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Abstract 

We observed a hereditary phenotype in Alaskan Huskies, which was characterized by 

polyneuropathy with ocular abnormalities and neuronal vacuolation (POANV). The affected dogs 

developed a progressive severe ataxia, which led to euthanasia between 8 and 16 months of age. The 

pedigrees were consistent with a monogenic autosomal recessive inheritance. We localized the 

causative genetic defect to a 4 Mb interval on chromosome 19 by a combined linkage and 

homozygosity mapping approach. Whole genome sequencing of one affected dog, an obligate carrier 

and an unrelated control revealed a 218 bp SINE insertion into exon 7 of the RAB3GAP1 gene. The 

SINE insertion was perfectly associated with the disease phenotype in a cohort of 43 Alaskan Huskies 

and it was absent from 541 control dogs of diverse other breeds. The SINE insertion induced aberrant 

splicing and led to a transcript with a greatly altered exon 7. RAB3GAP1 loss-of-function variants in 

humans cause Warburg Micro Syndrome 1 (WARBM1), which is characterized by additional 

developmental defects compared to canine POANV, whereas Rab3gap1 deficient mice have a much 

milder phenotype than either humans or dogs. Thus the RAB3GAP1 mutant Alaskan Huskies provide 

an interesting intermediate phenotype that may help to better understand the function of RAB3GAP1 

in development. Furthermore, the identification of the presumed causative genetic variant will enable 

genetic testing to avoid the non-intentional breeding of affected dogs. 
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Introduction 

Warburg Micro Syndrome (WARBM) also known as Micro Syndrome, is a severe rare disorder with 

an autosomal recessive inheritance in humans. The clinical phenotype is characterized by 

micropthalmia, microcornea, bilateral congenital cataracts, short palpebral fissures, optic atrophy, 

severe mental retardation, congenital hypotonia with subsequent spasticity and variable toe 

malformations. Brain MRI findings show relatively consistent patterns of delayed myelination, 

polymicrogyria of the frontal and parietal lobes, wide sylvian fissures, corpus callosum hypogenesis 

and increased subdural spaces (Warburg et al. 1993; Morris-Rosendahl et al. 2010). 

WARBM is a heterogenetic disorder in humans and variants in several genes lead to clinically 

indistinguishable phenotypes (Liegel et al. 2013). WARBM1 (MIM 600118) is caused by variants 

in the RAB3GAP1 gene encoding the catalytic RAB3 GTPase-activating protein subunit 1 (Aligianis 

et al. 2005). WARBM2 (MIM 614265), WARBM3 (MIM 614222), and WARBM4 (MIM 615663) 

are caused by genetic variants in RAB3GAP2, RAB18, and TBC1D20, respectively. Large 1q43-44 

deletions may also result in a WARBM phenotype (Arroyo-Carrera et al. 2015). 

RAB3GAP1 is a 130 kDa protein that forms together with the 150 kDa RAB3GAP2 the 

heterodimeric RAB3GAP complex. This complex regulates the activity of members of the RAB3 

subfamily of small G proteins belonging to the RAS superfamily. RAB proteins are master regulators 

of intracellular vesicle trafficking. They regulate the budding of transport vesicles from the donor 

membrane, motility, docking and fusion with the acceptor membrane (Fukui et al. 1997; Oishi et al. 

1998; Handley et al. 2013). RAB family members cycle between a GDP-bound inactive and a GTP-

bound active form. The GTP-bound active form of RAB3 family members is inactivated by GTP 

hydrolysis before, during and after the fusion of the vesicle by the stimulation of RAB3GAP (Fukui 

et al. 1997). RAB3 family members have their function in regulated exocytosis of hormones and 

neurotransmitters and RAB3A is located in synaptic vesicles and secretory granules (Oishi et al. 

1998; Handley et al. 2013). 
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WARBM1 causative variants in the RAB3GAP1 gene are thought to severely affect the catalytic 

activity of RAB3GAP1 enzyme function and/or provoke nonsense-mediated decay of the RAB3GAP1 

message (loss-of-function mutations). Less damaging variants are suggested to cause the milder 

Martsolf syndrome (Aligians et al. 2005; Handley et al. 2013). 

In this report, we describe Alaskan Huskies with neurological and ocular abnormalities with some 

parallels to the human WARBM phenotype. Several affected dogs were clinically and 

histopathologically characterized. The main focus of this study was the identification of the presumed 

causative genetic defect by a positional cloning approach. 

