement of

integrability of the presented class of examples is a conjecture, which albeit plausible, does

at this point not have a formal proof. However, some of our main examples indeed can be

verified independently to be integrable. As discussed in the conclusions, a formal proof of

the integrability for the class of non-twist deformations is desirable, but exceeds the scope

of this work.

The plan of this paper is as follows. In section 2, we introduce Yang-Baxter defor-

mations of 4D Minkowski spacetime. In sections 3–5, we will provide some examples of

classical r-matrices and the associated metrics and two-form B-fields. There is in partic-

ular the class of models that correspond to TsT -transformations of flat space (section 3).

In section 4, we consider non-twist cases including the S-dual of the pp-wave background,

T-duals of dS4 and AdS4, and two-parameter deformations. In section 5, we extend the

formulation from the cybe to the mcybe and then study a deformation with a classical

r-matrix of Drinfeld-Jimbo type. Section 6 is devoted to conclusion and discussion.

2 Deformations of 4D Minkowski spacetime

In this section we consider Yang-Baxter deformations of 2D sigma-model actions whose

target space is given by 4D Minkowski spacetime.

2.1 Coset construction of AdS5 revisited

Let us remind ourselves of the coset construction of AdS5 with Poincaré coordinates.

It is well known that AdS5 can be represented by a symmetric coset as

AdS5 =
SO(2, 4)

SO(1, 4)
(2.1)

and its metric can be computed via a coset construction. To express the generators of the

Lie algebras so(2, 4) and so(1, 4) it is necessary to first introduce some quantities.

4The correspondence between TsT -transformations and Abelian r-matrices has been indicated in a series

of works [53–55, 57, 58, 62, 63].
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We first introduce the gamma matrices γµ and γ5 defined as

γ1 =


0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0

 , γ2 =


0 0 0 i

0 0 i 0

0 −i 0 0

−i 0 0 0

 , γ3 =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 ,

γ0 =


0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0

 , γ5 = −iγ0γ1γ2γ3 =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 . (2.2)

One can introduce nµν and nµ5 defined as

nµν ≡
1

4
[γµ, γν ] , nµ5 ≡

1

4
[γµ, γ5] . (2.3)

Then the Lie algebra so(2, 4) is spanned by the above quantities,

so(2, 4) = spanR{ γµ , γ5 , nµν , nµ5 | µ, ν = 0, 1, 2, 3 } , (2.4)

and the subalgebra so(1, 4) is generated by

so(1, 4) = spanR{ nµν , nµ5 | µ, ν = 0, 1, 2, 3 } . (2.5)

Now we can compute the metric of AdS5 with Poincaré coordinates by using a coset

representative,

g = exp
[
p0 x

0 + p1 x
1 + p2 x

2 + p3 x
3
]

exp

[
γ5

1

2
log z

]
, (2.6)

where the pµ (µ = 0, 1, 2, 3) are defined as

pµ ≡
1

2
(γµ − 2nµ5) . (2.7)

The left-invariant one-form A = g−1dg can now be evaluated easily. The metric is defined as

ds2 = gMNdx
MdxN = Tr(AP (A)) , (2.8)

where P is a coset projector from so(2, 4) to so(2, 4)/so(1, 4) and is defined as

P (x) ≡ γ0
Tr(γ0x)

Tr(γ20)
+

3∑
i=1

γi
Tr(γix)

Tr(γ2i )
+ γ5

Tr(γ5x)

Tr(γ25)

=
1

4

[
−γ0 Tr(γ0x) +

3∑
i=1

γi Tr(γix) + γ5 Tr(γ5x)

]
for x ∈ so(2, 4) .

(2.9)

The resulting metric is given by

ds2 =
−(dx0)2 +

∑3
i=1(dx

i)2 + dz2

z2
. (2.10)

Note that the AdS radius is set to 1 .
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2.2 A conformal embedding of 4D Minkowski spacetime

Here we are interested in a coset construction of 4D Minkowski spacetime. However, there

is the obvious problem that the standard bilinear form degenerates if we naively employ the

usual coset ISO(1, 3)/SO(1, 3) . To avoid this, it is convenient to represent 4D Minkowski

spacetime instead as a slice of AdS5 in Poincaré coordinates.

A possible representation of the group element g is the following:

g = exp
[
p0 x

0 + p1 x
1 + p2 x

2 + p3 x
3
]
. (2.11)

Unlike in formula (2.6), the radial coordinate z does not appear in the above expression.

In other words, to express 4D Minkowski spacetime, a section at z = 1 of AdS5 has been

taken at this stage:

4D Minkowski spacetime = AdS5

∣∣
z=1

. (2.12)

Note here that the 4D Poincaré algebra iso(1, 3) and the 4D Lorentz algebra so(1, 3)

are generated by the following generators, respectively,

iso(1, 3) = spanR{ nµν , pµ | µ, ν = 0, 1, 2, 3 } ,
so(1, 3) = spanR{ nµν | µ, ν = 0, 1, 2, 3 } .

(2.13)

Thus it makes sense to use the generators pµ to parameterize the coset representative of

ISO(1, 3)/SO(1, 3) as (2.11) . Eventually the left-invariant one-form A = g−1dg is written

as a linear combination of pµ .

