
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
7
3
7
7
9
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
1
9
.
4
.
2
0
2
4

  

 1 

Analysis of Phenotypic Variation in Childhood 
Wheezing Disorders 

 

 

 

Graduate School for Cellular and Biomedical Sciences 

University of Bern 

PhD Thesis  

 

Submitted by 

 

Ben Daniel Spycher 

from Köniz, Switzerland 

 

Thesis advisors 
 

PD Dr. Claudia Kuehni and Prof. Dr. Lutz Dümbgen 
Institute of Social and Preventive Medicine 
Medical Faculty of the University of Bern 

 
 

 
Original document saved on the web server of the University Library of Bern 

 
This work is licensed under a 

Creative Commons Attribution-Non-Commercial-No derivative works 2.5 Switzerland 
licence. To see the licence go to http://creativecommons.org/licenses/by-nc-nd/2.5/ch/ or 

write to Creative Commons, 171 Second Street, Suite 300, San Francisco, California 94105, 
USA. 



  

 2 

 

Copyright Notice 

This document is licensed under the Creative Commons Attribution-Non-Commercial-No 
derivative works 2.5 Switzerland. http://creativecommons.org/licenses/by-nc-nd/2.5/ch/ 

 

You are free: 

 

to copy, distribute, display, and perform the work 

 

Under the following conditions: 

 

 Attribution. You must give the original author credit. 

 

 Non-Commercial. You may not use this work for commercial purposes. 

 

No derivative works. You may not alter, transform, or build upon this work.. 

 

For any reuse or distribution, you must take clear to others the license terms of this work. 

 

Any of these conditions can be waived if you get permission from the copyright holder. 

 

Nothing in this license impairs or restricts the author’s moral rights according to Swiss law. 

 

The detailed license agreement can be found at: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ch/legalcode.de



  

 3 

Accepted by the Faculty of Medicine, the Faculty of Science and the 
Vetsuisse Faculty of the University of Bern at the request of the Graduate 
School for Cellular and Biomedical Sciences 

 

 

 

Bern,  Dean of the Faculty of Medicine 

 

 

 

 

Bern,  Dean of the Faculty of Science 

 

 

 

 

Bern,  Dean of the Vetsuisse Faculty Bern 

 



 i 

 i 

Abstract 

Recurrent wheezing or asthma is a common problem in children that has increased 

considerably in prevalence in the past few decades. The causes and underlying mechanisms 

are poorly understood and it is thought that a number of distinct diseases causing similar 

symptoms are involved. Due to the lack of a biologically founded classification system, 

children are classified according to their observed disease related features (symptoms, signs, 

measurements) into phenotypes.  

The objectives of this PhD project were a) to develop tools for analysing phenotypic variation 

of a disease, and b) to examine phenotypic variability of wheezing among children by 

applying these tools to existing epidemiological data.   

A combination of graphical methods (multivariate correspondence analysis) and statistical 

models (latent variables models) was used. In a first phase, a model for discrete variability 

(latent class model) was applied to data on symptoms and measurements from an 

epidemiological study to identify distinct phenotypes of wheezing. In a second phase, the 

modelling framework was expanded to include continuous variability (e.g. along a severity 

gradient) and combinations of discrete and continuous variability (factor models and factor 

mixture models). The third phase focused on validating the methods using simulation 

studies.  

The main body of this thesis consists of 5 articles (3 published, 1 submitted and 1 to be 

submitted) including applications, methodological contributions and a review. The main 

findings and contributions were:  

1) The application of a latent class model to epidemiological data (symptoms and 

physiological measurements) yielded plausible phenotypes of wheezing with 

distinguishing characteristics that have previously been used as phenotype defining 

characteristics.  

2) A method was proposed for including responses to conditional questions (e.g. questions 

on severity or triggers of wheezing are asked only to children with wheeze) in 

multivariate modelling.  
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3) A panel of clinicians was set up to agree on a plausible model for wheezing diseases. The 

model can be used to generate datasets for testing the modelling approach. 

4) A critical review of methods for defining and validating phenotypes of wheeze in children 

was conducted.   

5) The simulation studies showed that a parsimonious parameterisation of the models is 

required to identify the true underlying structure of the data.  