 

 

Materials and Methods 

 

Ethics statement 

All animal experiments were performed according to the local regulations. All dogs in this study 

were privately owned and examined with the consent of their owners. The collection of blood 

samples was approved by the “Cantonal Committee For Animal Experiments” (Canton of Bern; 

permit 23/10). 

 

Breed nomenclature 

The neurological defect was observed in Alaskan Huskies. This term is used for working dogs that 

are bred and used for sled racing. Alaskan Huskies are not recognized as a breed by the American 

Kennel Club or other national kennel clubs. They represent an admixed population with contributions 

from Siberian Huskies, Alaskan Malamutes, local dogs bred by the Inuit and other inhabitants of the 

polar regions, and some other purebred dogs deemed suitable for sled pulling. In contrast, Siberian 

Huskies and Alaskan Malamutes are recognized breeds and represent closed populations. 
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Clinical examinations 

We performed clinical examinations on 33 Alaskan Huskies at the Small Animal Hospital of the 

University of Bern between 2012 and 2015. These consisted of 6 affected and 27 clinically 

unremarkable dogs. General clinical, neurological and ophthalmologic examinations were 

performed, and gender, age at onset of clinical signs, the course of the disease, and age at time of 

euthanasia were recorded. In selected affected dogs, further diagnostic tests, such as blood work (n 

= 3), urinalysis (n = 3), cerebrospinal fluid analysis (n = 2), radiographs of chest (n = 3), 

electrodiagnostics (n = 2), muscle and nerve biopsies (n = 3), and magnetic resonance imaging (n = 

4) were performed. Magnetic resonance imaging (MRI) was performed in four affected, one age-

matched clear, and one carrier Alaskan Husky. Examinations of the head (n=6) and thoracolumbar 

spine (n=5) were performed in either a low field magnet (0.3 T; n=1) or a high field magnet (n = 5). 

One affected dog underwent two examinations, the first at the age of 13 months and the second one 

3 months later directly before euthanasia. MRI evaluation included subjective assessment of external 

CSF spaces, assessment of cerebral white matter and corpus callosum thickness, shape of the 

thoracolumbar spinal cord and size evaluated as ratio of the spinal cord area to the vertebral canal 

area in transverse direction at the level of the 13th thoracic vertebra. 

 

Neuropathology and immunohistochemistry 

The brain, spinal cord and nerves were examined from five affected Huskies after euthanasia (SY001, 

male, 16 months; SY006, female, 8 months; SY030, female, 8 months; SY041, male, 11 months; 

SY042 female, 11 months). Samples were immersion-fixed in 4% neutral buffered formaldehyde. 

Representative tissue samples were processed, embedded in paraffin, sectioned at 5 μm and stained 

with hematoxylin and eosin (HE). Selected brain and spinal cord sections were stained with Luxol 

Fast Blue and HE (LFB-HE) or with Bielschowsky silver stain. Additionally, immunohistochemistry 
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was performed with the monoclonal L42 antibody (R-Biopharm, Darmstadt, Germany) as previously 

described to exclude pathological Prion protein (PrPd) deposition (Seuberlich et al. 2007). 

Additionally, nerve and muscle biopsies were collected from three affected dogs (SY001, SY041, 

SY042) at 11-12 months of age. Fresh and fixed biopsies from the cranial tibial muscle, and from 

the peroneal, vagus and vagosympathetic nerves were shipped under refrigeration by an express 

service to the Comparative Neuromuscular Laboratory, University of California San Diego, La Jolla, 

CA. Upon receipt, tissues were frozen in isopentane pre-cooled in liquid nitrogen and stored at -80ºC 

until further processed. Cryosections (8 µm) were stained or reacted with HE, modified Gomori 

trichrome, periodic acid-Schiff (PAS), myofibrillar ATPases at pH 9.8 and 4.3, esterase, 

nicotinamide adenine dinucleotide-tetrazolium reductase (NADH-TR), succinate dehydrogenase 

(SDH), cytochrome C oxidase, acid phosphatase, alkaline phosphatase, oil red O, and staphylococcal 

protein A conjugated to horseradish peroxidase (SPA-HRPO) by standard protocols (Dubowitz and 

Sewry, 2013). In addition, nerve specimens were fixed in 10% neutral buffered formalin, resin 

embedded, then evaluated in 1 µm plastic sections stained with toluidine blue. 