By dropping γ5 of P in (2.9) , we introduce the projector for 4D Minkowski spacetime by

P (x) =
1

4

[
−γ0 Tr(γ0x) +

3∑
i=1

γi Tr(γix)

]
for x ∈ so(2, 4) . (2.14)

Then, it is straightforward to compute the metric,

ds2 = Tr(AP (A)) = −(dx0)2 +

3∑
i=1

(dxi)2 . (2.15)

This result is the starting point of our argument in the following.

The definition of the projector (2.14) is justified as follows. From an algebraic point of

view, we are able to realize 4D Minkowski spacetime as an embedded coset by considering

the quotient of so(2, 4)/so(1, 4) by γ5 . That is as vector spaces

iso(1, 3)

so(1, 3)
=

so(2, 4)

so(1, 4)⊕ spanR{γ5}
, (2.16)

where the bilinear form of so(2, 4) is not degenerate. On the right-hand side, the appro-

priate coset projector turns out to be

P : so(2, 4) −→ so(2, 4)

so(1, 4)⊕ spanR{γ5}
. (2.17)

– 5 –
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This is the reason why the 4D Minkowski projector P is given by (2.14) instead of the

AdS5 coset projector P in (2.9).5

The point is that we consider a conformal embedding of 4D Minkowski spacetime as

in eq. (2.16) and use the coset projector P in (2.14) to avoid the degeneracy of the bilinear

form of the 4D Poincaré group ISO(1, 3) . After that, the projected one-form P (A) is

expanded in terms of γµ (µ = 0, 1, 2, 3) and the trace operation in the action leads to

non-vanishing quantities as we will see in the next subsection.

2.3 Yang-Baxter sigma model for 4D Minkowski spacetime

Yang-Baxter deformations have only been discussed for curved backgrounds so far. How-

ever, it is possible to generalize the formulation to Minkowski spacetime.

The deformed action is given by6

S = −1

2

∫ ∞
−∞
dτ

∫ 2π

0
dσ (γαβ − εαβ) Tr

[
AαP ◦

1

1− 2ηRg ◦ P
(Aβ)

]
, (2.18)

where Aα = g−1∂αg and g is given in eq. (2.11) . Here η is a constant parameter and the

action (2.18) is reduced to the undeformed one for η = 0 . The base space is 2D Minkowski

spacetime with the metric γαβ = diag(−1, 1) . The anti-symmetric tensor εαβ is normalized

as ετσ = 1 . The operator Rg is defined as

Rg ≡ g−1R(gXg−1)g , (2.19)

where a linear operator R : so(2, 4)→ so(2, 4) is a solution of the cybe ,[
R(M), R(N)

]
−R ([R(M), N ] + [M,R(N)]) = 0 , M,N ∈ so(2, 4) . (2.20)

The R-operator is related to the skew-symmetric classical r-matrix in tensorial notation

through

R(X) = Tr2[r(1⊗X)] =
∑
i

(aiTr(biX)− biTr(aiX)) , (2.21)

where the classical r-matrix is given by

r =
∑
i

ai ∧ bi ≡
∑
i

(ai ⊗ bi − bi ⊗ ai) (2.22)

satisfying the cybe,

[r12, r13] + [r12, r23] + [r13, r23] = 0 . (2.23)

The generators ai, bi are elements of so(2, 4). This means that the Yang-Baxter deforma-

tions are investigated within so(2, 4) .

It is easy to extend this formulation to the mcybe, which will be discussed in section 5.

5Actually, also the projector P would lead to the Minkowski metric (2.15) but the γ5 should be dropped

due to the dimensionality we are concerned with.
6Here the string tension T = 1

2πα′ is set to 1, and the conformal gauge is taken so as to drop the dilaton

coupling to the world-sheet scalar curvature.

– 6 –



J
H
E
P
1
0
(
2
0
1
5
)
1
8
5

A crucial point is that the steps of taking the z = 1 slice and performing the Yang-

Baxter deformation have to be made in this precise order. The two operations in general

do not commute and in particular they cannot if the r-matrix depends on γ5, which de-

forms the z direction. They do commute on the other hand for all the examples listed in

section 3.6. The magnetic case for example corresponds to a slice of the gravity dual for

non-commutative gauge theory [41, 42] and in fact the classical r-matrix is identical to the

one found in [54].

2.4 Embedding into string theory

Starting from a 2D integrable model, it is natural to ask whether it can be embedded

into string theory. This requires in general supplementing the fields we can read off from

the action by other fields in order to solve the one-loop beta function equations of string

theory. As a result of Klimcik’s procedure, we always get a 4D metric and B-field. For

the missing internal directions, we make the simplest ansatz of assuming them to be flat,

as resulting from an internal T 6 with vanishing B-field. Adding only a dilaton will be

sufficient to produce a solution for a large class of deformations, which all turn out to be

related via T-duality to flat space. The minimal ansatz for the dilaton is that it preserves

the same symmetries as the known fields. When the r-matrix only contains pµ or nµν , this

is sufficient to find a solution. More general r-matrices which contain also γ5 require also

Ramond-Ramond fields in order to solve the equations. We have not actually been able to

find the string theory embedding for all of these cases.

3 TsT -duals of flat space

In this section, we have collected a class of models for which the simplest ansatz for a

string theory embedding can be used, in which we assume the extra six dimensions to be

flat (as resulting from a T 6-compactification) and we introduce only a dilaton field. They

all turn out to be TsT -transformations of flat space with identifications. In cases in which

the r-matrix contains a pµ, one or both T-dualities act trivially.

