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The assessment of treatment effects from observational studies may be biased with patients not randomly allocated to the experimental or
control group. One way to overcome this conceptual shortcoming in the design of such studies is the use of propensity scores to adjust for
differences of the characteristics between patients treated with experimental and control interventions. The propensity score is defined as
the probability that a patient received the experimental intervention conditional on pre-treatment characteristics at baseline. Here, we
review how propensity scores are estimated and how they can help in adjusting the treatment effect for baseline imbalances. We further
discuss how to evaluate adequate overlap of baseline characteristics between patient groups, provide guidelines for variable selection
and model building in modelling the propensity score, and review different methods of propensity score adjustments. We conclude that
propensity analyses may help in evaluating the comparability of patients in observational studies, and may account for more potential con-
founding factors than conventional covariate adjustment approaches. However, bias due to unmeasured confounding cannot be corrected
for.
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Introduction
In the European Heart Journal’s recent issues, many studies applied
propensity score techniques to investigate effects of interventions
in observational studies. The increasing popularity of these
methods in cardiology warrants a critical appraisal from a statistical
point of view.

In a randomized controlled trial (RCT), random allocation of
patients to either an experimental or a control arm guarantees
that treatment allocation is unrelated to measured and unmea-
sured patient characteristics between groups. It enables research-
ers to draw unbiased conclusions about a treatment effect,
provided that the number of randomized patients is large
enough to minimize random variation. However, viability of
RCTs may be limited by ethical or economical constraints. More-
over, the patient population is often highly selected in an RCT due
to restrictive inclusion criteria, and diagnostic and therapeutic
interventions may be atypically intensive when compared with
the interventions used for target patients in routine clinical settings.
Therefore, treatment effects observed in RCTs are often explored
in observational studies, with investigators wishing to infer causal
effects of a treatment. Since treatment allocation is not

randomized in such studies, treated and non-treated groups may
differ considerably in their pre-treatment characteristics, which
may seriously hamper the validity of conclusions. Even though
part of this imbalance may be due to randomness, as in an RCT,
the treatment decision is likely to depend on a patient’s pre-
treatment characteristics. If these are imbalanced and associated
with the study outcome, the assessment of the treatment effect
from an observational study suffers from bias caused by confounding
by indication.1 Two statistical methods, among others, which may
reduce this bias are, first, post-hoc matching of all experimental
patients to control patients with similar pre-treatment character-
istics and, second, evaluating treatment effects in a multivariable
model including those characteristics as covariates that are con-
sidered to potentially confound the treatment effect.

Problems may arise in both approaches if the number of covari-
ates considered for matching or adjustment is high. A high number
of covariates precludes finding a control patient for each patient
undergoing experimental treatment. For multivariable models, it
was recommended that there should be at least 10 outcome
events per covariate considered (EPC).2 Thus, these approaches
cannot adequately account for confounding when outcome events
are rare or when the number of confounding variables is high.
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Both problems can often be solved by applying propensity score ana-
lyses, which typically consist of two stages: first, propensity scores
are estimated using a multivariable logistic regression model, the pro-
pensity model. Second, the estimated propensity scores are used in
the treatment effect model to adjust the effect of treatment on the
outcome under study. The type of the treatment effect model
depends on the nature of the outcome variable; usually logistic
regression3 will be used to model a binary outcome, while Cox
regression4 is the standard method for time-to-event outcomes.

Propensity score modelling
The propensity score of a patient is defined as the probability to
receive the experimental treatment conditional on pre-treatment
covariates. These covariates summarize all of what is known
about that patient prior to treatment assignment, and are used
as independent variables in the propensity model. Two conditions
are necessary to obtain unbiased treatment effects by use of pro-
pensity scores. These conditions have been summarized by Rosen-
baum and Rubin5 as the assumption of a ‘strongly ignorable
treatment assignment’. The first condition is that once covariates
have been controlled for, to be assigned to experimental or
control treatment is not by itself a prognostic factor. This also
means that all confounding variables must be known. Second, it
is required that for each patient a real choice existed between
experimental and control treatment at the time point of treatment
selection. In other words, the patient had a non-null probability to
receive either of the two, experimental or control treatment.
Given that the above conditions hold, patients undergoing exper-
imental and control treatments with equal propensity scores will
on average have equal pre-treatment covariate values, and thus
propensity scores equalize the covariate distributions in the exper-
imental and control patients. Thus, adjusting for the propensity
score will allow for unbiased estimation of the treatment effect.

Ideally, all variables potentially confounding the treatment effect
(confounders) should be included in the propensity model. A con-
founder is defined by three conditions: first, it is a covariate avail-
able prior to the treatment assignment; second, it may influence
the treatment decision; and third, it may influence the outcome
of a patient.1 This definition excludes any post-treatment measure-
ments, because any imbalance in post-treatment covariates may
already be a reflection of a treatment effect. Such variables
would rather be called mediators of the treatment effect.