 

Animals for the genetic analysis 

We used 43 Alaskan Huskies for the genetic analysis. Forty-one of these dogs originated from a 

single breeder. The Alaskan Huskies included the 33 dogs that were examined by clinical 

neurologists (6 cases / 27 controls) and 10 additional control dogs that were reported as unremarkable 

by their owners. We additionally investigated 2 purebred Siberian Huskies, 6 Alaskan Malamutes, 

25 Samoyedes, 15 Greenland Dogs and 493 dogs from 64 various diverse dog breeds that had been 

donated to the biobank of the Institute of Genetics at the University of Bern. The 541 purebred dogs 

are listed in detail in Table S1. 
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It has to be noted that we continued to collect samples during this study. Therefore, we started with 

smaller sample numbers during the genetic mapping and only used the full number of samples for 

genotyping the SINE insertion for the final association analysis. 

 

DNA samples and SNP genotyping 

We isolated genomic DNA from EDTA blood samples with the Nucleon Bacc2 kit (GE Healthcare). 

Genotyping was done on Illumina canine_HD chips containing 173,662 SNPs by GeneSeek/Neogen. 

Genotypes were stored in a BC/Gene database version 3.5 (BC/Platforms). 

 

Linkage and homozygosity mapping 

For the linkage analysis we had Illumina canine_HD SNP chip genotypes from 18 dogs, 4 parents 

and 14 offspring (3 affected / 11 non-affected, Figure S1). We removed non-informative markers, 

markers on the sex chromosomes, and markers that were not genotyped in all animals. The pruned 

dataset contained 64,358 markers. We then applied the Merlin software (Abecasis et al. 2002) and a 

fully penetrant, recessive model of inheritance to analyze the data for parametric linkage. 

We used PLINK v1.07 (Purcell et al. 2007) to search for extended intervals of homozygosity with 

shared alleles across four affected animals. The options --homozyg and --homozyg-group were 

applied. Using these standard parameters, PLINK reports homozygous segments ≥1 Mb. The final 

definition of the minimal critical interval was done by visual inspection of all SNP chip genotypes 

of the four genotyped cases on chromosome 19 in an Excel-file.  

 

Gene analysis 

We used the dog CanFam 3.1 assembly for all analyses. All numbering within the canine RAB3GAP1 

gene corresponds to the accession XM_851254.3 (mRNA). 
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Whole genome sequencing of 3 dog genomes 

We prepared PCR-free fragment libraries with 300 bp insert sizes from an affected Alaskan Husky 

(SY001), an obligate carrier Alaskan Husky (SY018) and a non-affected unrelated purebred Siberian 

Husky. The libraries were sequenced to 13x-19x coverage on an Illumina HiSeq2500 instrument 

using 2 x 100 bp paired-end reads. The mapping and variant calling was done as described previously 

(Drögemüller et al. 2014). The reads obtained from whole genome sequencing were also visualized 

in the Integrated Genome Viewer (Broad Institute). 

 

PCR and Sanger sequencing 

We used Sanger sequencing to confirm variants identified from whole genome sequencing. For these 

experiments we amplified PCR products from genomic DNA using SequalPrepTM long range 

polymerase (Thermo Fisher). The PCR primers used for the genotyping of the SINE insertion were 

GTCCATTCCCATTTAATTGTGTCCT and AGAGGAAAAGGAGTAGGAAGAGA (regular 

non-modified primers). PCR products were directly sequenced on an ABI 3730 capillary sequencer 

(Thermo Fisher) after treatment with exonuclease I and shrimp alkaline phosphatase. We analyzed 

the Sanger sequence data with Sequencher 5.1 (GeneCodes). 

 

Fragment Length Analysis 

We used fragment length analyses to genotype a larger number of samples. The size of the PCR 

products was determined on the Fragment AnalyzerTM capillary gel electrophoresis instrument 

(Advanced Analytical). Visual inspection of the output file prompted us to classify the dogs as 

homozygous for the SINE insertion (ins/ins, single band of ~690 bp), heterozygous (ins/wt, two 

bands of 472 and ~690 bp) or homozygous wildtype (wt/wt, single band of 472 bp). 
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RNA isolation and RT-PCR 

We isolated total RNA from brain using Qiazol and RNeasy spin columns according to the 

manufacturer’s recommendations (Qiagen). Total RNA from blood was isolated using PAXgene 

tubes and the PAXgene blood RNA kit (Qiagen). All RNA samples were treated with RNase-free 

DNase to remove contaminations with genomic DNA. Reverse transcription to generate cDNA was 

carried out using an oligo-dT primer and Superscript IV reverse transcriptase according to the 

manufacturer’s recommendation (Thermo Fisher). We performed RT-PCR with 1 µl of the 

synthesized cDNA and SequalPrepTM long range polymerase (Thermo Fisher). Primers located in 

exon 6 and exon 8 of the RAB3GAP1 gene were CCAAGAGCACATTGCCTGGT and 

CAGGCCTCCAACTTCTCCTC. RT-PCR products were directly Sanger sequenced as described 

above. 