We will present the examples in the following order. We start with a rather general

example containing both p and n in the r-matrix, which corresponds to the T-dual of

Melvin background. The r-matrices of the next two examples presented in section 3.2.1

and section 3.2.2 have the same structure of p ∧ n and correspond to the T-dual of Grant

space and TsT–duals of Minkowski spacetime. The next example, the pp-wave background

in section 3.3, has a more complicated r-matrix with the structure r ∼ (p0 − p3) ∧ n.

Next we discuss the Hashimoto-Sethi background which in our parametrization has two

ns appearing in the r-matrix, r ∼ pµ ∧ (nνρ + nσγ). The next two examples have again

a simpler structure of the r-matrix, with the Spradlin-Takayanagi-Volovich background,

where only two n’s appear in section 3.5, and with models with only p’s in the r-matrix

appearing in section 3.6.

All the models considered in this section can be embedded in string theory as TsT–

duals of flat space. Let r = a ∧ b and let α and β be the dual coordinates to a and b in

the sense of the Lie algebra (concretely, if a = pµ then α = xµ and if a = nµν then α

– 7 –
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is the angle in the plane 〈xµ, xν〉). Impose periodic boundary conditions on α and β and

consider the torus with parameter τ generated by 〈α, β〉. The effect of the deformation

is to transform τ into τη = τ/(1 + ητ). In string theory this is realized via the following

sequence of transformations (TsT ):

• T–dualize α→ α̃;

• shift β → ηα̃+ β;

• T–dualize α̃→ α. [39].

In the special case of a = pµ and b = nρσ, this corresponds to the Melvin twist where xµ

is the Melvin circle.

3.1 T-dual of Melvin background

Here we will consider an explicit example of a Yang-Baxter deformation. Our first example

is the classical r-matrix

r =
1

2
p3 ∧ n12 . (3.1)

The associated geometry is a Melvin twist of 4D Minkowski spacetime.

Let us first compute the explicit form of Aα and a deformed current Jα defined as

Jα ≡
1

1− 2ηRg ◦ P
Aα . (3.2)

First of all, P (Aα) is evaluated as

P (Aα) =
1

2

[
γ0 ∂αx

0 + γ1 ∂αx
1 + γ2 ∂αx

2 + γ3 ∂αx
3
]
. (3.3)

Note here that P (Aα) can also be expressed as

P (Aα) = P ◦
(

1− 2ηRg ◦ P
)

(Jα)

= P (Jα)− 2ηP ◦Rg(P (Jα)) .
(3.4)

Then, by plugging (3.3) into (3.4) and solving the four equations, the explicit form of P (Jα)

can be determined to be

P (Jα) = γ0 j
0
α + γ1 j

1
α + γ2 j

2
α + γ3 j

3
α , (3.5)

where the components of jµα are given by

j0α =
1

2
∂αx

0 ,

j1α =
∂αx

1 + η2x1(x1∂αx
1 + x2∂αx

2)− ηx2∂αx3

2(1 + η2[(x1)2 + (x2)2])
,

j2α =
∂αx

2 + η2x2(x1∂αx
1 + x2∂αx

2) + ηx1∂αx
3

2 (1 + η2 [(x1)2 + (x2)2])
,

j3α =
∂αx

3 + η(x2∂αx
1 − x1∂αx2)

2(1 + η2[(x1)2 + (x2)2])
.

(3.6)

– 8 –
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Thus the classical action can be rewritten as

S = − 1

2

∫ ∞
−∞

dτ

∫ 2π

0
dσ γαβ

[
−∂αx0∂βx0 + ∂αr∂βr +

r2∂αθ∂βθ + ∂αx
3∂βx

3

1 + η2r2

]
+

∫ ∞
−∞

dτ

∫ 2π

0
dσ εαβ

ηr2

1 + η2r2
∂αθ∂βx

3 ,

(3.7)

where we have performed a coordinate transformation,

x1 = r cos θ , x2 = r sin θ . (3.8)

From this action, one can read off the metric and B-field,

ds2 = −(dx0)2 + dr2 +
r2dθ2 + (dx3)2

1 + η2r2
,

B =
ηr2

1 + η2r2
dθ ∧ dx3 .

(3.9)

It should be remarked that the Yang-Baxter deformations cannot reproduce the associ-

ated dilaton, although it may be possible to perform a supercoset construction in principle.

However we can embed the background in string theory observing that the one-loop beta

function vanishes by adding a dilaton [67–69]

Φ = −1

2
log(1 + η2r2) . (3.10)

The background obtained in this way is a TsT transformation of flat space on the torus

generated by x3 and θ, i.e. the result of the following chain of transformations:

• T–duality in x3;

• shift θ → ηx̃3 + θ;

• T–duality in x̃3.

Consistency requires x̃3 to be periodic with period x̃3 ' x̃3 + 2π/η and x3 with period7

x3 ' x3 + α′η/(2π).

3.2 Generalized Melvin backgrounds

3.2.1 T-dual of Grant space

Let us consider the classical r-matrix

r =
1

2
p1 ∧ n03 . (3.11)

7We reintroduce the explicit parameter α′ in the identifications to manifestly illustrate the dimensions

of the variables.