The developed approach can deal with some challenges of real-life cohort data such as 

variables of mixed mode (continuous and categorical), missing data and conditional 

questions. If carefully applied, the approach can be used to identify whether the underlying 

phenotypic variation is discrete (classes), continuous (factors) or a combination of these.  

These methods could help improve precision of research into causes and mechanisms and 

contribute to the development of a new classification of wheezing disorders in children and 

other diseases which are difficult to classify.    
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A.1. Wheezing in childhood 

A.1.1 Disease burden and epidemiology 

The term ‘wheeze’ refers to a whistling sound heard during breathing, indicating a 

modification of the airflow in the airways due to narrowing or obstruction of the 

airways. Together with cough and breathlessness, wheeze is a main feature of asthma. 

Indeed, in epidemiological surveys, asthma is often assessed by asking the participants 

or, in the case of young children, their parents, about their wheeze symptoms; 

including whether they have wheezed in the past year (designated as ‘current 

wheeze’) or at anytime in the past (‘wheeze ever’), or whether a physician has 

diagnosed asthma (‘doctor-diagnosed asthma’). Such studies find a higher prevalence 

for wheeze than for doctor-diagnosed asthma, particularly in children. This may be due 

in part to misclassification of other symptoms as wheeze. Another explanation is that 

there could exist, in the general population, a large and poorly recognised group of 

children with wheeze who do not easily fit the diagnosis of asthma and who probably 

rarely attend the hospital (introduction in [1]). It is well known that many children, 

particularly in the first years of life, suffer from wheeze only during colds and do not 

have other features of classic asthma such as atopy or bronchial hyper-responsiveness 

(BHR) [2]. In the past 25 years there has been a growing awareness that there are 

probably a number of different ‘wheezing disorders’ which have previously been 

lumped under the umbrella term ‘asthma’ [1, 3].   

Wheezing disorders, including classic asthma, are a common problem in children. They 

place a considerable burden on the patients and their families, causing days missed 

from school and taking time away from both waged and unwaged activities [4-5]. 

These disorders also have a large financial impact on the healthcare system and 

society in general. For example, a recent study estimated total costs to the health 

service for 1-5 year old children with wheeze in the UK at 53 million UK pounds, 

representing 0.15% of the total National Health Service expenditure in the year of 

study, and costs to the society for caring for these children at another 2.6 million 

pounds [5]. Furthermore, the study included only costs incurred by children who 

attended hospital for wheeze or asthma, representing less than one percent of all 
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children in this age group. Considering that many more children are affected by 

wheeze but are not brought to the hospital and that children in older age groups are 

additionally affected by missing days from school and other activity limitations, the 

true impact of wheezing disorders on society is likely to be considerably larger.  

The prevalence of wheezing is highest in preschool years. In a large population based 

cohort of children in the UK the prevalence of wheezing decreased steadily from 37% 

at 1 year of age to 14% at age 10 (Figure 1). In the same cohort of children, 54% 

reported wheeze ever by the age of 10 years. Many of the children who wheeze in the 

first years of life cease to have these symptoms by school-age while others continue to 

wheeze [6]. Patterns of onset, remission, and relapse throughout childhood (and 

adulthood) are highly variable [7-9]. Wheeze in childhood is associated with asthma in 

later life [8-10], even after prolonged remission [8-9]. Wheeze in childhood is also 

associated with poor lung function; which is important, considering that lung function 

shows considerable tracking from childhood into adulthood [11-12]. In many children 

wheezing in early life could therefore be a precursor of chronic respiratory diseases in 

later life, particularly of asthma but perhaps also of chronic obstructive pulmonary 

disease (COPD) [13-14].  

Epidemiological studies, mainly from industrialised countries, suggest a marked 

increase in the prevalence of childhood wheezing during recent decades. A recent 

review of prevalence trends in the UK suggests that the prevalence of any recent 

wheeze in school-aged children increased from about 10% in the 1970s to around 20-

30% at the turn of the 21st century. The increase appears to have reached a plateau in 

the mid 1990s and prevalence may be declining slightly since [15]. Similar rising trends 

reaching a plateau have been found elsewhere [16]. Kuehni and colleagues found a 

sharp rise in the prevalence of wheezing among pre-school children in Leicester 

between 1990 and 1998 (from 12% to 26% for any current wheeze) [17].  
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Figure 1: Prevalence of wheezing by age in a population based cohort of children 

(N=4300). 
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Data are prevalence of current wheeze (at least one attack of wheeze in the past 12 months) 

among respondents to 5 surveys (N is 3413, 2396, 2622, 2032, 1512 in the order of surveys) 

plotted against their mean age at reply. Error bars represent 95% confidence intervals. 

