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1 Introduction

Yang-Mills theory as well as QCD can be mapped to three-dimensional effective Polyakov

loop theories by integrating over the spatial gluon degrees of freedom, both in the contin-

uum [1–4] and on the lattice [5–10]. The resulting effective theories describe the physics of

the phase transitions and thermodynamic behaviour. They are simpler in the sense that

their non-perturbative treatment requires less numerical effort and, at least in some limiting

cases, the effective interactions can be associated with the low energy degrees of freedom.

Since part of the degrees of freedom have been integrated out the sign problem, which

hampers lattice simulations at finite baryon density, is much milder in the effective theory.

Indeed, at least for very heavy quarks [8] and in the chiral limit on very coarse lattices [11]

analytically derived effective lattice theories allow for simulations of the nuclear liquid gas

transition in the cold and dense regime of QCD. On the other hand,effective actions gener-

ically include infinitely many and arbitrarily involved interaction terms,restricted only by

the symmetries of the underlying theory,and become practical only after some drastic trun-

cation. It is therefore essential to understand the relevance of the various terms and the

effects of truncations.

In this work,we consider SU(3) Yang-Mills theory on a lattice with periodic boundary

conditions and the effective action obtained by integrating over the spatial links,

e−Seff[W ] =

∫
[dUi]e

−S[U ] , (1.1)
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where S[U ] is the standard Wilson lattice gauge action and Seff depends only on the

Polyakov lines W (x) =
∏
y0; y=x U0(y). It contains all n-point interactions at all distances

and with all powers of loops that are consistent with the Z(N)-centre symmetry of the

Yang-Mills theory. The expectation value of all observables represented by Polyakov lines

can be calculated in the effective theory,

〈O〉 =
1

Z

∫
[dW ]e−Seff[W ]O(W ) =

1

Z

∫
[dU0][dUi]e

−S[U ]O(W [U ]) . (1.2)

The normalisation of the path integral is chosen such that

Z =

∫
[dUi]e

−S[U ] =

∫
[dW ]e−Seff[W ] . (1.3)

The constant part of the effective action, which does not depend on the W , can be neglected

(absorbed in the normalisation) if one is interested in the phase transition or W -dependent

observables only. However, for detailed thermodynamic properties the T dependence of

the constant part might be relevant.

Svetitsky and Yaffe conjectured that the short range Polyakov interactions are the

relevant terms for the phase transition [5]. This is based on the fact that these are the

dominant contributions both in the strong and weak coupling limit, while for all couplings

interactions are screened by the mass gap of the theory (see also the discussion in [12]).

In [7] the integration of the spatial links was performed by means of a strong coupling

expansion, where interaction terms are parametrically suppressed with increasing distance

and n-points. Simulation of the effective action truncated to the leading nearest neigh-

bour coupling gives already a good description of thermodynamic functions and the phase

transition, allowing for a continuum extrapolation of the critical temperature. This already

vastly improves over direct strong coupling calculations of thermodynamic observables [13–

15]. On the other hand, the missing higher order couplings and long range interactions

hamper the applicability of the effective theory to correlation functions and the string ten-

sion, where non-local contributions play an increasing role as lattices get finer [12]. The

same observation was made with a non-perturbatively determined form of the effective

action [9, 10].

In this work we present a new method to numerically determine the couplings of the

effective theory directly from simulations of the 4d Yang-Mills theory. The method employs

the fact that there are different character expansions of the effective action. In one of them

the effective couplings emerge as expectation values of n-point functions of Polyakov loops

in the full theory, which can be measured easily. The relation between effective couplings

corresponding to different character expansion schemes is then established perturbatively in

terms of a rapidly converging power series. This allows us to check the range of applicability

of the strong coupling approach [7, 12] and significantly improve on the results.

This paper is organised as follows. In section 2 we discuss the character expansions

pertaining to the strong coupling approach and the new numerical method. We investi-

gate two-point interactions of Polyakov loops in the fundamental and anti-fundamental

representation in section 3 . The new method is introduced for the one-coupling effective
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theory and then generalised to include two-point couplings over larger distances. In sec-

tion 4 we discuss the significance of higher representations as well as three- and four-point

interactions in the fundamental representation before concluding in section 5.

2 The different character expansions of the effective action

The effective action can be expanded in terms of the characters χr of all irreducible repre-

sentations of the gauge group. The irreducible representations of SU(N) are labelled by a

vector r of N-1 canonical labels. In SU(3) one has two-dimensional vectors like (1, 0) and

(0, 1) for fundamental and anti-fundamental representation or (1, 1) and (2, 0) for the ad-

joint and sextet representation. The characters of the fundamental and anti-fundamental

representation are the ordinary Polyakov loop L(x) ≡ χ(1,0)(W (x)) = tr[W (x)] and its

complex conjugate L† ≡ χ
(1,0)

(W ) = χ(0,1)(W ). Since products of the characters of the

irreducible representations can be transformed into sums, the effective action can be trans-

formed into a representation without products of χr(W (x)) at the same lattice point x.