– 9 –



J
H
E
P
1
0
(
2
0
1
5
)
1
8
5

The derivation is almost the same as in the previous subsection, hence we will not repeat the

detailed explanation but simply present the deformed metric and B-field. The associated

metric and B-field are given by

ds2 = −2dx−dx+ + η2(x+dx− + x−dx+)2

1 + 2η2 x−x+
+

(dx1)2

1 + 2η2 x−x+
+ (dx2)2

= −dt2 + (dx2)2 +
1

1 + η2 t2
[
(dx1)2 + t2dφ2

]
,

B =
η

1 + 2η2 x−x+
(x+dx− − x−dx+) ∧ dx1

=
η t2

1 + η2 t2
dx1 ∧ dφ .

(3.12)

Here the light-cone coordinates are given by

x± ≡ x0 ± x3√
2

, (3.13)

and we have introduced new coordinates given by

x0 = t coshφ , x3 = t sinhφ . (3.14)

The metric and B-field in (3.12) agree with (2.7) and (2.8) in [72] for x2 = 0 .

The background can be embedded in string theory by adding a dilaton

Φ = −1

2
log(1 + η2t2) , (3.15)

which solves the beta function equations. In fact this is an exact string theory, resulting

from a TsT transformation of flat space on the torus generated by x1 (which has periodicity

α′η/(2π)) and φ.

3.2.2 Time-like Melvin circle

Let us consider the classical r-matrix

r =
1

2
p0 ∧ n12 . (3.16)

This r-matrix is Abelian and the associated metric and B-field are given by

ds2 = − (dx0)2

1− η2r2
+ dr2 +

r2dθ2

1− η2r2
+ (dx3)2 ,

B =
ηr2

1− η2r2
dx0 ∧ dθ .

(3.17)

The Ricci scalar curvature is negative,

R = −2η2(5 + 2r2η2)

(1− η2r2)2
, (3.18)
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and this background has a curvature singularity at r = 1/η. This background is related to

the previous one by analytic continuation

(t, x1, φ)→ (ir, ix0, iθ). (3.19)

By supplementing the fields by a dilaton

Φ = −1

2
log(1− η2r2) (3.20)

which solves the beta function equations, we obtain a TsT -dual of flat space on the torus

〈x0, θ〉. Note that the Melvin circle x0 has periodicity x0 ' x0 + α′η/(2π).

3.3 PP-wave background

Let us consider the classical r-matrix

r =
1

2
√

2
(p0 − p3) ∧ n12 . (3.21)

The associated deformed background is

ds2 = −2dx+dx− − η2r2(dx+)2 + (dr)2 + r2dθ2 ,

B = ηr2 dx+ ∧ dθ ,
(3.22)

where we have introduced the polar coordinate system for x1 and x2 given by

x1 = r cos θ , x2 = r sin θ . (3.23)

This is a pp-wave background which can also be understood as a generalization of a (null)

TsT transformation obtained as

• a T-duality from θ to θ̃, followed by

• the shifts x0 → ηθ̃ + x0, x3 → −ηθ̃ + x3 and the final

• T-duality from θ̃ to θ.

Note that this requires the identifications x0 ' x0 +α′η/(2π) and x3 ' x3 +α′η/(2π).

3.4 Hashimoto-Sethi background

We next consider the classical r-matrix

r =
1

2
√

2
p2 ∧ (n01 + n13) . (3.24)

The resulting metric and B-field are given by

ds2 = −2dx−dx+ +
1

1 + η2(x+)2
((dx1)2 + (dx2)2 + η2x1dx+(2x+dx1 − x1dx+)) ,

B =
η

1 + η2(x+)2
(x1dx+ − x+dx1) ∧ dx2 .

(3.25)
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Note that this background depends on the light-cone time x+ explicitly. The associated

dilaton to complete the string embedding is taken to be

Φ = −1

2
log(1 + η2(x+)2) . (3.26)

The metric and B-field (3.25) agree with those of the Hashimoto-Sethi background.

To show this agreement, one has to introduce new coordinates,

x+ =
1

η
y+ , x1 = y+ỹ , x− = ηy− +

η

2
y+ỹ2 , x2 = −z̃ . (3.27)

This reproduces the expression in eq. (25) of [70] where the background is shown to be the

result of a TsT transformation.

3.5 Spradlin-Takayanagi-Volovich background

Let us here consider the classical r-matrix

r =
1

2
n12 ∧ n03 . (3.28)

Then the associated metric and B-field are given by

ds2 = −2dx+dx− + dr2 +
1

1 + 2η2r2x−x+
(
r2dθ2 − r2η2(x+dx− − x−dx+)2

)
,

B =
ηr2

1 + 2η2r2x−x+
(x−dx+ − x+dx−) ∧ dθ .

(3.29)

The light-cone coordinates are given in (3.13) . This background (3.29) is really time-

dependent and has a curvature singularity.

By using the coordinates in (3.14), one can rewrite the expressions in (3.29) as

ds2 = −dt2 + dr2 +
r2dθ2 + t2dφ2

1 + η2r2t2
,

B =
ηr2t2

1 + η2r2t2
dφ ∧ dθ .