Source: Leicester 1998 (b) cohort, which is a stratified random sample of white and south Asian 

children born between May 1996 and March 1997 in Leicestershire, UK [18] 

 

The reasons for this increase are unclear. In part, it might be due to measurement 

problems: increased awareness among the population and changes in the diagnostic 

labelling may lead to more frequent usage of the labels ‘wheeze’ or ‘asthma’ and 

therefore to an apparent rise in the reported number of cases which is not real [16, 

19]. Although trends in objectively measurable features have rarely been documented, 

one study has reported a parallel increase in the prevalence bronchial hyper-

responsiveness (BHR) [20] suggesting that there is a real component to this rise. 

Changes in prevalence over such short periods of time cannot be due to changes in 

genetic factors, but must be due to changes in lifestyle factors and environmental 

exposures. A possible and frequently cited explanation, known as the ‘hygiene 

hypothesis’, is that increased hygiene levels in societies with a Western lifestyle 
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reduce the exposure to infectious agents in early life causing the immune system of 

children to develop an atopic response (ch. 7b in [1]). This hypothesis arose from the 

observation that the number of older siblings an individual had was negatively 

associated with atopy [21-22] and the assumption that children with older siblings are 

likely to have an increased and earlier exposure to infections. However, evidence 

suggests that less than half of the cases with wheezing in the general population are 

attributable to atopy [23] and trends in asthma do not consistently parallel those of 

atopy [20, 24] suggesting that different factors are involved in the development of 

asthma than in allergy in general. Using data from the Leicester cohorts, Kuehni and 

colleagues found that, over the period 1990 and 1998, wheezing occurring only during 

colds, which is typically not associated with atopy, increased at least as much in 

prevalence as wheezing occurring also apart from colds, which is often associated with 

atopy [17].  

A large international multi-centre study has reported large variability in the prevalence 

of childhood wheezing and asthma across countries and regions, with high prevalences 

found mainly in English speaking countries and Latin America, a higher prevalence in 

Western Europe than and Eastern Europe, and relatively low prevalences in Africa and 

Asia [25].  An economic analysis of this data suggested that prevalence tends to be 

higher in high income countries than in low income countries. However, this is not a 

consistent pattern and there is much variability within regions. For instance, India had 

an average prevalence of current wheeze in 14-15 year olds of 5.8% while 

neighbouring Sri Lanka, also a low income country, had a prevalence of 23.0% [25]. 

Despite standardised methods of questionnaire translation, linguistic differences 

remain a major problem in such international comparisons. In many languages there is 

no equivalent to the English term `wheeze´, and the terms used in questionnaires may 

have very different connotations in the lay usage of different languages, leading to 

different thresholds at which people apply the terms [26-27].  

 

A.1.2 Causes and risk factors 

Wheezing is a whistling noise heard primarily during expiration. It is produced by 

oscillations of the bronchial wall at points of flow limitation (ch. 6a and 6b in [1]). In a 
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compliant tube, such as an airway, there is a maximal flow with which air can travel 

through which is determined by the cross-sectional area (calibre) of tube and the 

compliance of the tube wall. If the driving pressure increases above that required to 

produce flow limitation the excess pressure is dissipated through oscillations of the 

airway wall. In the presence of airway obstruction, this flutter may become large 

enough to generate audible sound, heard as wheezing (ch. 6b in [1]).   

There are a large number of conditions that can cause airflow limitation leading to 

wheeze. Most of these are very rare at the population level. They include 

developmental anomalies such as bronchomalacia or host defence defects such as 

cystic fibrosis or ciliary diskinesia (ch. 9 in [1]). Wheeze may also be caused by localised 

flow limitation due to inhalation of a foreign body.  

However, In most children with recurrent wheeze, the symptoms cannot be attributed 

to any of these specific causes. The causes of this non-specific recurrent wheezing are 

still poorly understood. The classical concept of wheezing suggests that wheezing is 

produced by airway narrowing caused by inflammatory processes, including mucosal 

swelling and smooth muscle activation [28]. However the degree to which these 

processes cause flow limitation depend on initial airway calibre and the compliance of 

the airway wall which in turn is a function of the elastic properties of the surrounding 

tissue [28].  