The effective action generically includes arbitrary interactions of characters at all distances.

A possible representation of the effective action that includes all of these terms is thus

Seff =
∑

x,r

∑

n

∑

[r1,x1],...,[rn,xn]

cr[r1,x1],...,[rn,xn]χr(W (x))

n∏

i=1

χri(W (x + xi)) . (2.1)

The coefficients of this expansion are not completely independent but related by the sym-

metries of the theory. In our case, the Z(N) centre symmetry restricts the independent

combinations of the ri, and the cubic symmetry (the remnant of rotational and translational

invariance in the continuum) restricts the combinations of xi.

Our aim is a numerical determination of the coefficients in the effective action from

expectation values in the full theory. The relations between the measured expectation

values and the effective action should be as simple as possible. Certain observables like

the Polyakov loop correlators can be obtained with a high precision. The form (2.1) is,

however, not well suited for such an approach.

Alternatively, also the exponential of the effective action can be represented by in-

teraction terms of characters. This corresponds to a Taylor expansion of the right hand

side of (1.1), where products of characters at the same point are converted into sums of

single characters. In this way the expansion of the effective action (2.1) is converted into

an expansion of its exponential,

e−Seff = λ̃0

(
1 +

∑

x,r

∑

n

∑̃

[r1,x1],...,[rn,xn]

λ̃r[x1,r1],...,[xn,rn]χr(W (x))

n∏

i=1

χri(W (x + xi))

)
. (2.2)

The sum
∑̃

is performed in such a way that each combination of characters and lattice

points appears only once. Because of the orthogonality of the characters, expectation values

of the characters in the full theory now directly project on the corresponding coefficient

– 3 –
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in (2.2),

〈χr(W (0))

n∏

i=1

χri(W (xi))〉 =
1

Z

∫
[dUµ]e−S[U ]χr(W (0))

n∏

i=1

χri(W (xi)) (2.3)

=
1

Z

∫
[dW ]e−Seffχr(W (0))

n∏

i=1

χri(W (xi)) = λ̃r[x1,r1],...,[xn,rn] .

(The constant part λ̃0 =
∫

[dUµ]e−S[U ] has been factored out to arrive at the proper nor-

malisation of the expectation values and will not be considered in the further analysis).

The disadvantage of this representation of the effective action is, however, that any trun-

cated version of the expansion is not appropriate to reproduce the phase transition. The

range of interactions in the corresponding effective theory is restricted to short ranges. At

larger distances all correlations, in particular the Polyakov loop correlator 〈L(0)L†(x)〉, are

zero. Moreover, the λ̃ are no “coupling constants” in the usual sense of analyticity and

locality. Defined as correlation functions they in particular display non-analyticities at a

phase transition.

A different representation, which includes all long range correlations already in the

truncation to its first term, follows in a natural way from the strong coupling approach [7],

e−Seff = λ0

∏

x,r,n

∏̃

[r1,x1],...,[rn,xn]

(
1+λr[x1,r1],...,[xn,rn]

(
χr(W (x))

n∏

i=1

χri(W (x + xi)) + c.c.

))
.

(2.4)

The product
∏̃

now runs over all inequivalent combinations of irreducible representations

r and lattice positions x. The coefficient of the trivial representation has been factored

out since it is irrelevant in the calculation of expectation values. A truncation in this

representation is a restriction of n and r, r1, . . . , rn to a certain number of irreducible rep-

resentations and of the xi to a finite number of interaction distances. Such truncations

arise naturally in a strong coupling expansion. This representation combines the advan-

tages of (2.1) and (2.3): long range correlations are included and the calculation of the

coefficients from expectation values is still feasible. The Polyakov loop correlator in such

an effective theory is non-zero at arbitrary distances and decays exponentially, as in the

full gauge theory.

All discussed representations are complete expansions of the effective action, implying

relations between the coefficients c, λ, and λ̃. If the expansions are truncated, only approx-

imate relations can be established. In this work we use the representation (2.3) in order to

determine a finite number of the couplings λ̃ numerically by simulating the corresponding

n-point functions. In a second step, we evaluate the same expectation values as a pertur-

bative series in small λ using the representation (2.4). The relations λ̃(λ) are then realised

as power series which can be easily solved for the λ. In this approach the effective cou-

plings, containing information of the full correlators, clearly deviate from those obtained

in the strong coupling expansion. But we find them to be sufficiently small over the entire

parameter range of β,Nτ to justify a perturbative expansion, with an ordering essentially

– 4 –



J
H
E
P
1
1
(
2
0
1
5
)
0
1
0

the same as in the strong coupling expansion. In particular, the dominant contribution is

the nearest neighbour interaction.

