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ABSTRACT  

A fast and automatic method for radiocarbon analysis of aerosol samples is presented. This type 

of analysis requires high number of sample measurements of low carbon masses, but accepts 

precisions lower than for carbon dating. The method is based on online Trapping CO2 and 

coupling an elemental analyzer with a MICADAS AMS by means of a gas interface. It gives 

similar results to a previously validated reference method for the same set of samples. This 

method is fast and automatic and typically provides uncertainties of 1.5% to 5% for 

representative aerosol samples. It proves to be robust and reliable and allows for overnight and 

unattended measurements. A constant and cross contamination correction is included, which 

indicates a constant contamination of 1.4±0.2 µg C with 70±7 pMC and a cross contamination of 

(0.2±0.1)% from the previous sample. A real-time online coupling version of the method was 

also investigated. It shows promising results for standard materials with slightly higher 

uncertainties than the trapping online approach. 
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1. INTRODUCTION 

For environmental and climate sciences, it is important to apportion the origin of the atmospheric 

aerosols between wood burning, biogenic emissions and fossil fuel combustion [1]. This can be 

achieved by analyzing radiocarbon in the aerosols using accelerator mass spectrometry (AMS). 

However, sample preparation is highly effort and time consuming (1 hr/sample) [2, 3]. When 

analytical and separation methods are included in the sample preparation for radiocarbon 

measurement, the analysis of the compounds from each fraction not only makes the process even 

longer, but the recovered carbon mass is split and falls in the low microgram range. Some 

examples are compound-specific analysis of environmental pollutants and carbon cycle markers 

[4, 5] and analysis of radiolabelled markers for biomedical studies [6]. For all the cases explained 

above, it is possible to improve the throughput by coupling the separation/combustion technique 

with the AMS by taking advantage of a gas interface that specifically and efficiently delivers the 

CO2 into the gas ion source of the AMS. This paper describes the validation of the method of a 

previous study [7] for the fast and automatic analysis of the total carbon (TC) from aerosol 

samples at the microgram level. In such method, an elemental analyzer (EA) is coupled with the 

AMS. Radiocarbon method development requires the quantification of the constant and cross 

contamination (also known as memory effect) in order to make corrections to the drifted 

radiocarbon measurements [8-10]. Therefore, we apply a mathematical model that handles 

constant contamination. As a difference with previous works, this drift model also includes cross 

contamination. For validation, the Trapping online coupling was compared with a reference 

method for aerosol samples. Finally, this paper briefly shows the proof-of-principle of a new gas 

interface that allows online coupling the EA with AMS. Potentially, these online methods may be 

applied to couple other separation techniques with AMS like liquid or gas chromatography. 
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2. MATERIALS AND METHODS 

The schematic of the Trapping online coupling is shown in Figure 1 and the detailed method can 

be found elsewhere [7, 8]. Solid samples or standards are tightly packed in tin foil for flash 

combustion. They are loaded into the oxidation oven of the EA at 850 C by an autosampler and 

combusted with a pulse of oxygen. The EA directs the gases through a water trap containing 

Sicapent (Merck, Germany) and through a zeolite trap which is later heated up stepwise by the 

EA to release N2, CO2 and residual gases at different temperatures. The outlet of the EA is 

connected to a gas interface system (GIS) through a 1/16’’ O.D. tubing (10 m long). The flow is 

directed to a second zeolite trap (zeolite X13, Sigma-Aldrich, Germany) located at the GIS at 80 

mL/min. The details of the trap can be found elsewhere [7, 8]. Consecutively, the GIS trap is 

heated up to 450 C, the CO2 expands into a syringe of known volume, the carbon amount is 

measured manometrically, helium is added to make a mixture of 10% CO2 at ~0.16 MPa, and 

finally the mix is transferred into the gas ion source of a MICADAS AMS at ~40 µL/min. At the 

same time that the sample is being measured, a flushing step is carried out to the EA-GIS system 

during 4 min. It consists on running a blank combustion in the EA at 100 mL/min, including 

heating up the CO2 trap of the EA. This high flow is directed to the GIS trap which at the same 

time is being heated up for flushing. The whole procedure is automatic and controlled by a 

LabView program based on an earlier version described by Wacker et al. [11]. 