In preschool children, wheezing is usually episodic occurring only during viral 

respiratory tract infections (RTI) (ch. 7b in [1]). The reasons why some children develop 

wheeze during viral RTI, while others do not, are still poorly understood; they may 

include an increased susceptibility or immune responsiveness to viral infections or 

poor pulmonary function (ch. 7b in [1], [28], see also article B.3 in the present thesis). 

Although colds are the predominant trigger of acute wheezing episodes, other factors 

such as laughter or crying may bring on wheeze in some children between these 

episodes (interval symptoms), particularly as these children get older (ch. 9 in [1], 

[28]). In school-aged children, wheezing is often associated with allergic sensitisation 

(the classic asthma phenotype) and triggered by aero-allergens (e.g. pollen, house-

dust mite), however, not all children with allergy develop wheezing. Conversely, a 
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significant proportion of apparently non-allergic children experience wheeze 

episodically during viral infections only (ch. 7b in [1]).   

Asthma has an important genetic component. Most genetic studies have focused on 

classic asthma and its related traits such as atopy and BHR, and not on the more 

general wheezing disorders in children. With few exceptions, twin studies report a 

heritability of asthma between 70% and 80% [29]. In less than two decades, genetic 

studies, mainly candidate gene association studies or genome-wide linkage followed 

by positional cloning, have identified many genes that show associations with asthma 

and related features such as atopy [30-31]. By 2006, 118 such genes had been 

identified, of which, 79 showed associations in two or more independent studies, 25 of 

them in more than 5 independent studies [30]. However, these reported associations 

are weak and those that have been replicated, were not consistently reproduced in all 

studies [31-34]. Since the recent advent of genome-wide association (GWA) studies, a 

number of new susceptibility genes have been found [35-40]. Asthma is a complex 

disease, i.e. it does not follow a monogenic Mendelian mode of inheritance but is 

rather caused by variation in numerous genes. In addition, the effects of causal genetic 

variants on disease-risk involve interactions with environmental stimuli and with the 

biological systems within the body (and, therefore, with other genes) and may occur 

only within limited developmental time intervals (windows of opportunity) [41-42].  

A large number of factors have been studied for potential association with childhood 

wheezing and asthma including environmental exposures, household and lifestyle 

factors and person specific factors such as gender and ethnicity. Where not specifically 

referenced the information in the this paragraph is taken from chapter 2 in [1]. There 

is strong evidence that exposure to environmental tobacco smoke increases the risk of 

lower respiratory tract infections (RTI), recurrent wheezing and the development of 

asthma. Maternal smoking during pregnancy has been shown to be associated with 

poor lung development and diminished lung function, which in turn can predispose 

children to wheezing in the first years of life. Associations between air pollution, 

especially particulate matter from fossil fuel combustion, and respiratory symptoms 

have been observed in various studies. A recent study found an increased incidence of 

cough and wheeze in children with greater exposure to particulate pollution [43]. 
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Another recent study also suggests that prenatal exposure to air pollution may affect 

lung function in newborns [44]. There is increasing evidence suggesting that exposure 

to allergens such as house-dust mite or cat allergen, in early life is related to the 

development of atopic sensitisation to that specific allergen. However, whether the 

allergen similarly affects the development of asthma is uncertain. A recent meta-

analysis of 11 cohort studies did not find an association between asthma at school-age 

and pet ownership in infancy [45]. The role of socioeconomic status (SES) is context 

dependent. While the international comparisons suggest a greater prevalence of 

wheezing and asthma in affluent areas than in poor and rural areas, in the USA asthma 

is associated with poverty and living in the inner-city districts. However, SES is a 

problematic health determinant, as it is a surrogate measure for living conditions and 

lifestyle which may affect health outcomes in a variety of ways, such as through 

availability and access to healthcare, nutrition, physical exercise, housing conditions, 

family size, exposure to pollution and allergens. In addition, nutrition may play an 

important role in the development of asthma. Many studies have reported 

associations between breastfeeding and asthma and wheezing in childhood, however 

results are inconclusive, ranging from potentially protective to potentially harmful 

effects.  