Above the phase transition the theory develops a non-zero expectation value of the fun-

damental loop (as well as that of Polyakov loops in higher representations with non-zero

N-ality). It is important to note that the effective theory (2.4) captures this signal of the

phase transition without the introduction of explicit center symmetry breaking terms, the

non-vanishing expectation value resulting from the non-perturbative dynamics. Hence the

general structure of the action can in principle be used also on the other side of the tran-

sition. By contrast, it is impossible to reproduce the transition in the representation (2.2)

without additional center breaking terms.

The strong coupling approach calculates the effective theory (2.4) and extrapolates to

the phase transition based on the well behaved coupling constants. In the same spirit we

are calculating here numerically the coupling constants in (2.4) up to the phase transition.

The numerical results are expected to allow a more precise extrapolation of the phase

transition point.

3 Two point interactions in the fundamental representation

The simplest contributions to the effective action are two-point interaction terms of

Polyakov loops in the fundamental and anti-fundamental representation at all distances.

We first list the strong coupling results and the corresponding ordering of the couplings,

then we compare it with the non-perturbative numerical data.

3.1 Strong coupling results

The expansion parameter of the strong coupling series is u(β) = β
18 + . . . < 1, the coefficient

of the fundamental representation in a character expansion of e−Sp[U ] with the plaquette

action Sp(U) [16]. To leading order the nearest neighbour coupling is uNτ , where Nτ is the

number of lattice points in temporal direction. The leading order contribution to couplings

over larger distances is at least dNτ , where d is the shortest distance along the links of the

lattice (“taxi driver distance”). We write the effective couplings always as a product of

leading order contribution and corrections. For the nearest neighbour interaction we have

computed the corrections up to high orders in u, they can be resummed into an exponential

factor (for details see [7]),

λ1 ≡ λ(1,0)
[(1,0,0),(0,1)]

=





u4 exp

[
4

(
4u4+12u5−14u6−36u7+

295

2
u8+

1851

10
u9+

1035317

5120
u10

)]
: Nτ = 4

uNτ exp

[
Nτ

(
4u4+12u5−14u6−36u7+

295

2
u8+

1851

10
u9+

1055797

5120
u10

)]
: Nτ ≥ 6 .

(3.1)

Here we introduced a simplified one-index notation for the couplings λ, which we also apply

for the representation (2.2) of the effective action (λ̃1 ≡ λ̃(1,0)
[(1,0,0),(0,1)] etc.).
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The next terms are interactions at distance
√

2 and 2, which have the same “taxi-driver

distance” d = 2:

λ2 ≡ λ(1,0)
[(1,1,0),(0,1)] =





u10(12 + 26u2 + 364u4) : Nτ = 4

u14(30 + 66u2) : Nτ = 6

Nτ (Nτ − 1)u2Nτ+2 : Nτ > 6

(3.2)

λ3 ≡ λ(1,0)
[(2,0,0),(0,1)] = 4Nτu

2Nτ+6

(
1 + 12u2 +

(
8Nτ +

57

2

)
u4

)
. (3.3)

We also consider interactions with d = 3

λ4 ≡ λ(1,0)
[(1,1,1),(0,1)] = u3Nτ+4(Nτ

4 + 6Nτ
3 − 13Nτ

2 + 6Nτ ) (3.4)

λ5 ≡ λ(1,0)
[(2,1,0),(0,1)] = Nτ (Nτ − 1)u3Nτ+4 (3.5)

λ6 ≡ λ(1,0)
[(3,0,0),(0,1)] = 4Nτu

3Nτ+8(1 + 12u2) . (3.6)

Note that the corrections to the leading order strong coupling result have been computed

with different precision for the various couplings since their calculation gets much more

involved at larger distances. In the following we limit our investigations to a maximum

order of 4Nτ on the Nτ = 4 lattice, which excludes the interaction λ6. The effective

action (2.4) has thus the following form

e−S
(1)
eff =

∏

x,i=1,...3

(
1 + λ1(L(x)L(x+ î)† + L(x)†L(x+ î))

)

×
∏

[x,y]

(
1 + λ2(L(x)L(y)† + L(x)†L(y))

)

×
∏

x,i=1,...3

(
1 + λ3(L(x)L(x+ 2̂i)† + L(x)†L(x+ 2̂i))

)

×
∏

{x,y}

(
1 + λ4(L(x)L(y)† + L(x)†L(y))

)

×
∏

<x,y>

(
1 + λ5(L(x)L(y)† + L(x)†L(y))

)
, (3.7)

where [x, y] indicates the product of all points with distance
√

2 (i. e. connected around

one corner), the product {x, y} contains all points with distance
√

3, and < x, y > with

distance
√

5.