The standards were solid crystals of sodium acetate (fossil; p.a., Merck, Germany), C5, C6 and 

C7 from IAEA and oxalic acid II from NIST (SRM 4990C) with 14C/12C ratios of 23.05±0.02 

pMC, 150.61±0.11, 49.35±0.12 pMC and 134.07±0.05 pMC, respectively. The next experiment 

consists on punching out 4 to 10 pieces (dia. 4 mm) from real aerosol filters and wrapping them 

in tin foil (5 pieces/foil). The same filters were analyzed with a reference method for validation 

purposes. This reference method includes burning the samples with an OC/EC analyzer, trapping 



5 
 

the CO2 in quartz ampoules and analyzing the CO2 with the GIS interface. The experimental 

details can be found elsewhere [2].   

The online coupling of the EA with the AMS was done by separating the high load of the gas 

carrier (helium) from the microgram-level CO2 using two flow separators. A flow separator (FS) 

is gas interface for online coupling, developed in our laboratory. The description and 

fundamentals of a FS can be found in a separated publication [12].              

 

3. RESULTS AND DISCUSSION 

3.1 Mathematical basis of the contamination drift model for the Trapping online coupling 

Our assumptions are based on previous works [8-10]. The first hypothesis of the model (equation 

1) is that each time a sample of carbon mass (ms) and 14C/12C ratio (Rs) is injected in the EA-GIS 

system, it is mixed with a contaminant that is constant with respect to its mass and isotopic ratio 

(mk and Rk). Equation 1 indicates how much the measured ratio of the sample (Rm) drifts from the 

real ratio of the sample Rs. It is assumed that the contamination is mostly due to the tin foil. 

       Eq.1 

Equation 1 can be written as the drift of the measured ratio (drift = Rm - Rs) by subtracting Rs 

from both sides (equation 1b). 

  Eq. 1b 

After term cancellations, the approximation that the mass of the contaminant is much smaller 

than the sample mass (ms + mk  ms) is applied and equation 1 can be rewritten as   
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     Eq. 2 

The cross contamination (or memory effect) is the fraction () of carbon of the previous sample 

(mx) that remains inside the EA-GIS system after unloading and cleaning the system. After 

including this concept, equation 2 can be rewritten as  

        Eq. 3 

Equation 3 shows that the drift is inversely proportional to the sample mass. However, the drift is 

higher for high amounts of the contaminant. Also the sign and magnitude of the drift depends on 

the difference between the ratios of the sample and the contaminant. The cross contamination 

presents a similar effect over the drift. We think that the drift model makes sense because the 

model covers these expected relationships. After finding the contamination parameters that 

characterize our system, it is possible to correct any measured value by subtracting the 

contamination as it is shown in the mass conservation principle of equation 4. 

          Eq. 4 

The corrected Rm can also be obtained by subtracting the calculated drift (equation 3) from the 

measured value. 

       Eq. 5 

The reason of the minus in equation 5 is to make the direction of the Rm correction to be opposite 

to the direction of the drift. For example, a negative drift will make the corrected Rm to be higher 

than the measured ratio (Rm). The uncertainty of the corrected Rm can be calculated by error 

propagation of equation 5 (equation 6).   

 

	
∅

 

	 	 ∅

	 	∅
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	 	      Eq. 6 

In equation 6, um is the measurement uncertainty of Rm and udrift is the confidence band of the 

drift model. All the uncertainties are calculated for a probability of 68% (1 range). 

3.2 Constant contamination of the Trapping online coupling 

Figure 2 shows how the data for the 3 different standard materials fit into the model, and the fit 

presents a good coefficient of determination. Basically, the model is the non-linear least-squares 

regression (nlr) of equation 2. The nlr and the confidence bands are weighted with the inverse of 

the relative uncertainty of Rm, i.e. (um /Rm)-1. The constant contaminant parameters (Rk and mk) 

extracted from the fit are 70±3 pMC and 1.4±0.1 µg C, which indicates that probably the 

contamination is a mixture of modern and fossil carbon dispersed in the laboratory air and in the 

tin foil. Similar Rk values were observed earlier by Ruff et al [7]. Because the corrected Rm is 

calculated from the subtraction of the drift from the measured Rm value, consequently the 

uncertainty of this correction can be determined by the error propagation of these two variables 

(See equations 5 and 6). The uncertainty of the drift (udrift) is equal to the confidence interval of 

the drift model. The uncertainty of the measured Rm comes from the counting statistics of the 

individual data. This applies for the whole paper. The high um values and the measurement 

dispersion at low masses explain the increase of the uncertainty of the corrected Rm at low 

masses. For example, the 3 standard materials at 10 µg C show approximately the same 

uncertainty (6 pMC), which means 100%, 12% and 4.8% for fossil, C7 and oxalic acid II, 

respectively. On the other hand, at 50 µg C, the corrected Rm uncertainties are 50%, 3% and 1.5% 

for the same standards. In the other hand, the reference method typically gives uncertainties of 