 

Data availability 

File S1 is a video illustrating the clinical phenotype of an affected Alaskan Husky (SY005) at 

8 months of age. File S2 lists the sequence context of the 218 bp SINE insertion into exon 7 of the 

canine RAB3GAP1 gene. File S3 shows an alignment of the canine wildtype and predicted mutant 

RAB3GAP1 protein. Figure S1 shows the pedigrees of Alaskan Huskies used for the mapping of the 

disease locus. Figure S2 represents an IGV screenshot of the region with the SINE insertion. Table S1 

contains RAB3GAP1:c.614_615ins218 genotypes of 541 dogs from 68 different dog breeds. 

Table S2 lists genome regions that showed positive LOD scores in the linkage analysis. The raw SNP 

chip genotypes are available upon request. The genome sequencing data were deposited in the 

European Nucleotide Archive (ENA) under accessions PRJEB9590 (case), PRJEB9591 (carrier), 

PRJEB10823 (control). The nucleotide sequence of the mutant RAB3GAP1 allele with the SINE 

insertion was deposited in the ENA under accession LN864704. 
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Results 

Clinical presentation and laboratory findings 

Of the examined dogs, 4 female and 2 male dogs displayed an abnormal neurological examination. 

The neurological signs started at the age of 4 to 5 months with visual problems, and 1 to 2 months 

later the dogs displayed an altered voice, regurgitation, and gait abnormalities progressing to a severe 

ataxia within another 2 to 6 months. A video of an affected dog is presented as File S1. 

On presentation at the age of 6 to 10 months, the general physical examination revealed no 

abnormalities. Consciousness was evaluated as normal during the neurological examination. 

However, the dogs were very anxious during manipulating the head. The dogs had a severe spinal 

ataxia with the pelvic limbs being more severely affected than the thoracic limbs, and a mild 

tetraparesis. Postural reactions were absent in the pelvic limbs and mildly reduced in the thoracic 

limbs. The menace response was absent bilaterally and other cranial nerves were normal. The 

segmental spinal reflexes of all four limbs were normal to increased. Two dogs had a crossed 

extensor-flexor reflex in both pelvic limbs, and a severely increased muscle tone. The dogs were not 

painful on palpation of the spine. (File S1). Ophthalmologic examination revealed bilateral 

microphthalmia, small pupils, and lenses with nuclear cataract (Figure 1). Four of the affected dogs 

additionally exhibited strabismus and/or persistent pupillary membranes. 
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Figure 1 Eye phenotype in a 5-week old affected Alaskan Husky. Multiple ocular anomalies such as 

(A) microphthalmia and (B) persistent pupillary membranes and an immature cataract can be noted. 

 

The lesions were neuroanatomically localized to the spinal cord (sensory > motor), the eyes, and 

vagus nerve. Blood work, urinalysis and cerebrospinal fluid examination were unremarkable. 

Radiographs of the chest revealed a megaesophagus in all examined dogs. Electrodiagnostic testing 

including electromyography, measurement of sensory and motor nerve conduction velocities, and 

measurement of the compound muscle action potential following repetitive nerve stimulation was 

performed in two affected dogs at the age of 11 and 13 months under general anesthesia. The only 

abnormalities identified were decremental responses of 20% of the compound muscle action 

potential following repetitive nerve stimulation of the peroneal nerve (stimulation frequency: 2 Hz; 

stimulation duration 0.1 ms). 
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MRI findings 

The sulci of the forebrain were subjectively wide in all 6 dogs that underwent MRI, with mild 

enlargement in the non-affected and one affected dog. In the remaining 4 dogs, there was moderate 

(3 affected) to marked enlargement (1 affected, 1 carrier). The white matter of the forebrain and 

corpus callosum was thinner in all affected dogs compared to the carrier and clear dog. Except for 

the clear dog, external CSF spaces within the caudal fossa and cerebellar fissures were enlarged with 

mild enlargement in 3 dogs, moderate enlargement in 2 (including the carrier dog) and marked 

enlargement in 1 dog. The thoracolumbar spinal cord was triangular with thinning of the dorsal parts 

in 3 affected dogs. The ratio between spinal cord area to the spinal canal area was smaller in all 

affected dogs (≤ 0.19) compared to the carrier and clear dog (≥ 0.2). In the one affected dog with two 

examinations, there was no visible difference between the findings of both examinations. 