3.2 The effective coupling in the one-coupling action

The simplest truncation of the effective action contains only the nearest neighbour cou-

pling λ1, setting all other couplings in (3.7) to zero. Previous investigations based on

the strong coupling series (3.1) have shown that this simple form of the action allows al-

ready a description of the phase transition to an accuracy of about 10% for lattices with

Nτ = 2− 12 [7].
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0.25

0.2 0.25 0.3 0.35 0.4

λ
1

u(β)

u
(β

c
)

u
(β

(s
c)

c
)

O(λ1
1)

O(λ3
1)

O(λ5
1)

including λn

strong coupling

Figure 1. Numerical solution for λ1 in the one-coupling effective theory compared to its strong

coupling series (3.1) for Nτ = 4. Different truncations of (3.9). We also check stability against

inclusion of the larger distance couplings (3.11), determined in section 3.3. The horizontal line

marks the critical effective coupling, vertical lines the critical βc in full Yang-Mills theory and β
(sc)
c

predicted by λ
(sc)
1 [7].

On the other hand, the exact numerical value of λ̃1 in the expansion (2.2) is determined

by the simple correlator,

λ̃1 = 〈L((0, 0, 0))L((1, 0, 0))†〉 , (3.8)

which we measure in a simulation of the full 4d theory. The same correlator can be

calculated in the effective theory up to O(λ7
1) in an expansion of λ1. Equating these

two expressions one arrives at the following relation between the coupling constants in

representation (2.2) and (2.4),

λ̃1 = λ1 + 4λ3
1 + 24λ5

1 +O(λ7
1) , (3.9)

which can be solved numerically for λ1. Note that λ̃1 is then exact (up to statistical

errors and finite volume corrections), whereas a systematic error is introduced to λ1 by the

truncation of the right hand side.

Figure 1 shows the results obtained for an Nτ = 4 lattice. The strong coupling series

gives a reasonable approximation to λ1 in a wide parameter range. We observe that our

numerical approach is self-consistent: even though λ1 deviates from the strong coupling

expression (3.1) at larger u, its value remains small and the truncation of (3.9) is justified.

Orders beyond O(λ3
1) in (3.9) are not relevant and the influence of the interactions at

larger distances (λn) appears to be suppressed. Details of the computation including these

interactions are explained in the next section.
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The phase transition in the one-coupling effective theory is at (λ1)c = 0.1879 [7], i.e. the

intersection of the curve λ1(β) with this value gives the prediction of the one-coupling

theory for βc. Note that for the numerically determined coupling λ1 this coincides with

the value at the true βc of full Yang-Mills, λ1(βc) ≈ (λ1)c. Thus, the one-coupling model

with the effective coupling determined by our numerical approach provides a quantitatively

correct prediction for the transition point at Nτ = 4 and significantly improves over the

strong coupling result, which tends to overestimate βc. However, we shall now see that for

larger Nτ , i.e. on finer lattices, more couplings are necessary for the same precision.

3.3 Interaction terms at larger distances

We now include all two-point interactions of fundamental and anti-fundamental loops whose

strong coupling series contain contributions up to O(u4Nτ ), (3.7). Again we directly deter-

mine the λ̃n in (2.2) by the corresponding Polyakov loop correlators,

λ̃2 = 〈L((0, 0, 0))L((1, 1, 0))†〉 ; λ̃3 = 〈L((0, 0, 0))L((2, 0, 0))†〉 . . . . (3.10)

As in the one-coupling case, the same correlators are computed in the effective theory (3.7)

using an expansion in the effective coupling constants λn. However, in this case the trun-

cation is less obvious. With infinitely many couplings there are also infinitely many mixed

terms with the same overall number of λ’s, i.e. there is no simple power counting. We

therefore use again the strong coupling expansion as a guiding principle and truncate terms

whose leading order contribution would exceed O(u4Nτ ). In that way a coupled system of

equations is obtained,

λ̃1 = λ1 + 4λ3
1 + 8λ1λ2 + . . .

λ̃2 = λ2 + 2λ2
1 + 4λ2

2 + 16λ4
1 + 36λ2

1λ2 + . . .

λ̃3 = λ3 + λ2
1 + 4λ2

2 + 24λ2
1λ2 + 12λ4

1 + . . .

λ̃4 = λ4 + 6λ3
1 + 6λ1λ2 + . . .

λ̃5 = λ5 + 3λ3
1 + 2λ1λ2 + . . . ,

(3.11)

that can be solved for the couplings λn. To estimate the effects of the truncation in the

expansion of the couplings we have also considered a second set of equation,

λ̃1 = λ1 + 4λ3
1 + 8λ1λ2 + . . .

λ̃2 − 2λ̃2
1 = λ2 + 4λ2

2 + 4λ2
1λ2 + . . .

λ̃3 − λ̃2
1 = λ3 + 4λ2

2 + 8λ2
1λ2 + 4λ4

1 + . . .

λ̃4 − 6λ̃3
1 = λ4 + 6λ1λ2 + . . .

λ̃5 − 3λ̃3
1 = λ5 + 2λ1λ2 + . . . ,

(3.12)

where the complete nearest neighbour correlation is subtracted. This corresponds to a

resummation of certain dominant higher order terms. We get consistent results for both sets

of equations, which is an indication that the truncation errors of the system of equations

is small enough. In the following we will use (3.11) for the determination of the λn.
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(b) Effective couplings (Nτ = 4)
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(c) Logarithmic representation (Nτ = 4)
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(d) Effective couplings (Nτ = 6)

Figure 2. (a) Effective couplings defined by correlators, (2.3), from simulations of 4d Yang-Mills

on Nτ = 4. (b) Solution of equations (3.11). Lines show the strong coupling series for the couplings.