1% for higher than 50 µg C and 4% for around 10 µg C.   
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Figure 2 indicates that the drift from the nominal value is minimum at large sample masses. At 

low masses, the drift increases faster for the fossil and oxalic acid II than for the C7; because the 

difference of the 14C/12C concentration between C7 and the contaminant is smaller than the 

difference for the other standards. The similar behavior of the drifts for the red and blue groups 

shows that the constant contamination does not change considerably over a 3-months period 

which indicates that it is reliable to use the same parameters over long periods of time. The 

averages of the corrected Rm values for the oxalic acid II, C7 and fossil data sets are 134±2, 49±1 

and -0.5±0.8, respectively. Grubb’s tests was used to identify outliers within each data set of the 

corrected Rm values using a probability of 95%; and it was found 1 outlier in the fossil data set 

from a total of 77 values. After withdrawing the outlier, one-sample t-tests show no significant 

difference between the average of the corrected Rm with its respective nominal value. In short, the 

corrected Rm values are well distributed around their respective nominal values.               

3.3 Constant contamination in combination with cross contamination for the Trapping online 

coupling 

For adding and controlling the cross contamination, injections of oxalic acid II are intercalated 

with fossil material as explained in the experimental. The cross contamination factor  obtained 

from the fit in Figure 3 is (0.2±0.1)%, which means that 0.2% of the carbon of the previous 

sample mixes and cross contaminates the next injection. In contrast, Ruff et al [8] measured  = 

0.5% using a very similar system as ours. We suppose that the difference is due to our flushing 

step, which cleans better the CO2 traps of the EA-GIS system (see experimental section). The Rk 

and mk for this constant-cross contamination fit are 70±7 pMC and 1.4±0.2 µg C. The shape of 

the model, confidence bands and corrections are similar to the results for constant contamination 

(Fig. 2); however, the 14C/12C ratios are higher, indicating the extra contribution of the cross 

contamination in the overall drift. The average value of the corrected Rm for the fossil data set is 
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0.04±0.7 and it was found 1 outlier out of 23 values (same test as in the constant contamination 

section). Moreover, the data set passed the one-sample t-test with the nominal value. Therefore, 

the corrected Rm values are close to the nominal value.  

The uncertainty of the corrected Rm is calculated with the error propagation of equation 5, but it is 

also possible to use the error propagation of equation 4. This was not done, because the 

uncertainty of ms can hardly be evaluated for the experimental range of masses. If the drift model 

is applied separately to the data groups related to the blue and red closed circles in Figures 2 and 

3, the respective parameters show no significant difference taking in account their uncertainty 

ranges (data not shown). Nevertheless, the uncertainties of Rk show significant difference when 

calculated for the different data groups. The uncertainties of Rk measured for the blue and red 

data groups in Figure 3 (uk= 8 and 19 pMC, respectively) are higher than the uncertainties of Rk 

measured with the whole data set (uk= 7 pMC), which indicates that the number of measurements 

determine the quality of the determinations of Rk and mk in our model.  

Independently of the drift model experiments, a direct measurement of Rk and mk was carried out. 

Assuming that the blank from the tin foil for encasing the samples is the main cause of the 

constant contamination. 10 to 15 foils were tightly compacted without adding any other source of 

carbon and they were analyzed with the Trapping online system for 4 repetitions. The average 

values for Rk and mk were 59±13 pMC and 1.0±0.1 µg C/foil. The results are similar to the values 

obtained with the drift model (70±7 pMC and 1.4±0.2 µg C). 

3.4 Comparison of the Trapping online coupling with a reference method for aerosol samples 

Figure 4 shows the measured 14C/12C ratios for TC from real aerosol samples measured with a 

reference method [2] and with the Trapping online method. The constant and cross contamination 

correction is applied to the data. The contamination correction does not change considerably the 
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measured 14C/12C ratios, because all carbon masses of the samples are large (30 µg to 80 µg). The 

fitting of the data of figure 4 present a slope of 1.021±0.007, there is no intercept and it has a very 

strong correlation. Therefore, both methods provide similar results for the range of measured 

ratios. However, from the point of view of the turn-around time, 4 samples can be analyzed in 

one hour with the Trapping online method, while the measurement of only one sample is possible 

with the reference method. Furthermore, the Trapping online method allows to run the gas 

measurements overnight and without human supervision. In summary, the data from Figures 2, 3 

and 4 clearly shows that the Trapping online method is robust and reliable.   