In the propensity model, significance is not a necessary condition
for inclusion of covariates in the model. Since the model uses treat-
ment status rather than clinical outcome status as the dependent vari-
able, the number of potential confounders to be used is not limited by
the number of clinical outcome events. Therefore, more covariates
can be used than in conventional regression approaches. Neverthe-
less, propensity models need to be developed with the same care
as other multivariable models. This includes checking the propensity
model for interactions or non-linear effects of continuous confoun-
ders. One should be aware that including interactions will not necess-
arily yield better balance in individual covariates between
experimental and control groups, but rather balance certain combi-
nations of covariate values between the groups. Therefore, the appro-
priateness of including interactions into the propensity score model

cannot be determined by investigating the balance of the covariates
after propensity score adjustment.6

The ultimate goal of a propensity model is not to maximize the
prediction of treatment status,7 but to reduce the bias in the esti-
mated treatment effect. In this light, recent investigations revealed
that the inclusion of covariates that correlate with the treatment
decision but not with the outcome will not improve the results
from a propensity analysis; such covariates rather increase the impre-
cision of the treatment effect estimate.8 In contrast, it may be more
important to include covariates that are strongly related to outcome,
but have only minor relationship with the treatment decision.7 As a
simple rule, one could determine whether relevant changes are
observed in the estimated treatment effect when potential confoun-
ders are deleted from the propensity model. Variables identified as
an unlikely confounder by this approach may be dropped from the
propensity model provided their deletion leads to a gain in precision
(i.e. narrower confidence interval).1

There is some debate as to how adequacy of propensity models
can be assessed. Many use the c-index (area under the receiver
operating characteristic curve), a measure of discrimination
defined as the estimated probability that a randomly selected exper-
imental patient has a higher propensity score than a randomly
selected control patient. However, the c-index is not suitable to
detect confounders omitted from the model.9 Furthermore, a high
c-index indicates non-overlap of propensity scores between exper-
imental and control patients, and may render any evaluation of a
treatment effect questionable because of the lack of comparability
of the characteristics of experimental and control patients.7 Piazza
et al.10 report a c-index for a propensity model amounting to 0.92,
and compare graphically the distribution of propensity scores
among aortic stenosis patients either undergoing transcatheter
aortic valve implantation or surgical aortic valve replacement.
Their Figure 1 reveals that sufficient overlap of propensity scores is
only provided in the subset of patients with propensity scores
.0.675, which the authors said ‘could be eligible for a randomized
trial’. As also pointed out by Glynn et al.7, such a graphical compari-
son of propensity scores can identify areas of non-overlap that are
otherwise difficult to describe in conventional regression analysis
with many covariates influencing treatment decisions. Often a
c-index of 0.8 is considered as confirming adequate model fit. If
such a value cannot be reached by a propensity model, it should
not automatically be concluded that propensity analysis is inap-
propriate. Provided that the propensity model was built with care,
a c-index close to 0.5 may even indicate that the amount of random-
ness in the treatment assignment, given the known covariates, is
similar to that of a randomized trial. Under this circumstance, one
cannot expect any benefit from incorporating propensity scores in
the estimation of the treatment effect. However, a low c-index
could also mean that important covariates are missing in the propen-
sity model, because they are not known to the investigator. The
problem of detecting such unmeasured confounding is impossible to
address by statistical techniques, and its presence means that obtain-
ing an unbiased estimate of the treatment effect is not possible. Some
proposals have been made to assess the sensitivity of results to the
potential presence of unmeasured confounding.11

Five important points to remember when modelling propensity
scores are lined out in Table 1.
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Estimation of the treatment effect
After propensity scores have been estimated, they can be incorpor-
ated in the treatment effect model in the following four different ways:

Matching
Propensity scores can be used to enable numerical matching algor-
ithms to find best matches between experimental and control
patients. This method is fairly robust against misspecification of
the propensity model. A recent study suggested that matching
on the logit of the propensity score with a calliper width of 0.2
standard deviations of the logit of the propensity score may be
superior to other methods used in the medical literature.12 A
drawback of matching is an often substantially reduced sample

size since for some patients matches may not be found. This
may significantly affect the study’s final conclusions which then
apply only to the selected subset of patients that could be
matched. Matching by propensity score should be followed by an
analysis of the treatment effect that accounts for the matched
pairs,12 such as a stratified log-rank test or a Cox regression analy-
sis stratified by matched pairs for time-to-event outcomes, or con-
ditional logistic regression for binary outcomes.