(c) Same as (b) in logarithmic representation. (d) Same as (b) for Nτ = 6. Vertical lines mark the

critical coupling u(βc) in full Yang-Mills theory.

Figure (2(a)) shows the corresponding results and illustrates the accuracy of the Polyakov

loop correlators required in order to compare with the the strong coupling predictions. The

numerical solution for the set of equations (3.11) is shown in figure 2(b) and 2(c). At small

β the result agrees with the prediction from the strong coupling expansion, which provides

a good approximation for the couplings λ1 and λ2 over a wide range. The disagreement

between the numerical determination and the strong coupling expansion is larger for the

long range interactions and presumably due to the much shorter series for these couplings.

While the phase transition on an Nτ = 4 lattice is predicted with a good accuracy in

the one-coupling effective theory, the long range interactions are necessary to reproduce the

Polyakov line correlator of the 4d Yang-Mills theory. This is illustrated in figure 3. In [12]

we observed that the mis-match of the correlator remains when additional couplings are

added in the strong coupling approach, since their leading order contributions are too small.

The situation is different with the numerically determined effective couplings. While the

correlator in the one-coupling theory still shows large deviations from the full one, inclusion

of two-point interactions up to λ4 results in good agreement. Thus the main improvement
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Figure 3. Polyakov loop correlator in full Yang-Mills and the effective theory (3.7) at β = 5.4

on a 243 × 4 lattice. The different truncations of the effective theories are based on the couplings

determined by (3.11), as well as the strong coupling series (3.9) for the one-coupling theory.

achieved by our numerical procedure are better estimates of the longer range interactions,

where no sufficiently long strong coupling series are available.

3.4 Different Nτ and the continuum limit

Before we turn to the more involved interaction terms, we discuss the behaviour of the

effective couplings towards the continuum limit of the 4d Yang-Mills theory. Since the

strong coupling series for larger distance interactions are parametrically suppressed by

additional powers of Nτ compared to the nearest neighbour interaction, it is tempting to

expect their relevance to diminish with growing Nτ [7]. However, figure 2 shows that at the

phase transition all couplings become of comparable size. This is not unexpected, since the

critical coupling represents the convergence radius of the strong coupling expansion. The

general behaviour for growing Nτ can be inferred by inspecting (3.11). The λ̃i on the left

side of the equations are given by bare Polyakov loop correlators. For fixed temperature

in the 4d Yang-Mills theory, these get smaller with growing Nτ , i.e. the continuum limit

of (3.11) is zero. The numerical values of the couplings for Nτ = 6 are shown in figure 2(d).

The effective couplings at a fixed u are smaller than for Nτ = 4, a behaviour also shared

by the corresponding strong coupling series. Consequently, all couplings remain small on

the way to the continuum.

Consider now the one-coupling theory for growing Nτ . Because λ1 is diminishing

with Nτ for fixed physical T , equation (3.9) will at some point no longer have a solution

corresponding to the critical value (λ1)c for the phase transition in the one-coupling theory,

hence a second coupling has to be added. The two-coupling effective theory has a critical

line as shown in figure 4. The intersection of the curves λ1(λ2) for given Nτ now give
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Figure 5. Susceptibility of the Polyakov loop. The x-axis gives the relative deviation from (βc) of

the full Yang-Mills theory.

a prediction for βc in implicit form, which allows (λ1)c to shrink with Nτ , but at the

same time (λ2)c has to increase. This is remedied by adding a third coupling, etc. The

general situation is thus: any effective theory with a finite number of couplings features a

critical hypersurface representing the phase boundary between an ordered and a disordered

phase. For fixed Nτ , the effective couplings λi intersect these hypersurfaces to provide the

predictions for the critical couplings. Towards the continuum limit all intersection points

have to move towards the origin, which enforces the addition of more couplings as Nτ

is increased.

How many couplings are required in practice depends on the demanded accuracy. In

figure 5(a) the critical coupling for Nτ = 6 with different truncations of the effective action
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Figure 6. Red points give the numerical solution and black points the strong coupling series for

λ1(βc(Nτ )) . The shaded areas give the region of β within 8% (left) or 5% (right) of the true critical

value βc.

is indicated by the peak of the susceptibility. The transition point with two and more

effective couplings is within 1% of the full theory, while the truncation to one coupling

does not show any transition in the considered range. The importance of interaction terms

at larger distances further increases at Nτ = 8, figure 5(b). Agreement to 1% between

effective and full theory is obtained by including the couplings up to λ4. This is also

consistent with figure 4. The effective couplings obtained in the 5% critical region of Yang-

Mills theory nicely coincide with the transition line in the two coupling model for Nτ = 4

and Nτ = 6. For Nτ = 8 the truncation to the two-coupling effective action is not enough

for an accurate description of the phase transition.