(3.30)

Note that the coordinates in (3.14) do not cover the whole x0-x3 plane and the back-

ground (3.30) contains no singularity. Then the metric and B-field in (3.30) agree with

those of (6.1) in [71]. This is a time-dependent background realized by a TsT transforma-

tion of Minkowski spacetime on the torus generated by φ and θ. The associated dilaton is

Φ = −1

2
log(1 + η2r2t2) . (3.31)

3.6 Locally flat spaces

In this section, we consider classical r-matrices of the type

r =
1

2
pµ ∧ pν (µ, ν = 0, 1, 2, 3) . (3.32)

In these cases the associated geometries are locally flat and the B–field is closed. The

backgrounds are nevertheless non-trivial and are associated to non-commutative field the-

ories [84]. The following is a list of possible r-matrices.
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(1) Magnetic flux r =
1

2
pi ∧ pj (i 6= j, i, j = 1, 2, 3) (Melvin Shift Twist)

With this r-matrix, the following metric and B-field are obtained:

ds2 = −(dx0)2 +
(dxi)2 + (dxj)2

1 + η2
+

3∑
k=1

εijk(dxk)2 ,

B =
η

1 + η2
dxi ∧ dxj .

(3.33)

This background is obtained via a TsT transformation on the torus 〈xi, xj〉.

A multi-parameter generalization of this type is obtained using the r-matrix

r =
1

2
(a3 p1 ∧ p2 + a1 p2 ∧ p3 + a2 p3 ∧ p1) , (3.34)

where a1, a2, a3 ∈ R are deformation parameters. The resulting metric and B-field

are given by

ds2 = −(dx0)2 +
(dx1)2 + (dx2)2 + (dx3)2 + η2(a1dx

1 + a2dx
2 + a3dx

3)2

1 + η2(a21 + a22 + a23)
,

B =
η

1 + η2(a21 + a22 + a23)

(
a3 dx

1 ∧ dx2 + a1 dx
2 ∧ dx3 + a2 dx

3 ∧ dx1
)
.

(3.35)

(2) Electric flux r =
1

2
p0 ∧ pi (i = 1, 2, 3) (Melvin Shift Twist)

This r-matrix leads to the metric and B-field

ds2 =
−(dx0)2 + (dxi)2

1− η2
+
∑
j 6=i

(dxj)2 ,

B = − η

1− η2
dx0 ∧ dxi .

(3.36)

This corresponds to turning on an electric flux and the range of η is restricted to

−1 < η < 1 . Once more we can obtain this background via a TsT transformation

on the torus 〈x0, xi〉. The background is related to the non-commutative open string

theory (ncos) [85].

A multi-parameter generalization of this type is obtained by the r-matrix

r =
1

2
p0 ∧ (a1 p1 + a2 p2 + a3 p3) , (3.37)

where a1, a2, a3 ∈ R are deformation parameters. The resulting metric and B-field

are given by

ds2 =
−(dx0)2 + η2(a1dx

1 + a2dx
2 + a3dx

3)2

1− η2(a21 + a22 + a23)
+ (dx1)2 + (dx2)2 + (dx3)2 ,

B =
η

1− η2(a21 + a22 + a23)

(
a1 dx

1 + a2 dx
2 + a3 dx

3
)
∧ dx0 . (3.38)
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(3) Light-like flux r =
1

2
√

2
(p0 − p3) ∧ p2 (Null Melvin Shift Twist)

In this case, we obtain the following metric and B-field

ds2 = −2dx+dx− − η2(dx+)2 + (dx1)2 + (dx2)2 ,

B = −η dx+ ∧ dx2 .
(3.39)

This corresponds to turning on a light-like flux resulting from a T–duality in x2,

opposite shifts in x0 and x3 and a final T–duality in x̃2. The background is related

to the light-like non-commutativity argued in [86].

4 Non-twist cases

So far, we have discussed the cases associated with TsT transformations. In this section,

we shall consider the other cases, for instance, including a single T-duality, or a chain of

TsT -transformations followed by an S-duality. We will refer to the cases as non-twist cases.

As the first example, we revisit the pp-wave case and argue its relation to S-duality.

Then we will reproduce T-duals of dS4 and AdS4 respectively, as Yang-Baxter deformations.

These examples may be regarded as non-trivial examples of our procedure. Finally we

provide more complicated examples including two-parameter deformations.

Let us remark that the presence of γ5 in the all of the r-matrices appearing in this

section plays a crucial role. It can intuitively be interpreted as a deformation of the radial

direction of AdS5 and indicates that the location of the slice is moved. This is also the

reason why the integrability of the TsT -cases of the previous section is obvious, while in

general it is not automatic in the non-twist cases, except for special cases such as the

T-duals of dS4 and AdS4.

4.1 PP-wave revisited — S-duality

In the previous section, we have considered the pp-wave background (3.22). We will show

that the same metric can be reproduced by considering the r-matrix

r =
1

4
√

2
(γ5 − 2n03) ∧ (p0 − p3) . (4.1)

The resulting metric and B-field are given by

ds2 = −2dx+dx− − η2r2(dx+)2 + (dr)2 + r2dθ2 ,

B = ηr dx+ ∧ dr .
(4.2)

As noted above, the metric is the same as in (3.22), but the B-field is different. In particular,

the B-field carries an index for the radial direction r , which is not a U(1)-direction. Hence

it does not seem likely that the background (4.2) can be obtained via a simple twisting

procedure, as opposed to (3.22). This difference comes from the fact that the second

r-matrix (4.1) is non-Abelian, while the first one (3.21) is Abelian. This non-Abelian r-

matrix appears to be related to a chain of dualities. In fact, the r-matrix (4.1) is identical
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to the one in (2.13) of [56] that has been employed to study a deformation of AdS5 × S5.