 

Neuropathological findings 

Neuropathological examinations were performed on five affected Alaskan Huskies and showed 

bilaterally symmetrical chronic Wallerian-type axonal degeneration in the spinal cord, which was 

characterized by dilated myelin sheaths containing either axonal spheroids and fragments or 

myelinophages. Lesions were most prominent in the superficial dorsolateral white matter tracts of 

the cervical and thoracic segments (Figure 2A), where they consisted of areas of axonal and myelin 

loss replaced by gliotic tissue (Figure 2B). Additionally, widely spread, bilateral-symmetrical, subtle 

to severe neuronal vacuolation was present in the spinal cord grey matter, facial nucleus, gracile and 

cuneate nuclei, vestibular nuclei, cerebellar nuclei, oculomotor nuclei, substantia nigra, thalamic 

nuclei, hypothalamus, hippocampus and cortex. The vacuolation was characterized by the presence 

of one to multiple clearly defined vacuoles of varying size in the neuronal somata and was prominent 

in the cerebellar nuclei (Figure 2C and D). Vacuoles were also observed in the surrounding neuropil, 

which contained scattered axonal spheroids and was gliotic. In the cerebellar cortex, mild to severe 



13 

 

Purkinje cell degeneration and loss were observed, associated with cerebellar atrophy in one case. 

Scattered axonal spheroids were present in the granule cell layer. Mild vacuolation and scattered 

fragmented axons were observed in the white matter of the cerebellum and brainstem. Pathological 

prion protein deposition was absent. 

In muscle and peripheral nerve biopsies from three affected dogs, we observed a mild variability in 

myofiber size with scattered atrophic fibers having an angular to anguloid shape and of both fiber 

types. Multifocal areas of type 1 fiber grouping were observed in one dog. Intramuscular nerve 

branches were mildly to moderately depleted of myelinated fibers. Large fiber loss was evident in 

the peroneal and vagus nerves resulting from axonal degeneration in two dogs. Regenerative changes 

were not obvious, and the vagosympathetic nerve did not reveal any specific abnormalities. 
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Figure 2 Neuropathologic findings in the central nervous system of the affected Alaskan Husky 

SY001. Lesions are consistent with neuronal vacuolation and spinocerebellar degeneration. 

(A) Combined LFB-HE stain of a thoracic spinal cord cross section. Bilateral-symmetrical axonal 

and myelin loss, characterized by loss of blue color, is most prominent in the superficial dorsolateral 

tracts (arrows). (B) Higher magnification of the dorsolateral tract indicated by the rectangle in A. 

Myelin sheets are multifocally dilated and some contain axonal spheroids (arrow) and 

myelinophages. The white matter is replaced by gliotic tissue (asterisks), characterized by a paler 

staining and increased number of astrocytic nuclei. (C) Nucleus interpositus. Two neurons contain 

large, clearly defined vacuoles (arrows). The nucleus of the upper neurons is displaced to the 

periphery by the intracytoplasmic vacuole. (D) Nucleus interpositus. Three neurons with multiple 

coalescing vacuoles (arrows) in the cytoplasm. 

 

 



15 

 

Large nerve fiber loss was evident in the peroneal nerve (Figure 3A) and vagus nerve resulting from 

chronic axonal degeneration. Regenerative changes were not obvious. No abnormalities were 

identified in the vagosympathetic nerve. In cryosections of the cranial tibial muscle, a mild variability 

in myofiber size was present with scattered atrophic fibers having an angular to anguloid shape 

(Figure 3B) and of both fiber types. Fiber type grouping was not observed. Intramuscular nerve 

branches were moderately depleted of myelinated fibers.  