Whether or not, and by which mechanisms, infections in early life might be implicated 

in the development of asthma is a matter of much controversy. Various findings 

suggest that increased exposure to infectious agents in early childhood due to factors 

such as large family size [21], daycare attendance [46] or growing up on a farm [47] 

may protect against developing asthma. A plausible mechanism is that microbial 

agents may promote normal development of a T-cell system with a bias toward type 1 

T-helper cells and suppression of type 2 T-helper cells which are implicated in allergen 

specific responses, while absence of such stimuli may allow the type 2 biased neonatal 

immune responses to persist and allergic sensitisation to develop (hygiene hypothesis, 

ch. 7b in [1]). Other observations have shown a clear association between respiratory 

viral infections (particularly respiratory syncytial virus (RSV)) in early life and an 

increased risk of asthma in later life (reviewed in ch. 7b in [1]). Two major hypotheses 

have been proposed to explain this association. In the first, viral infections cause the 

development of asthma by damaging the developing lung or affecting immune 
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development. In the second, the symptomatic respiratory infections are not causal but 

reflect an inherent susceptibility to respiratory disease including asthma.  Evidence 

supporting either hypothesis has been reported and the matter is still much debated 

[48-49] (see also editorial D.4 and authors reply D.5 in the present thesis).  

 

A.1.3 Phenotypes of childhood wheezing  

Various findings related to the prevalence, natural history, physiology and risk factors 

of wheezing in children indicate that these conditions may not all belong to the same 

disease, but rather represent two or more different diseases (a review of such 

indications is given in [50]). In particular, wheezing occurring only during RTI 

(‘exclusive viral-induced wheeze’) predominately in young children appears to differ in 

many aspects from atopic asthma. In terms of the variability of airway obstruction the 

first is characterised by acute episodes with few or no interval symptoms while the 

second is characterised by a chronic obstructive component with frequent interval 

symptoms overlapped by acute episodes [50]. Various studies have found that wheeze 

occurring only in the first few years of life (‘early transient wheeze’) shows no 

statistical association with allergy, while wheezing at school-age does [6, 51]. Children 

with ‘early transient wheeze’ have been found to have diminished lung function in 

infancy before the onset of any lower respiratory symptoms compared to children 

with wheeze at school-age [6]. Various cohort studies have also shown that groups 

defined by association of wheeze with RTI, or time course of disease in early childhood 

differ in their long term prognosis [7-8, 10, 52].  

The awareness that distinct diseases causing asthma-like symptoms in children might 

exist is not new. In the 1950s and 60s two forms of ‘asthma’ were commonly 

distinguished: ‘asthmatic bronchitis’ (variously called wheezy bronchitis, infant wheeze 

or recurrent bronchiolitis) which was characterised by wheezing and cough in 

association with RTIs affecting very young children, and ‘asthma bronchiale’ (asthma 

or allergic asthma) which was characterised by wheezing and shortness of breath and 

typically associated with allergic sensitisation [50, 53]. Around 1970, with the advent 

of safe and effective inhaled therapy for asthma, there was a shift toward viewing (and 

treating) all wheezy children as asthmatics.  In the 1980s this view was replaced by a 
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more narrow definition of asthma which required allergy and BHR in addition to 

variable airway obstruction. This definition was again relaxed in the 1990s and, at the 

same time, the view of multiple coexisting diseases re-emerged [50].  Today, asthma is 

defined pragmatically, having as its main feature reversible airway obstruction causing 

recurrent wheeze but not requiring allergy or BHR [54]. It is regarded as a complex 

disease with potentially many different causes and subtypes [55] and there have been 

pleas to abandon the term asthma because it likely represents a heterogeneous group 

of diseases [3].  

Because the underlying disease processes are still poorly understood, classification of 

wheezing disorders in children is based on phenotypes defined in terms of observable 

disease features (symptoms, signs and measurements). Article B.4 in this thesis 

reviews common phenotype definitions of childhood wheezing and methods for 

defining phenotypes. It reviews the two main approaches to phenotype definition: a) a 

uni-variate approach which selects few disease features based on expert opinion and 

b) a multivariate approach which applies clustering methods to observed data on 

multiple features to identify phenotypes in a data-driven manner.  

The focus of this PhD is on the second approach of phenotype definition, i.e. on the 

data-driven identification of phenotypes using the combined data of many features. 