Finally we use the numerical coupling λ1 from our least truncated effective theory to

assess the quality of the one-coupling theory with the analytic expression for λ1. Figure 6

compares the numerical and analytical mappings, λ1(βc(Nτ )), both evaluated at the true

βc(Nτ ) of the full theory. Interestingly, the quality of the analytic function appears to

initially improve with Nτ , until it breaks down for Nτ ≥ 10, where λ1(βc) ceases to get

smaller. Also shown are regions λ1(βc±∆), where ∆ amounts to 8% (left) and 5% (right)

deviation from the true value. The horizontal line is the critical value (λ1)c of the one-

coupling theory. Hence, permitting 8% relative error in the prediction for βc, the one-

coupling theory with the analytic expression for λ1 may be used,1 whereas more couplings

and longer series are required for more stringent accuracy requirements.

3.5 Functional form of the nearest neighbour coupling

After resummation of the strong coupling series, the nearest neighbour coupling in equa-

tion (3.1) is parametrised as

λ1(u,Nτ ) = uNτ exp (NτP (u,Nτ )) , (3.13)

with P (u,Nτ ) a polynomial in u for every value of Nτ . Between Nτ = 4 and Nτ = 6

the coefficients of these polynomials differ only at order u10. For larger Nτ the difference

is at even higher order such that P (u,Nτ ) ≈ P (u) can be considered as approximately

independent of Nτ , as long as the expansion and resummation converge.

1Indeed, the predictions for βc from the one-coupling theory in [7] are all within 7-8% of the true result.
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Figure 7. Left: correction Pc(u), (3.16), to the strong coupling result Psc(u) of the parametrisa-

tion (3.13) in a logarithmic representation. For each Nτ the curves are restricted to u < 0.995u(βc).

The curves contain the strong coupling results to order u10 and fits of the orders u11 to u24. Right:

deviation from the fitted polynomials in the critical region. The simulations were done on 4 × 243,

6× 243, 8× 243, 10× 303 , 12× 363, and, to check the finite volume effects, 6 × 363, 8× 483.

In order to check the validity of the parametrisation (3.13), consider λ̃1 corresponding

to the Polyakov line correlator, which is related to the renormalised free energy of a static

quark anti-quark pair at a distance R of one lattice spacing a,

λ̃1 = 〈L((0, 0, 0))L((1, 0, 0))†〉 = Z(u)Nτ exp(−FR(R = a, T )/T ) , (3.14)

with Z(u) the multiplicative renormalisation factor. To leading order λ1 = λ̃1, which

implies

P (u) ≈ ln(Z(u)/u)− aFR(R = a, T ) . (3.15)

The parametrisation (3.13) with a Nτ -independent polynomial is hence appropriate as long

as aFR(R = a, T ) does not show a strong Nτ dependence, which is generally true for the

Coulomb part of the short distance region, RT � 1.

To investigate the validity of the parametrisation quantitatively, we calculate the cor-

rection Pc to the polynomial Psc of the strong coupling approach,

P (u) = Psc(u) + Pc(u) , (3.16)

from the numerically determined P (u). Pc(u) is shown in figure 7 (left) based on simulations

with Nτ = 4, 6, 8, 10, and 12 for u < 0.995u(βc(Nτ )). In this entire range the data for P (u)

are indeed Nτ -independent to a very good approximation. In the immediate vicinity of

the phase transition the parametrisation (3.13) breaks down, as the zoom into this region

in figure 7 (right) shows. This Nτ -dependence is associated with the T dependence of

aFR(R = a, T ), which in the transition region gets more pronounced due to the increasing

influence of the deconfined phase. The strong coupling series has only information from

the confined phase and hence underestimates this effect near the radius of convergence.

Figure 7 (right) illustrates that the Nτ -dependence of P (u) is reduced with increasing

Nτ . This also follows from (3.14): the larger Nτ , the smaller is the distance R = a
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Figure 8. Same data for λ1 as figure 7. In addition, the effective coupling determined by a

matching of the transitions in the effective and full theory is shown (YM βc). These values are a

solution of (3.17) for λ1 with βc determined in simulations of the full theory [17–19]. The leading Nτ
dependence has been removed assuming (3.13). The horizontal line corresponds to the transition

in the effective one-coupling theory for Nτ = 14.

in physical units and the short range part of the free energy is dominated by the T -

independent Coulomb contributions. At the same time the interactions at larger distances

become increasingly relevant at the transition point.

The parametrisation by P (u) serves to extract the predictions for the critical coupling

βc from the one-coupling effective theory as in [7]. As long as its highest order coefficient

is positive, there is always a βc for which

Nτ
√
λ1(u(βc), Nτ ) = u exp(P (u)) = Nτ

√
(λ1)c . (3.17)

Conversely, (3.17) with the fitted polynomial P (u) can also be used to approximately

compute λ1(u(β), Nτ ), assuming that the one-coupling effective action is enough for a

reasonable approximation of the full theory.