 

 

 

Figure 3 Peripheral nerve and muscle pathology. (A) Resin embedded 1 µm section of the peroneal 

nerve showing loss of large caliber myelinated nerve fibers without obvious regenerating clusters 

(toluidine blue stain). (B) Cryosection of the cranial tibial muscle showing atrophic fibers having an 

anguloid to angular shape (asterisks) and an intramuscular nerve branch that is moderately depleted 

of myelinated fibers (arrow). The pink stain within the intramuscular nerve branch localizes myelin 

in the individual nerve fibers (modified Gomori trichrome stain, bar = 50 µm for both A and B). 
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Genetic mapping of the causative genetic variant 

The affected Alaskan Huskies did not have official pedigree certificates. However their breeder 

provided us with extensive pedigree information based on private records. The pedigrees were 

consistent with a monogenic autosomal recessive mode of inheritance and it seemed likely that all 

affected Huskies used in this study were related. 

At the time of the initial mapping of the causative locus we had samples from 18 closely related 

Alaskan Huskies and one additional affected dog without close relatives (Figure S1). We performed 

parametric linkage analysis in the 18 related dogs which consisted of 4 parents and 14 offspring 

(3 affected / 11 non-affected). We obtained positive LOD scores for 9 genome segments on 8 

chromosomes containing roughly 59.2 Mb in total. The highest LOD scores of 1.976 were obtained 

on chromosomes 2, 11, 15, 17 and 19 (Table S2). 

Based on the pedigree records we hypothesized that all affected dogs most likely were inbred to one 

single founder animal. Under this scenario the affected individuals were expected to be identical by 

descent (IBD) for the causative mutation and flanking chromosomal segments. We therefore 

analyzed the 4 available cases for extended regions of homozygosity with simultaneous allele sharing 

and found only a single genome region of 4.2 Mb that fulfilled our search criteria. The homozygous 

segment was on chromosome 19 and largely overlapped with one of the linked segments. The 

combined linkage and homozygosity analysis thus defined an exact critical interval of 4,086,630 bp 

at Chr19:36,483,638-40,570,267. 

 

Identification of the causative genetic variant 

In order to obtain a comprehensive overview of all variants in the critical interval we sequenced the 

genomes of one affected Alaskan Husky, one obligate carrier and one unrelated purebred Siberian 

Husky at 13 - 19x coverage. We called SNPs and indel variants with respect to the reference genome 

of a presumably non-affected Boxer (CanFam 3.1). We additionally considered genome sequence 
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data from 166 dog genomes of other breeds. Filtering for variants in the critical interval that were 

homozygous in the affected Alaskan Husky, heterozygous in the carrier, and absent from the 

unrelated Siberian Husky and all the other 166 control genomes resulted in only one perfectly 

disease-associated variant, chr19:36,535,487A>G. This SNP was intergenic and more than 30 kb 

away from the next annotated gene. 

As this variant seemed unlikely to cause the severe observed phenotype, we then visually inspected 

the short read alignments in the critical interval to search for structural variants that would have most 

likely been missed by our automated variant detection pipeline. Several truncated read alignments in 

exon 7 of the RAB3GAP1 gene indicated a potential duplication and/or insertion event (Figure S2). 

We designed primers flanking exon 7 and amplified this region in a long-range PCR. Sanger 

sequencing of the products revealed a 218 bp SINE insertion in exon 7 of the RAB3GAP1 gene of 

the affected dogs (Figure 4). The insertion site was flanked by a 14 nucleotide duplication (File S2). 

The sequence of the mutant allele was submitted to the ENA under accession LN864704 and the 

mutant allele can be described as RAB3GAP1:c.614_615insLN864704:g.123_340. 
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Figure 4 SINE insertion in exon 7 of the RAB3GAP1 gene. (A) Schematic representation of the SINE 

insertion. A 218 bp canine SINE-tRNA insertion was found in affected Alaskan Huskies after 

position +614 of the RAB3GAP1 coding sequence. Fourteen nucleotides flanking the insertion site 

were duplicated (File S2). (B) Experimental genotyping of the SINE insertion by fragment size 

analysis. We amplified exon 7 of the RAB3GAP1 gene and flanking intron segments by PCR and 

separated the products of dogs with the 3 different genotypes by capillary gel electrophoresis. The 

size of the insertion allele might be slightly variable as the SINE insertion has a poly(A)-tract at its 

3’-end. Such sequences are frequently not faithfully replicated and thus show a high degree of length 

variation even between closely related individuals. 
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We genotyped this variant by fragment length analysis in a larger cohort of 43 Alaskan Huskies and 

541 dogs of 68 diverse other breeds. The genotypes showed perfect co-segregation with the disease 

phenotype in Alaskan Huskies and we did not find the SINE insertion outside of the Alaskan Husky 

population (Table 1). 