In Figure 4, the uncertainties for the Trapping online method range from 1.5% to 5% while for 

the reference method, they ranges from 1% to 2%. The Trapping online method has larger 

uncertainty than the reference method. Nevertheless, this is acceptable for aerosol research, as 

other uncertainty components typically dominate the final uncertainty, such as blank correction 

of the filters used for collection of the aerosols, the reference value for the conversion of 14C 

measurement results into the non-fossil fraction of the sources, and the uncertainty of the 

concentration measurements of TC or its sub-fractions [13].  

3.6 Real-time coupling of EA with AMS 

We used a flow separator (FS) as a gas interface for online coupling the EA with the AMS 

(Figure 5). A complete description of the FS can be found in this publication [12]. Basically, the 

FS separates most of the helium carrier (70 mL/min down to 1 mL/min) taking advantage of its 

low axial momentum which is due to its low molecular weight relative to CO2. In that way, it is 

possible to keep the high vacuum and ionization efficiency of the ion source of the AMS with 

acceptable losses of CO2. The data for a peer-review paper about the characteristics of the FS 

interface are still under preparation. The fact that we can state about the FS, in the present paper 
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is that it allows us to take radiocarbon measurements as described in the experimental section and 

the vacuum of the ion source stays around 5x10-6 mbar. Typically, the 12C+ current and the 14C 

count rate present peaks of similar width as the peak measured by the EA, which demonstrates 

that this coupling is truly a real-time online method. This also indicates the potential application 

of the FS for coupling other separating analytical techniques with AMS instruments. Table 1 

presents the 14C/12C ratio of different standard materials without contamination corrections. The 

14C/12C ratio was averaged over the range where the 13C/12C ratio is relatively stable, which is 

close to the full width at half maximum of the 12C+ current peak. The uncertainties for the Real-

time online coupling range from 1.6 to 4 pMC depending on the measured 14C/12C ratio, which 

corresponds to 2.6%, 5% and 7% for C6, C7 and C5, respectively. In contrast, the typical 

uncertainties for the Trapping online method range from 1.5% to 5% for the same range of 

14C/12C ratios and carbon masses. The reason of the higher uncertainties for the Real-time online 

method is the shorter measurement time that leads to lower number of 14C counts (see Figure 5 

and Table 1). In spite of the high uncertainties, the nominal and measured values are within the 1-

 range. We consider that the online EA-AMS method is useful for fast screening and when 

precision can be sacrificed for gaining speed (10 min/sample). Further investigation is necessary 

to optimize this hyphenation technique. 
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4. CONCLUSIONS 

The Trapping online method gives similar results to a previously validated reference method for 

the same set of samples having a broad range of 14C/12C concentrations. It is fast and automatic 

(15 min/sample and overnight unattended mode) compared with the reference method (1 

hr/sample).  

The validated Trapping online method proves to be fast, robust and reliable for aerosol samples. 

The Real-time online method looks promising for even faster analysis or for tracing or surveying 

the 14C of the sample. Its results are similar to the nominal values of the standard materials, but 

the uncertainties are slightly larger than for the Trapping method. With different degrees of 

precision, both methods are useful depending on how much the user can sacrifice precision for 

gaining speed. 

The constant and cross contamination model explains and corrects the drift of the radiocarbon 

measurements of the Trapping online method for aerosol samples. The data shows that the mass 

and 14C/12C ratio of the constant contamination are 1.4±0.2 µg C and 70±7 pMC. The cross 

contamination is 0.2±0.1 % of the previous sample. The model is reliable and robust because the 

data fitted well and there are not considerable changes of the parameters over time (3 months). 

However, the uncertainty rapidly increases at low masses (e.g. 4.8% for oxalic acid II at 10 µg C) 

compared to high masses (e.g. 1.5% for the same standard at 50 µg C). 

 

5. ACKNOWLEDMENT 

We thank our laboratory technicians Michael Battaglia and Edith Vogel for their support with the 

instrumentation. 



13 
 

6. REFERENCES 

[1] S. Szidat, T. M. Jenk, H.-A. Synal, M. Kalberer, L. Wacker, I. Hajdas, A. Kasper-Giebl, and 

U. Baltensperger J. Geophys. Res., 111 (2006) D07206. 

[2] Y. L. Zhang, N. Perron, V. G. Ciobanu, P. Zotter, M. C., Minguillón, L. Wacker, A.S.H. 

Prévôt, U. Baltensperger and S. Szidat Atmos. Chem. Phys., 12 (2012) 10841-10856. 

[3] S.M. Fahrni et al., Nucl. Instr. and Meth. Phys. Res. B, 268 (2010) 787-789. 