It has been shown in [57] that this r-matrix corresponds to a duality chain of three TsT

transformations and an S-duality.8 This is an example of a non-Abelian r-matrix being

related to an intricate duality chain. This indicates that general non-Abelian r-matrices

can be interpreted in a similar way.

As another possibility, non-Abelian r-matrices may indicate deformations beyond the

standard twists or dualities. To elaborate this statement, it would be interesting to study

more non-trivial examples of classical r-matrices, as we will show in the next subsection.

4.2 T-dual of dS4

Now we consider the classical r-matrix

r =
1

4
γ5 ∧ p0 . (4.3)

Note that this r-matrix contains γ5 and leads to the metric and B-field given by

ds2 =
−(dx0)2 + dr2

1− η2r2
+ r2 sin2 θdφ2 + r2dθ2 ,

B =
ηr

1− η2r2
dx0 ∧ dr .

(4.4)

where we have introduced new coordinates r , θ and φ through

x1 = r cosφ sin θ , x2 = r sinφ sin θ , x3 = r cos θ . (4.5)

Note here that the above B-field can be rewritten in the form of a total derivative.

The deformed background (4.4) is already simple. However, in order to understand

the background well, we can perform a T-duality along the x0-direction.9 The resulting

background is given by

ds2 = (dr + ηr dx0)2 − (dx0)2 + r2(dθ2 + sin2θ dφ2) . (4.6)

Note that the B-field has disappeared now. Then, by performing a coordinate transforma-

tion from x0 to t ,

x0 = t− 1

2η
log(η2r2 − 1) , (4.7)

one can reproduce the well-known metric of dS4 in static coordinates,

ds2 = −(1− η2r2)dt2 +
dr2

1− η2r2
+ r2(dθ2 + sin2θdφ2) (4.8)

with a cosmological horizon at r = 1/η . Thus we have shown that the background (4.4)

is nothing but a T-dual of dS4. The dS4 geometry cannot be realized as a twist of 4D

Minkowski spacetime, hence it is quite remarkable that the T-dual of dS4 has been obtained

as a Yang-Baxter deformation.

It is worth to mention that the r-matrix in eq.(4.3) has already appeared in [88] where

it was related to four-dimensional de Sitter space in a different context. This supports our

argument from another perspective

8In this spirit, we can understand the background in eq. (4.2) as the S-dual of the one in eq.(3.22).
9This is a time-like T-duality. For the detail, see the original argument [87].
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4.3 T-dual of AdS4

As another example, let us consider the classical r-matrix

r =
1

4
γ5 ∧ p1 . (4.9)

This r-matrix also contains γ5 . The associated metric and B-field are given by

ds2 =
dt2 + (dx1)2

1 + η2t2
+ t2 cosh2 φdθ2 − t2dφ2 ,

B =
ηt

1 + η2t2
dt ∧ dx1 ,

(4.10)

where we have introduced new coordinates t , θ and φ through

x0 = t sinhφ , x2 = t cos θ coshφ , x3 = t sin θ coshφ . (4.11)

Note here that the B-field can be recast as a total derivative.

As in the previous case, it is nice to perform a T-duality along the x1-direction. Then

the resulting background is given by10

ds2 = (dt− ηt dx1)2 + (dx1)2 + t2(−dφ2 + cosh2 φdθ2) . (4.12)

Now the B-field has disappeared. Let us perform a coordinate transformation,

x1 = y +
1

2η
log(η2t2 + 1) . (4.13)

Then the resulting metric is given by

ds2 = (1 + η2t2)dy2 +
dt2

1 + η2t2
+ t2(−dφ2 + cosh2 φdθ2) . (4.14)

By replacing the coordinates (with a double Wick rotation) by

y → it , t→ r , φ→ iθ , θ → φ , (4.15)

one can obtain the standard metric of AdS4 with the global coordinates

ds2 = −(1 + η2r2)dt2 +
dr2

1 + η2r2
+ r2(dθ2 + cos2 θ dφ2) . (4.16)

Note that η2 measures the curvature.

4.4 More complicated backgrounds

Here, we give a list of classical r-matrices for which the corresponding backgrounds have

not been identified yet. All of the classical r-matrices we consider here satisfy the cybe

given in (2.23) . Nevertheless, this does not guarantee integrability without explicitly con-

structing the Lax pair. In the previous cases, the string embedding assured integrability

via T-duality to integrable backgrounds. We conjecture that also the following examples

are new integrable models, but at this point have no explicit proof.

In the following, we assume that the light-cone coordinates are defined in (3.13) and

x1 , x2 are rewritten with the polar coordinates given in (3.23).

10Note that, at this stage, one can see that this metric describes AdS4 by explicitly computing the scalar

curvature and the Ricci tensor.
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4.4.1 One-parameter deformations

Let us consider more complicated one-parameter deformations.

The first example is

r =
1

4
√

2
(γ5 − 2n12) ∧ (p0 − p3) , (4.17)

and the resulting metric and B-field are given by

ds2 =
−2dx−dx+ − 2η2rdx+

[
rdx+ − x+(dr + rdθ)

]
1− η2(x+)2

+ dr2 + r2dθ2 ,

B =
η

1− η2(x+)2
dx+ ∧ (rdr − x+dx− + r2dθ) .