 

 

Table 1. Association of the RAB3GAP1 SINE insertion with affection status. 

 

Genotype Alaskan Husky 

casesa 

Alaskan Husky 

controls 

Control dogs from other breedsb 

    

wt/wt - 17 541 

ins/wt - 20 - 

ins/ins 6 - - 

a Four cases had been available during the mapping phase of the project. Later, two affected maternal 

half siblings to an existing case became additionally available. 

b A detailed list with breed affiliations of the control dogs can be found in Table S1. The SINE 

insertion was not found in Siberian Huskies (n = 2), Alaskan Malamutes (n = 6), Samoyedes (n = 25) 

or Greenland Dogs (n = 15). 
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Analysis of the RAB3GAP1 transcript 

We next investigated the effect of the 218 bp SINE insertion on the RAB3GAP1 transcript as the full-

length insertion introduced several stop codons into the original exon 7. We isolated brain and blood 

RNA from dogs with the three different genotypes. RT-PCR with primers located in exons 6 and 8 

and subsequent Sanger sequencing of the resulting products revealed that the SINE insertion led to 

aberrant splicing. In affected animals the vast majority of the primary transcripts were spliced at a 

new internal splice acceptor site within the SINE insertion. This led to the inclusion of a novel “exon 

7” containing 187 nucleotides instead of the wildtype exon 7 with 166 nucleotides (Figure 5). The 

mutant transcript preserved the original reading frame of the RAB3GAP1 gene and is predicted to 

encode for a protein with 992 amino acids compared to the 985 amino acids of the wildtype canine 

RAB3GAP1. In the mutant protein a stretch of 39 wildtype amino acids from positions 162 to 200 is 

replaced by 46 new amino acids with very little sequence homology (File S3). 

With RNA from blood, but not with RNA from brain from affected dogs, we noticed a faint additional 

shorter RT-PCR product, which corresponded to a transcript lacking the entire exon 7. 

Sanger sequencing of the RT-PCR products from a heterozygous carrier dog showed that transcripts 

from both the wildtype and the mutant allele were present at roughly similar amounts. Thus, 

nonsense-mediated decay (NMD) apparently is not a major consequence of the SINE insertion. 
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Figure 5 Effect of the SINE insertion on RAB3GAP1 transcripts. (A) Schematic representation of 

exons 6 through 8 of the RAB3GAP1 gene. Introns are not drawn to scale. The 218 bp SINE insertion 

into exon 7 is indicated in red. The SINE insertion leads to the utilization of a novel internal splice 

acceptor site and a mutant transcript, in which a large part of exon 7 is replaced with mutant sequence. 

In the mutant genomic allele the “intronized” parts of the original exon 7 are represented by a shallow 

rectangle. The new mutant exon 7 is indicated by a rectangle of the same height as exons 6 and 8. 

(B) Experimental confirmation of the aberrant alternative splicing. RT-PCR with primers in exon 6 

and exon 8 amplified relatively uniform products of distinct sizes in dogs with the different 

genotypes. All RT-PCR products were Sanger sequenced to confirm their identity. In RNA from 

whole blood of affected animals there is an additional faint band visible, which corresponds to a 

transcript lacking the entire exon 7. 

 

 

 

Discussion 

The observed clinical signs and pathological changes in the affected Alaskan Huskies closely 

resemble a phenotype originally described as “neuronal vacuolation and spinocerebellar 
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degeneration” in Rottweilers (Kortz et al. 1997; Andrade-Neto et al. 1998; de Lahunta and Summers 

1998; Eger et al. 1998; Pumarola et al. 1999). Similar phenotypes have also been reported in Boxers 

and lately described in Black Russian Terriers as “polyneuropathy with ocular abnormalities and 

neuronal vacuolation (POANV)” (Geiger et al. 2009; Mhlanga-Mutangadura et al. 2014; Mhlanga-

Mutangadura et al. 2015a; Mhlanga-Mutangadura et al. 2015b). While the underlying causative 

genetic variant in Boxers remains unknown, the causative genetic defect in Rottweilers and Black 

Russian Terriers has recently been identified by researchers from the University of Missouri in an 

independent study. Rottweilers and Black Russian Terriers with POANV were found to be 

homozygous for a single base deletion in the RAB3GAP1 gene (c.743delC; Mhlanga-Mutangadura 

et al. 2014; Mhlanga-Mutangadura et al. 2015a; Mhlanga-Mutangadura et al. 2015b). 