Stratification
A stratified analysis sub-classifies the individuals based on quintiles of
the propensity scores, computed over the combined treatment
groups. The outcomes of the individuals are then compared within
each of the strata, and a common estimator of the treatment effect
is derived by combining the results over the five strata. The
quasi-standard of using five subclasses originates from Cochran13

who showed that this may already reduce 90% of the imbalance of
a confounder between the groups. Cochran13 also showed that
using more than five strata may reduce imbalance even better and,
thus, more than five strata should be used in large data sets. Stratifi-
cation does not impose any strong assumptions about functional
form or time dependency of the effect of propensity scores on sur-
vival. It approximates matching without running the risk of losing
unmatched patients, since balance in the proportions of experimen-
tal and control patients within each stratum is not required.

Covariate adjustment
The propensity score could be included in the treatment effect
model as a covariate adjusting for baseline differences. However,
wrong assumptions about the functional relationship of propensity
scores and outcome (linearity, proportional hazards etc.) may then
directly lead to biased estimates.5

Figure 1 Graphical representation of matching by propensity score in the study of Ahmed et al.17 Patients not treated by diuretics are
matched to corresponding diuretics-treated patients. Patients with similar baseline characteristics are symbolized by ellipses of similar shape.
First, propensity scores are estimated from 19 baseline covariates. These propensity scores represent the probability of being treated by diure-
tics given the covariates. Second, propensity scores are used to find matches of non-treated patients in the diuretics-treated group. Only 1391
of the non-treated patients could be matched; the remaining 321 patients had no counterparts in the treated group with similar characteristics.
Analogously, 4676 of the diuretics patients were left unmatched.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table I Five points to remember for propensity score
modelling

Item Description

1 Propensity analysis can be used to estimate treatment effects
in observational studies, when confounding is present.

2 Propensity scores are estimated by logistic regression of the
treatment assignment on pre-treatment covariates.

3 The advantage of propensity score techniques is that usually
the number of covariates adjusted for can be higher than in
conventional multivariable models.

4 The c-index should not be used for judging the adequacy of a
propensity model.

5 Unlike randomization, propensity score techniques cannot
account for unknown or unmeasured potential
confounding factors.
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Inverse probability of received treatment
weighting
In this approach, the contributions of the study subjects are weighted
by 1/propensity score for experimental patients and by 1/(12

propensity score) for control patients.14 These weights assure that
for each combination of baseline characteristics (leading to a particu-
lar value of the propensity score), the sum of contributions of all
experimental and control patients are equal. As an example, consider
a combination of covariate values (e. g. male, smoking, non-
hypertensive) present in 20 patients. Assume further that a propen-
sity score of 0.3 was estimated for these patients, when out of the 20
patients, 6 (30%) received experimental treatment and 14 (70%) the
control intervention. Inverse probability of received treatment
weighting (IPTW) assigns a weight of 1/0.3 ¼ 3.33 to each of the 6
experimental patients, and a weight of 1/0.7 ¼ 1.43 to each of the
14 control patients. The sum of weights of the experimental patients,
6 × 3.33 ¼ 20, is equal to the sum of weights of the control patients,
14 × 1.43 ¼ 20. Thus, IPTW generates a pseudo-population in
which each covariate combination is perfectly balanced between
treatment groups. In IPTW analyses, experimental patients with
low propensity scores, and control patients with high propensity
scores obtain disproportional high weight, compared with exper-
imental patients with high propensity of receiving experimental treat-
ment and control patients with low propensity scores. In some
analyses, the weights assigned to some patients can become dispro-
portionally high. Then the IPTW estimate of the treatment effect will
be imprecise, which is reflected by a wide confidence interval. This
unfavourable property is related to problems with finding matches
for these patients.7 In such cases, likely to be encountered in small-
sized studies, it may be indicated to restrict analysis and conclusions
to those patients where weights are homogenous, i.e. where the pro-
pensity scores are neither close to zero nor to one. Clearly, IPTW
crucially depends on a correct specification of the propensity
model. Inverse probability of received treatment weighting allows
for a population-based interpretation of results, as if the study popu-
lation would have undergone a randomized trial in which, counter to
fact, both treatments were applied to each subject.14

Recent simulation studies15,16 have demonstrated that matching
on propensity score and IPTW tend to eliminate systematic differ-
ences between experimental and control subjects to a greater
degree than stratification or covariate adjustment. While matching
on the propensity score may result in the exclusion of some subjects,
in particular those who cannot be matched, the other approaches
always use the entire sample. Therefore, the choice of approach
depends on the particular data situation and on how certain the inves-
tigator is about the optimal set of potential confounders to be
included in the propensity model. Thus, a general recommendation
towards a particular approach cannot easily be derived.