This approach responds to a need for more objectivity in the definition of phenotypes. 

The use of multivariate methods can reduce the extent of subjective choices involved 

in selecting the phenotype defining characteristics. The data-informed optimisation of 

a clustering criterion is used instead to make this selection. However, the subjectivity 

involved in selecting a particular clustering method and the variables to include in the 

analysis remains. 
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A.2. General aims 

The broad objectives of this PhD were 

a. to develop tools for analysing phenotypic variation of a disease using 

epidemiological cohort data, and   

b. to examine phenotypic variability of wheezing among children by applying these 

tools to existing epidemiological data.   

Some specific questions at the outset of the project were: 

- Which multivariate methods are most appropriate for identifying disease 

phenotypes using cohort data? These data have some complicating features such 

as different data measurement scales (categorical , continuous, counts, and time to 

event data), conditional questionnaire items (e.g. questions on the pattern of 

symptoms asked only to subjects who have the symptom), repeated 

measurements and missing data.  

- Are there methods that can be used to make a more objective selection of features 

to be included in an analysis? Many of the features are correlated and likely to 

represent a similar underlying dimension. How can these main dimensions be 

identified? 

- How important are the defining criteria of traditional phenotype definition for a 

classification of wheeze, and how do they relate to each other? Specifically what is 

the role of symptom history, the main criteria used in the classification proposed 

by the Tucson group [6], in relation to that of triggers of wheeze, the main criteria 

for classification into wheeze only with, or also without, RTI [2, 50]?  

- Can multivariate methods distinguish between discrete and continuous underlying 

variability? The former might indicate the presence of distinct disease entities 

while the latter might reflect variability of a single disease.  
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A.3. Project milestones 

The articles included in the main body of this thesis (B.1-B.5) follow a chronological 

order reflecting the various steps of the present PhD project. These steps can broadly 

be grouped into three phases as listed below. The data and methods referred to here 

are described in sections A.4 and A.5.  

1. A model for discrete phenotypes: In a first phase, we focused on the identification 

of distinct phenotypes of wheezing.  

a. Selection of method: From among various clustering approaches, we selected 

the latent class model (LCM). Reasons for this choice a listed in section A.5.1.  

b. Selection of variables to be included: We used multiple correspondence analysis 

(MCA, see section A.5.2) as a means of identifying important disease 

dimensions and to assist selection of variables for analysis (see the online 

supplement of article B.1 in appendix i.) 

c. Model specification and application to epidemiological data: The LCM was 

adapted allow for the conditional structure of questions on wheezing. Inclusion 

of conditional structures can be generalised to other multivariate models and is 

described in article B.2. We applied the model to data from the 1990 Leicester 

cohort (see section A.4) and results are reported in article B.1.  

2. A model for discrete and continuous phenotypic variation: In a second phase, the 

modelling approach was extended to included continuous latent variables (see 

section A.5.3). This modelling framework include the LCM, the factor model (FM), 

and the factor mixture model (FMM) and was intended to a) allow for correlation 

of variables within a phenotype (e.g. due to severity gradients) and b) potentially 

allow distinguishing between discrete and continuous underlying variability. In 

several preliminary analyses this modelling framework was applied to data from 

the Leicester cohort 1998(a) (see section A.4). Results of these analyses are not 

published except in abstract form (see abstracts in appendices ii. and iii.). This 

modelling framework is highly flexible and models with differing structure often fit 
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the data similarly well. It became clear that model selection was crucial and a 

validation of model selection methods was needed.      

3. Validating the methods: The third phase of this project focused on the question 

whether selection of the right model (LCM, FM, FMM) from observed data was 

feasible when the true model was known. This required having artificial data for 

which the true underlying structure was known. We decided to generate artificial 

data that would resemble real epidemiological data, but would originate from a 

known plausible model for wheezing illness in pre-school children.   

a. Obtaining a plausible model of wheezing: We set up a panel of 7 clinicians to 

suggest and agree on a model consisting of distinct disease entities of wheezing 

in preschool children. The qualitative part of this study published (article B.3).  

b. Simulation studies: Two types of simulation studies are being performed. Data 

are generated from three different models (LCM, FM, FMM) a) representing a) a 

highly controlled situation where the latent classes were at a specified and 

equal distance from each other (results presented in article B.5) and b) a 

plausible model of wheeze with general categorical data.    