[4] L.A. Currie, T.I. Eglinton, A. Benner Jr., A. Pearson, Nucl. Instr. and Meth. Phys. Res. B 123 

(1997) 475–486.  

[5] J. M. Ahad, R. S. Ganeshram, C. L. Bryant, L. M. Cisneros-Dozal, P. L. Ascough, A. E. 

Fallick, G. F. Slater, Marine Chemistry 126 (2011) 239-249. 

[6] A. Thomas, T. Ognibene, P. Daley. Anal. Chem. (2011) 9413-9417. 

[7] M. Ruff, S. Szidat, H. W. Gaggelera, M. Suter, H. Synal, L. Wacker. Nucl. Instr. and Meth. 

Phys. Res. B, 268 (2010) 790-794. 

[8] M. Ruff, S. Fahrni, H. W. Gäggeler, I. Hajdas, M. Suter, H-A. Synal, S. Szidat, L. Wacker, 

Radiocarbon, 52 (2010) 1645–1656. 

[9] G.M. Santos, J.R. Southon, S. Griffin, S.R. Beaupre, E.R.M. Druffel, Nucl. Instr. and Meth. 

Phys. Res. B 259 (2007) 293–302. 

[10] C.R. Bronk, R.E.M. Hedges, Nucl. Instr. and Meth. Phys. Res. B, 52 (1990) 322–326. 

[11] L. Wacker, S.M. Fahrni, I. Hajdas, M. Molnar, H.-A. Synal, S. Szidat, Y.L. Zhang, Nucl. 

Instr. and Meth. Phys. Res. B, 294 (2013) 315–319.  



14 
 

[12] G. Salazar, S. Szidat. Flow dynamics technique for sampling and separation of neutrals from 

analytes based on their axial momentum density differences. Poster presented at the annual 

meeting of the American Society for Mass Spectrometry (2014) Baltimore, U.S.A. 

[13] P. Zotter, I. El-Haddad, Y. Zhang, P.L. Hayes, X. Zhang, Y.H. Lin, L. Wacker, J. Schnelle-

Kreis, G. Abbaszade, R. Zimmermann et al. J. Geophys. Res. Atmos., 119 (2014) 6818–6835. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



15 
 

7. TABLES 

Table I. 14C/12C analysis of IAEA standards (n=2) using the Real-time online method with 

uncertainty at 1- range. The total number of 14C counts ranged from 280 to 2500 for the 

different standards using sample masses of ~50 µg C. 

Standard 14C/12C (pMC) 

Nominal 

value 

(pMC) 

C5 24.6 ± 1.6 23.05 

C7 50.3 ± 2.5 49.53 

C6 155 ± 4 150.61 
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8. FIGURE CAPTIONS 

Figure 1. Schematic of the elemental analyzer online coupling with AMS using a gas interface 

system GIS (Trapping online method). TCD means thermal conductivity detector. 

Figure 2. Constant contamination model for 3 different standard materials. The closed blue and 

red circles show the measured 14C/12C ratios for two different measurement dates with a time lag 

of 3 months; the blue closed circles were taken in an overnight unattended measurement. The red 

line represents the drift model (r2 = 0.84) with confidence bands (uncertainty of the model) for a 

probability of 68% (1). Black opened squares show corrected Rm ratio calculated with equation 

4 with confidence bands and the nominal value. 

Figure 3. Cross contamination (memory effect) model. The previous sample mass (mx) is almost 

constant for all data points (~50 µg). The closed circles show in blue and red measured 14C/12C 

ratios for two different measurement dates with a time lag of 3 months; the blue closed circles 

were taken in an overnight unattended measurement. The red line represents the drift model (r2 = 

0.94) with confidence bands for a probability of 68% (1). Black opened squares show corrected 

Rm ratio calculated with equation 4 with confidence bands calculated with equation 6 and the 

nominal value.  

Figure 4. Comparison of the Trapping online method with the reference method for TC from 

aerosol samples with 1 uncertainties. Blue and red symbols indicate for two different 

measurement dates with a time lag of 3 months, whereof the blue closed circles were taken in an 

overnight unattended measurement. The red closed circles group was taken in a semi-attended 

fashion and the measurement dates of both groups were 3 months apart. 
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Figure 5. Schematic of the Real-time online coupling using two flow separators. Typical results 

are also included. a) Schematic b) EA (Thermal Conductivity Detector) and AMS (12C+ current) 

signals vs time. c) 14C count rate vs time. The 14C/12C is averaged over the time interval indicated 

by the double headed arrow.  
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