We have to caution here that our own genetic data reported in this study do not prove the causality 

of the identified RAB3GAP1 SINE insertion for the Alaskan Husky disease on their own. Due to 

limited sample availability our linkage analysis did not reach a LOD score of three, which is 

commonly accepted as significance threshold to map a gene. We also did not experimentally confirm 

that the SINE insertion and resulting aberrant splicing really leads to a lack of functional RAB3GAP1 

protein. However, many other known SINE insertions indeed completely abolish the function of the 

altered genes. Examples from dogs include centronuclear myopathy and early retinal degeneration, 

which are caused by exonic SINE insertions into the PTPLA and STK38L genes, respectively (Pelé 

et al. 2005; Goldstein et al. 2010). We did not investigate whether the aberrant splicing in the Alaskan 

Huskies was due to actively regulated nonsense-associated altered splicing (Wang et al. 2002) or 

whether the SINE insertion just by chance contained a very strong splice acceptor motif, which re-

directs splicing to the new site. The SINE insertion seen in Labradors with centronuclear myopathy 

also leads to the utilization of the same internal splice acceptor site (Pelé et al. 2005). 

Our genetic association data (Table 1) and the co-segregation of the SINE insertion with the POANV 

phenotype in the families support the causality of the RAB3GAP1 SINE insertion for the observed 
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phenotype. The observed neuronal vacuolar changes are compatible with abnormal vesicular 

trafficking. The functional knowledge on the RAB3GAP complex from other species is consistent 

with this hypothesis. Finally, the fact that now 2 independent coding variants in the same gene have 

been found in dogs with an almost identical phenotype from independent dog populations, in our 

opinion establishes the causality of these variants beyond any reasonable doubt. 

We found the RAB3GAP1 SINE insertion only in Alaskan Huskies, but not in Siberian Huskies, 

Alaskan Malamutes, or any other closely related breed contributing to the Alaskan Husky gene pool. 

Based on the limited available pedigree information from the investigated cases, the hypothetical 

founder animal must have lived at least 6 generations before the investigated cases. As we tested 

only a very small number of Siberian Huskies and Alaskan Malamutes, these breeds should be 

carefully monitored whether they are truly free of the mutant RAB3GAP1 allele. 

The affected Alaskan Huskies show some similarities to human WARBM1. From a genetic point of 

view, human WARBM1 patients and the affected dogs both carry recessive loss-of-function alleles 

at the RAB3GAP1 gene. The phenotype at first glance also shows some parallels with a combination 

of neurological abnormalities and ocular defects such as microphthalmia (Warburg et al. 1993; 

Aligians et al. 2005; Morris-Rosendahl et al. 2010; Handley et al. 2013; Arroyo-Carrera et al. 2015). 

However, when studied in more detail, the human WARBM1 phenotype appears to be clinically 

more severe and is characterized by a number of additional developmental defects that are not seen 

in the affected dogs, such as corpus callosum hypogenesis or the toe malformations. 

Interestingly, Rab3gap1 knockout mice show an even milder clinical phenotype than dogs. They 

appear grossly normal with unremarkable eye and CNS development. The only reported phenotype 

is a reduced Ca2+-induced synaptic neurotransmitter release leading to alterations in the short term 

plasticity of the hippocampal CA1 synapse (Sakane et al. 2006). It thus appears tempting to speculate 

that either the fine-tuning of synaptic vesicle release, which is mediated by the RAB3GAP complex, 

or a yet unknown additional function of the RAB3GAP complex somehow provides important clues 
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for the correct development of the human brain. These hypothetical signals seem to be less important 

in dogs and dispensable in mice. The RAB3GAP1 mutant dogs thus provide an interesting 

intermediate phenotype, which might help to disentangle the various functions of the RAB3GAP 

complex. 

In conclusion, we provide the first comprehensive description of a POANV phenotype in Alaskan 

Huskies, most likely caused by a SINE insertion in the RAB3GAP1 gene. The affected dogs exhibit 

some parallels, but also clear phenotypic differences with respect to human WARBM1 patients and 

provide an animal model for the further functional analysis of the RAB3GAP complex. Our findings 

enable genetic testing in dogs, so that the non-intentional breeding of affected dogs can be avoided 

in the future. 
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