The developed methods are currently being applied to data from the Leicester cohort 

1998(b) (section A.4). Collaboration with other cohort studies has been initiated which 

should allow comparison of findings across cohorts (external validation). The review 

article on phenotypes of childhood asthma (B.4) was written during the final year of 

my PhD.  
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A.4. Data 

The data used for this PhD project were from the Leicester respiratory cohorts. These 

cohorts and the collected data are described in detail in the cohort profile D.1. Briefly, 

the cohorts are stratified random samples from the general population born and still 

living in Leicester at the time of recruitment, stratified by age and ethnicity (white and 

south Asian). The first cohort was recruited in 1990 and consisted of 1650 white aged 

0-5 years. In 1998 a large cohort was recruited consisting of 2 samples, the first 

(1998a) with 4400 children from a wide age span of 1-4yrs for comparability with the 

1990 cohort and the second (1998b) with 4300 children all aged 1 year (Figure 2). The 

1998 cohorts contained both white and south Asian children.  

Data from the 1990 cohort were used for the initial study on distinguishing 

phenotypes (article B.1) because it provided longer follow-up (at the latest follow-up 

children were aged 13-18 years) which allowed comparing long-term prognosis across 

identified phenotypes. Data from cohort 1998(a) were used for various preliminary 

analyses using MCA and the latent variable modelling with both discrete and 

continuous latent variables (see examples in appendices ii-iv.). The methods 

developed are currently being applied to data from the 1998(b). This cohort has a 

better “resolution” for phenotype identification than the other Leicester cohorts 

because of more frequent follow-ups during early childhood and the a narrow age 

span of only 1 year which ensures age-specificity of the collected data. Currently lab 

measurements are becoming available for the children of this cohort. 

Analysis of phenotypic variation requires a definition of the kind of data that is 

considered to be ‘phenotypic’. In this PhD we used as an operational definition of 

‘phenotypic data’ as any data representing manifestations of the disease. This includes 

outcomes that are biologically linked to the disease process such as symptoms, signs 

and physiological measurements. However, we did not include variables that might be 

affected by the disease but not over a biological pathway such as treatment or 

doctor’s diagnosis.  The full list of data collected in the Leicester respiratory studies is 

given in table 4 of the cohort profile D.1.  
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Figure 2: The Leicester Respiratory Cohorts on a time line 

 

The X-axis represents calendar time. The horizontal bars represent the 1990 cohort and the two samples 

of the 1998 cohort. The (vertical) width of each bar is proportional to the number of subjects recruited. 

Vertical dark shaded bars represent postal questionnaire surveys. The initial survey coincides with 

recruitment of the cohort. Light shaded rectangles represent physiological measurements on subsamples 

in the respective age groups.  Slanted lines demarcate age groups. The first line on the left spans the time 

interval during which the children were born. The numbers at the top of each cohort bar are survey years 

and those at the bottom child age in years. 
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A.5. Methods 

A.5.1 Selection of methods 

A large diversity of methods for the exploration of the underlying structure of data exists and 

various disciplines such as statistics, data mining, computer science and machine learning 

contribute to developing these approaches. In this PhD project, preference was given to 

methods based on formal statistical models. These are not inherently superior to other 

methods; rather, this choice reflects my inclination towards statistical methods. An 

advantage of statistical models, particularly relevant for this project, is that they have a 

natural way of handling mixed mode data, e.g. a combination of categorical, count or 

continuous data. Plausible statistical distributions can be specified for different types of 

data, for example, the multinomial distribution for categorical data or the normal 

distribution for appropriately transformed continuous data. Using further distributional 

assumptions such as (conditional) independence, the different distributions can be 

combined into a single model.  

The aim of the first project phase was to identify distinct phenotypes of wheezing using a 

clustering approach. There is a large number of different clustering methods (for an 

extensive review see [56]). Most of these methods are based on measures of distance or 

proximity between data points and on an algorithm by which points of relative proximity are 

grouped to clusters. Given the large number of existing measures and algorithms and 

possible combinations thereof, the choice of any particular method can be quite arbitrary. 

Model-based clustering methods represent a more coherent group of methods which are 

based on finite mixture distributions. These models assume that the population is made up 

of a mixture of sub-populations specified as probability distributions.  