Using the parametrisation (3.13), the Nτ -dependence can be factored out and the

predictions for λ1 at different Nτ can be combined as in figure 8. Close to the phase

transition the numerically evaluated effective coupling is smaller than the values suggested

by the matching of the phase transitions of the full and the effective one-coupling theory

using (3.17). This deviation is due to the neglected Nτ -dependence of the parametri-

sation (3.13) close to the phase transition, cf. figure 7 (right), as well as the increasing

relevance of the interactions at larger distances. The analytic strong coupling prediction

shows the correct dependence of λ1 on u and Nτ for small u. At larger u it first underesti-

mates and then overestimates the slope of the numerical curve. Due to this fact there is an

intersection point between the expected transition line from the matching of the full and
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effective theory and, around Nτ = 14, the one-coupling action with effective coupling of

the strong coupling approach reproduces the critical coupling of the full Yang-Mills theory.

In the region of Nτ = 8 to Nτ = 14 the full and the effective theory data seem to converge.

By contrast, the numerically determined effective coupling suggests that higher order

coefficients of P (u) are negative, as for Psc truncated at order u7. Hence a simple continu-

ation of P (u) does not provide an intersection point with condition (3.17) and the effective

theory truncated to the nearest neighbour interaction fails to reproduce the transition of

the underlying full theory at larger Nτ , as discussed in the previous section.

4 Higher representations and n-point interactions

An effective action in terms of two-point interactions seems to provide reasonable results for

the discussed correlation functions and the phase transition for Nτ = 4 and 6. On the other

hand, when interactions over two and more lattice spacings are included, the restriction to

two-point functions is no longer justified within in the strong coupling expansion. Terms

involving higher n-point couplings appear at the same order as the long range interactions.

In the following we investigate the contributions of higher representations as well as n-point

interaction terms.

4.1 Strong coupling results

The n-point interaction with n > 2 and higher representations of the Polyakov loop are

parametrically suppressed compared to the two-point nearest neighbour fundamental inter-

action. However, relevant contributions appear already at the same order as the coupling

λ2, such as the two-point interactions of higher representations,

λ(1,1) ≡ λ(1,1)
[(1,0,0),(1,1)] = vNτ

(
1 +

9

2
Nτ

u6

v

)
, (4.1)

λ(2,0) ≡ λ(2,0)
[(1,0,0),(0,2)] = wNτ

(
1 + 6Nτ

u6

w

)
, (4.2)

where v =
9

8
(u2 − u3) +

81

32
u4 +O(u5) (4.3)

and w =
3

4
u2 − 9

16
u4 +

297

80
u5 +O(u6) . (4.4)

Polyakov loops of higher representations with n-ality zero can have non-vanishing expecta-

tion values in the confined phase. These terms appear in the effective theory as one-point

couplings. The simplest example is the one-point term of the adjoint loop,

λ(1,1) = 108Nτ (Nτ + 1)u4Nτ+2 . (4.5)

Since it is of high order we neglect it in our considerations.

In addition, there are higher n-point interactions in the fundamental representation.

The leading three point interaction is a combination of fundamental, anti-fundamental,

and adjoint loop:

λ
(1,0)
[(1,0,0),(1,1)],[(1,1,0),(0,1)] = −4Nτu

2Nτ+8 . (4.6)
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This is beyond the order considered in our current investigations. Four-point interactions

can appear in terms of two fundamental and two anti-fundamental loops. In the leading

contribution these loops are located on the corners of a plaquette, with two inequivalent

configurations

λp ≡ λ(1,0)
[(1,0,0),(0,1)],[(1,1,0),(1,0)],[(0,1,0),(0,1)] =

1

2
Nτ (Nτ − 1)u2Nτ+2 (4.7)

λ
(1,0)
[(1,0,0),(1,0)],[(1,1,0),(0,1)],[(0,1,0),(0,1)] = Nτu

2Nτ (v4 + w4) . (4.8)

The second contribution is beyond the maximal order considered in this work and ne-

glected. It is obvious at this point that there are many different configurations for the

four-point interaction in addition to the above plaquette form. These appear at u2Nτ+n

for n > 4 and are also neglected here. Once long range interactions of the fundamental

and anti-fundamental loop beyond distance three are included, omission of these terms is

no longer justified.

The effective action with the considered additional terms has the following form

e−S
(2)
eff = e−S

(1)
eff

∏

x,i=1,...3

(
1 + λ(2,0)[L6(x)L6(x+ î)† + L6(x)†L6(x+ î)]

)
(4.9)

×
∏

x,i=1,...3

(
1 + λ(1,1)L8(x)L8(x+ î)

)

×
∏

x,i=1,...3,j<i

(
1 + λp[L(x)L†(x+ ĵ)L(x+ î+ ĵ)L†(x+ ĵ) + c.c.]

)
.