In practice, the success of propensity score modelling is often
judged by whether balance on covariates is achieved between
experimental and control group after its use. Balance on covariates
is assessed by computing the standardized differences d for each
covariate, which is defined as

d = 100 × |�xE − �xC|������������
(s2

E + s2
C)/2

√ (1)

for continuous variables, and as

d = 100 × |p̂E − p̂C|�������������������������������
(p̂E(1 − p̂C) + p̂C(1 − p̂E))/2

√ (2)

for binary variables.16 Here, �xE, sE,�xC, and sc denote the mean and
standard deviation of a covariate in the experimental and control
groups, respectively. Likewise, p̂E and p̂C denote the prevalence
of one of the categories of a binary variable (e.g. female sex) in
the experimental and control groups, respectively. These formulas
directly apply if matching or stratification has been used. For IPTW,
standardized differences can be computed with the quantities in
Equations 1 and 2 replaced by their weighted equivalents.16

Austin16 further describes adjustments of these basic formulas to
be used with covariate adjustment. The standardized difference d
should be preferred to significance testing of covariates between
experimental and control groups, as it is not confounded by
sample size or the statistical power of the test employed,
which can be substantially lower for binary than for continuous
variables.

If for some covariates balance has not been achieved, one may
include these covariates in the treatment effect model, provided
that the EPC rule is respected. However, the estimated effects
of those covariates cannot be meaningfully interpreted, because
some of their association with the outcome variable will have
been captured through their inclusion in the propensity score
model.

Example: diuretics and mortality
in heart failure patients
Ahmed et al.17 used propensity scores to adjust their comparison
of mortality between heart failure patients who received non-
potassium sparing diuretics or no diuretics in an observational
study. A total of 6067 patients with diuretics and 1712 patients
without were included in the analysis. A propensity model
based on 19 variables, such as New York Heart Association
class, cardiothoracic ratio, use of potassium sparing diuretics,
and clinically meaningful interactions was used to estimate the
propensity of receiving diuretics. The propensity score was
used to match patients with and without diuretics. Eventually,
1391 pairs of patients could be identified, which corresponds
to 81% of the no-diuretic patients being matched to diuretic
patients (Figure 1). The success of propensity matching was
demonstrated by comparing the standardized differences, esti-
mated by formulas similar to Equations 1 and 2, before and
after matching. In the unmatched group, the absolute standar-
dized difference was .40% in each of the above-mentioned vari-
ables, while it was reduced to ,10% in the matched cohort. In
the matched cohort, the hazard ratio for all-cause mortality,
referring to the comparison of patients without and with diure-
tics, was 1.31, suggesting a protective effect of diuretics (95%
confidence interval: 1.11–1.55). Table 2 summarizes the typical
steps in the analysis of an observational study by propensity
scores, exemplified the study of Ahmed et al.
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Final remarks
In conventional regression or matching approaches used to adjust
for confounding, the EPC rule limits the number of potential con-
founders that can be adjusted for, and thus the adequacy of the
adjustment may be limited. However, propensity analyses do not
have this limitation.18 Still, Glynn et al.7 pointed out that simulation
studies comparing results from propensity analyses and conven-
tional regression did not supply clear evidence in favour of or
against one of these approaches. The additional estimation step
required when computing propensity scores may contribute to
increased variance of the final treatment effect estimate, and this
may negate the favourable effect from using a more parsimonious
treatment effect model.

A disadvantage of propensity analysis is that effects of covariates
used for adjustment are not obtained at all, or, if these covariates
have been included in the treatment effect model, have no mean-
ingful interpretation. It is also not meaningful to evaluate the pre-
dictive accuracy of treatment effect models involving propensity
score adjustment, e.g. by Harrell’s popular survival c-index,2 or
by the proportion of explained variation,19 because the purpose
is not prediction but the estimation of a minimally biased treatment
effect.

In summary, propensity analyses may be useful if the number of
potential confounders is high such that conventional regression
approaches are not feasible. They can help to identify subgroups
lacking an overlap of propensity scores, among which an evaluation
of treatment effects would not make sense. Neither propensity
score methods nor conventional multivariable regression
methods address bias resulting from unmeasured confounders;
only studies involving random allocation to experimental or

control groups yield estimates of treatment effects that are
unbiased with respect to unmeasured confounders.
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Table 2 Some typical steps of propensity analysis,
exemplified by the observational study of Ahmed et al.17

Step Task Method used in example

1 Identify confounding
variables

19 relevant covariates
measured at baseline

2 Estimate propensity scores
as the probability of
receiving experimental
treatment

Logistic regression of diuretic
treatment (yes/no) at
baseline on 19 covariables
including clinically
meaningful interactions

3 Match experimental to
control patients

Matching algorithm: ‘5 to 1 digit
matching on propensity
score’

4 Evaluate success of
matching

Compute standardized
differences, compare with
values before matching

5 Compare mortality of
treatment groups

Cox regression stratified for
matched pairs, adjustment
for confounding variables

6 Interpretation ‘No-diuretic patients have
1.3-fold mortality compared
with diuretic patients with
equal baseline
characteristics’
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