(4.18)

This r-matrix is non-Abelian. The Ricci scalar and Riemann square vanish. This back-

ground has a coordinate singularity at x+ = ±1/η .

The second example is

r =
1

4
(n05 − n35) ∧ (p0 − p3) , (4.19)

and the metric and B-field are given by

ds2 =
−2dx+dx− + dr2 − η2(x+)2(x+dr − rdx+)2

1− η2(x+)4
+ r2dθ2

B =
ηx+

1− η2(x+)4
dx+ ∧ (rdr − x+dx−) .

(4.20)

This is an Abelian r-matrix in which γ5 is not contained but n05 and n35 carry the in-

dex 5. Note that the Ricci scalar and Riemann square vanish and x+ = ±|η|−1/2 are just

coordinate singularities.

4.4.2 Two-parameter deformations

It may be interesting to consider two-parameter deformations.

The first example is given by

r =
s1
2
E24 ∧ (E22 − E44) +

s2
2
E13 ∧ (E11 − E33)

=
s1
8

(p0 − p3) ∧ (2n03 − γ5) +
s2
8

(p0 + p3) ∧ (2n03 + γ5) ,
(4.21)

where s1 and s2 are arbitrary constant parameters. This r-matrix has been used to study

a two-parameter deformation of AdS5 in [56]. The metric and B-field associated to (4.21)

are given by

ds2 =
−2dx+dx− + dr2

1 + s1s2η2 r2
+ r2dθ2 − η2 r2(s1dx

+ + s2dx
−)2

2(1 + s1s2η2 r2)
,

B =
η r√

2 (1 + s1s2η2 r2)
(s1dx

+ − s2dx−) ∧ dr .
(4.22)
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When s1 = −s2 = s , the metric simplifies to

ds2 =
−(dx0)2 + dr2

1− s2η2 r2
+ r2dθ2 + (dx3)2 ,

B =
sη r

1− s2η2 r2
dx0 ∧ dr .

(4.23)

A T-duality along the x0-direction leads to the geometry of dS3 × R .

The second example is given by

r =
1√
2
E24 ∧

[
(a+ ib)

(
E22 −

1

4
E

)
− (a− ib)

(
E44 −

1

4
E

)]
=

1

4
√

2
(p0 − p3) ∧

[
a(2n03 − γ5) + 2b n12

]
,

(4.24)

where a, b ∈ R are deformation parameters and E ≡
∑4

i=1Eii . The resulting metric and

B-field are given by

ds2 = −2dx+dx− + dr2 + r2dθ2 − η2(a2 + b2)r2(dx+)2 ,

B = η r dx+ ∧ (adr + brdθ) .
(4.25)

Thus this background is regarded as an interpolation between the plane waves in (3.22)

and (4.2).11

The third example is given by

r =
i√
2

[
E24 ∧

(
a1

(
E22 −

1

4
E

)
− a2

(
E44 −

1

4
E

))
− (a1 + a2)E23 ∧ E34

]
= − i

4
√

2

[
(p0 − p3) ∧

(
a1

(
in12 − n03 +

γ5
2

)
− a2

(
in12 + n03 −

γ5
2

))
+ (a1 + a2)(p1 − ip2) ∧

(
n01 + n13 + i(n02 + n23)

)]
,

(4.26)

where a1 , a2 ∈ R are deformation parameters. The resulting metric and B-field are given by

ds2 =− 2dx+dx− + dr2 + r2dθ2

− η2 [(a1 + a2)x
+dr − a2rdx+]

2
+ (a1 + a2)

2r2(x+)2dθ2

1 + η2(a1 + a2)2(x+)2
,

B =
η r

1 + η2(a1 + a2)2(x+)2
(
(a1 + a2)x

+dr − a2rdx+
)
∧ dθ .

(4.27)

When a1 = −a2 , the background in (3.22) is reproduced. Thus this background can be

regarded as a deformation of the pp-wave background.

11It would be interesting to see if this background can be understood as the result of an SL2(R) trans-

formation acting on the pp wave of eq. (3.22).

– 18 –



J
H
E
P
1
0
(
2
0
1
5
)
1
8
5

5 A deformation of Drinfeld-Jimbo type

So far, we have considered classical r-matrices satisfying the classical Yang-Baxter equa-

tion (2.23) (or (2.20)). Here, as an exceptional case, let us consider a classical r-matrix of

Drinfeld-Jimbo (DJ) type,

rDJ = −i
∑

1≤i<j≤4
Eij ∧ Eji , (Eij)kl ≡ δikδjl , (5.1)

which satisfies the modified Yang-Baxter equation,[
R(M), R(N)

]
−R ([R(M), N ] + [M,R(N)]) = [M,N ] , (5.2)

where M,N ∈ so(2, 4). In comparison to the cybe in (2.20) , the right-hand side of (5.2)

is modified.12 The r-matrix (5.1) was utilized to construct an integrable deformation

of the AdS5 × S5 superstring [36, 37]. The deformed metric and B-field were explicitly

computed in [89].

The computation scheme is essentially identical because we do not mention the

the associated Lax pair and the kappa transformation related to the Green-Schwarz

string action.