We have introduced a short hand notation for the sextet (L6(x) ≡ χ(2,0)(W (x))) and

adjoint (L8(x) ≡ χ(1,1)(W (x))) Polyakov loop.

4.2 Numerical calculation of the effective couplings

The additional couplings are related to the correlators of Polyakov loops in higher repre-

sentations and the four-point correlator of fundamental Polyakov loops. The coefficients λ̃

that follow directly from these measurements are

λ̃(1,1) = 〈χ(1,1)(W ((0, 0, 0)))χ(1,1)(W ((1, 0, 0)))〉
λ̃(2,0) = 〈χ(2,0)(W ((0, 0, 0)))χ(0,2)(W ((1, 0, 0)))〉
λ̃p = 〈L((0, 0, 0))L†((1, 0, 0))L((1, 1, 0))L†((0, 1, 0))〉 .

(4.10)

As in the previous case we expand these expectation values in the effective couplings λn.

Along the same lines as for the couplings λ̃1 to λ̃5 additional equations can be derived that

enlarge the system of equations (3.11). The correlators of the adjoint and sextet repre-

sentation receive contributions from the fundamental interactions only at high orders. In

contrast, the plaquette correlator contains the low order two-point fundamental interaction

in its disconnected part. At the current order in our investigations we get the following set
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Figure 9. The coupling constants of the adjoint next neighbour, sextet next neighbour, and plaque-

tte interactions in the effective theory (4.10). These constants are a solution of the equations (4.11).

The lines are the strong coupling results (4.1), (4.2), and (4.7). The vertical line indicates βc of full

Yang-Mills theory. The simulations have been done on a 4× 243 lattice. Results for λ1, λ2, and λ5
of the fundamental loop are shown for comparison.

of additional equations

λ̃(1,1) = λ(1,1) + 8λ4
1 + 16λ2

1λ2 + . . .

λ̃(2,0) = λ(2,0) + 4λ4
1 + 8λ2

1λ2 + . . .

λ̃p = λp + 2λ2
1 + 12λ4

1 + 24λ2
1λ2 + . . . .

(4.11)

The numerical solution for the additional couplings from simulations at Nτ = 4 is

shown in figure 9. In the region of small β the couplings of the adjoint and sextet represen-

tation as well as the four-point interaction are larger than the long distance couplings in the

fundamental representation. According to our estimates, this is not compensated by the

larger number of neighbours for the fundamental Polyakov loop interaction at larger dis-

tances. On the other hand, we observe a stronger increase of the fundamental couplings as

β gets larger and a change of the ordering of the interactions towards the phase transition.

5 Conclusions

We have presented a new numerical method to determine the couplings of three-dimensional

effective Polyakov loop lattice theories for SU(N) Yang-Mills systems at finite temperature,

which arise by integrating out the spatial degrees of freedom. The method is based on the

use of two different character expansions. In the first, the expansion coefficients are identical

to definite n-point functions of Polyakov loops which can be easily simulated in full Yang-

Mills theory. While the corresponding truncated effective theory has (within statistical

– 17 –



J
H
E
P
1
1
(
2
0
1
5
)
0
1
0

accuracy) exact coefficients, it will reproduce correlation functions only up to a maximal

distance, depending on the truncation, beyond which all n-point functions vanish. A second

character expansion, commonly used in strong coupling approaches, contains long range

correlations in any truncation, but its couplings are not directly simulable. Both sets of

expansion coefficients are small in the entire parameter range and related by a perturbative

expansion with high accuracy, where the ordering of coefficients is guided by strong coupling

power counting. The resulting effective theory has the same structure as the one determined

in a strong coupling expansion [7], but with non-perturbatively improved couplings which

can also be determined in the deconfined phase. A large number of effective couplings can

be extracted by simulations with relative ease compared to an analytic strong coupling

series, but of course this has to be redone for every set of parameter values (β,Nτ ).

We find the strong coupling series for the nearest neighbour interaction to agree with

the improved coupling up to the immediate neighbourhood of the phase transition, which

marks the convergence radius of the strong coupling series. As already observed in [12],

a quantitative description of the Polyakov loop correlator requires the non-local couplings

up to the lattice distance of interest. Including these with our new method, quantitative

agreement is achieved. Also near the phase transition, we observe an increasing relevance

of long-range couplings, which can be related to the fact that the correlation length is

maximal there. For Nτ = 4 and Nτ = 6 the relevant contributions are the nearest and

next-to-nearest neighbour interactions, again in accord with earlier observations [12]. As

the lattice gets finer, more interactions have to be included, depending on the desired

accuracy. The critical coupling can be obtained at 10% accuracy from the one-coupling

theory with the analytic effective coupling in a range Nτ = 2 − 10. Conversely, with

our numerical determination of the effective couplings, effective theories reproduce the

location of the phase transition to 1% accuracy with one coupling for Nτ = 4 and five

couplings at Nτ = 8. It would be very interesting to extend this approach to the fermionic

sector of QCD.
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