The resulting metric and B-field are given by

ds2 = −r2 sin2 θ dt2 + dr2 +
r2

1 + η2 r4 sin2 θ

(
dθ2 + cos2 θ dφ2

)
,

B = − η r4 sin θ cos θ

1 + η2 r4 sin2 θ
dθ ∧ dφ .

(5.3)

Here we have performed a coordinate transformation,

x0 = r sin θ sinh t , x1 = r cos θ cosφ ,

x2 = r cos θ sinφ , x3 = r sin θ cosh t , (5.4)

and rescaled η → η/2 . It is worth noting that the metric in (5.3) would be regular as

opposed to the case of the deformation of AdS5. The scalar curvature has no singularity,

while the singular surface is identified in the deformed AdS5 [89]. This may be due to the

fact that we are now working on a slice of AdS5 at z = 1 .

6 Conclusion and discussion

In this paper, we have discussed Yang-Baxter deformations of 4D Minkowski spacetime

using a conformal embedding of the spacetime into AdS5. Via this procedure we have

succeeded in reproducing the metric and B-field of well-known backgrounds such as T-

duals of Melvin backgrounds, Hashimoto-Sethi backgrounds, time-dependent backgrounds

12The r-matrices satisfying the mcybe in (5.2) are said to be non-split type, as opposed to the split type

obtained when the right-hand side of (5.2) is negative. Our choice of sign ensures the reality of the B-field

as in [22, 89].

– 19 –



J
H
E
P
1
0
(
2
0
1
5
)
1
8
5

r-matrix Type of Twist Background

pi ∧ pj (i, j = 1, 2, 3) Melvin Shift Twist Seiberg-Witten

p0 ∧ pi Melvin Shift Twist NCOS

(p0 + pi) ∧ pj (i 6= j) Null Melvin Shift Twist light-like NC

1
2p3 ∧ n12 Melvin Twist T-dual Melvin

1
2
√
2
p2 ∧ (n01 + n13) Melvin Null Twist Hashimoto-Sethi

1
2n12 ∧ n03 R Melvin R Twist Spradlin-Takayanagi-Volovich

1
2p1 ∧ n03 Melvin Boost Twist T-dual of Grant space

1
2
√
2
(p0 − p3) ∧ n12 Null Melvin Twist pp-wave

1
4
√
2
(γ5 − 2n03) ∧ (p0 − p3) Non-Twist pp-wave

1
4γ5 ∧ p0 Non-Twist T-dual of dS4

1
4γ5 ∧ p1 Non-Twist T-dual of AdS4

DJ-type (mCYBE) Non-Twist q-deformation (?)

Table 1. A catalog of classical r-matrices and the associated backgrounds.

of Spradlin-Takayanagi-Volovich, the T-dual of Grant space, pp-wave backgrounds, and

T-duals of dS4 and AdS4 . For a large class of them, an embedding into string theory exists

as a TsT -transformation of flat space with identifications, where the extra six dimensions

are flat and only a dilaton is introduced. Finally we have studied a deformation by using

a classical r-matrix of Drinfeld-Jimbo type and have derived the associated metric and

B-field explicitly. The backgrounds that we have identified are summarized in table 1.

There are many open questions. The undeformed case is trivially integrable and hence

the integrability should be preserved under Yang-Baxter deformations. It would be in-

teresting to consider what happens to the Lax pairs and to study the associated alge-

bras. In particular, deformed Poincaré algebras are studied in [90–92] in terms of classical

r-matrices. It would be very interesting to clarify the correspondence between the list

in [90–92] and our results.13

It would be most important to generalize our argument to 10D Minkowski spacetime

in order to extend our argument to a consistent string theory. For this purpose, we have

to consider the 10D conformal group SO(2, 10) and realize 10D Minkowski spacetime as a

slice of 11D AdS space. We expect that in this case 10D supersymmetric configurations

like the fluxtrap backgrounds [93–96] could be reproduced as Yang-Baxter deformations.

As opposed to deformations of AdS5 × S5, our computations have the advantage of

being very simple and hence make it easier to generalize the Yang-Baxter deformations.

Another interesting possible direction would be a supercoset construction including space-

time fermions. Furthermore, it would be very interesting to investigate some quantum

aspects such as the relation between string spectra and Yang-Baxter deformations.14

13See also the discussion in [97] which has appeared subsequently to this article.
14For some advances regarding the quantum aspects of the most studied example of β and γ deformations,

see the review [98].

– 20 –



J
H
E
P
1
0
(
2
0
1
5
)
1
8
5

Acknowledgments

We are very grateful to Io Kawaguchi for collaboration at an early stage of this work.

We really appreciate Jerzy Lukierski and Stijn J. van Tongeren for useful discussions and

helpful comments to improve our argument. The work of K.Y. is supported by Supporting

Program for Interaction-based Initiative Team Studies (spirits) from Kyoto University

and by the jsps Grant-in-Aid for Scientific Research (C) No. 15K05051. This work is also

supported in part by the jsps Japan-Russia Research Cooperative Program and the jsps

Japan-Hungary Research Cooperative Program.

D.O. and S.R. would like to thank the Department of Physics of Kyoto University for

hospitality. The work of S.R. is supported by the Swiss National Science Foundation (snf)

under grant number PP00P2 157571/1.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References
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