For the first study, we decided to use a latent class model (LCM), which is a finite mixture 

model assuming the independence of all variables within classes (see section A.5.3). LCM is 

commonly, but not exclusively, used for categorical data. The advantages of using a 

clustering approach based on a formal model include: 

- The ease of handling mixed mode data, 
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- The possibilities to compare models and test hypotheses, for example, to assess the 

appropriate number of classes (clusters), one of the major problems in cluster analysis.   

- Model specification can be adapted to the particular structure of the data (e.g. 

longitudinal data) 

- The estimation procedure can deal with missing values.  

Solutions to most of these issues have also been proposed other clustering methods. For 

instance: the Gower distance is a measure distance for data points of mixed mode [57]; 

imputation methods can be used to impute missing values [58]; various cluster validation 

techniques have been developed to assess the appropriate number of classes [59].  

In the second phase the LCM was extended to more general latent variable models which 

allow for continuous latent variables (factors) in addition to discrete latent classes. The 

problem of distinguishing between discrete and continuous latent variation, termed the 

problem of taxometrics, has received some attention in social and behavioural sciences [60]. 

Deciding whether disease varies according to distinct categories or a continuum of severity is 

a common problem for psychological syndromes. Several specialised methods have been 

developed for this purpose, but they are mainly intended for continuous data or ordinal data 

with many categories [60-62]. In this project, we explored model-based approaches of 

hypothesis testing and model selection (article B.5). Model selection using standard 

statistical selection criteria is increasingly being used for this purpose [63-66]. Formally 

testing the hypotheses of discrete vs. continuous latent variation requires tests for non-

nested models. A general test for this purpose was originally proposed by Cox [67-68] and 

various further developments of this approach have since been made [69-70].   

Throughout this work we frequently used multiple correspondence analysis (MCA) to 

visualise categorical data. This method was initially used to help guide variable selection and 

identify main disease dimensions and, in subsequent analyses, we frequently used it to 

visualise the discrete or continuous latent structure of both real and simulated data (an 

example is shown in Figure 5 in appendix iv.).  
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A.5.2 Multiple correspondence analysis  

Multiple correspondence analysis (MCA), like principle components analysis (PCA), is a 

method for obtaining a low-dimensional geometric representation of high-dimensional data 

such that the relative position of the original data points are preserved to the largest extent 

possible (a unified presentation of these methods is given in [71]). While PCA is a method for 

continuous data, MCA is tailored to categorical data. A thorough presentation of 

correspondence analysis is given in [72] . The information presented here is taken mostly 

from chapters 4 and 5 of this reference.  

Let  N  be a ts  data matrix of frequency counts. This matrix could, for example, be a 

contingency table, an indicator matrix1, denoted as Z , or a so-called Burt matrix, B , which 

is the cross tabulation of an indicator matrix , ZZB
T .  Let NP n

1  where n  is the sum of 

all frequency counts in N . Further, let  tP1r  and s

T
1Pc  , where i1  is an i -vector of 

ones, and let PDR 1 r  and T

c PDC
1 , where )(diag rD r  and )(diag cD c . The rows of 

R , denoted as srr ~,...,~
1 , are called ‘row profiles’ and the rows of C , tcc ~,...,~

1 ,  ‘column 

profiles’. The row and column profiles represent the rows and columns of N  respectively, 

but normalised so that their elements add up to 1. The vector r is the centroid of the column 

profiles and c  is the centroid of the row profiles. The elements of r  represent the so-called 

‘masses’ or the respective row profiles and the elements of c  the ‘masses’ of column 

profiles. The point cloud for which a lower dimensional representation is sought, consists of 

the row profile vectors (or alternatively column profiles) in t -dimensional ( s -dimensional) 

space with the metric 1, 
cD

 ( 1, 
rD

), where baDba
1

1,  cDc

 ( 1, 
rD

defined analogously) 

for any two vectors a  and b (this is a weighted Euclidean space).  In analogy to the concept 

of inertia in physics, the inertia, denoted as I , of the point cloud is defined as the sum of the 

product of point masses and their squared distance from the centroid. The inertia is the 

same for both the column and row point clouds, i.e. 
11

~~
  
rc Dj jjDi ii rcccrrI . 

This can be rewriting as 

                                                      

1 In an indicator matrix columns represent individual categories of the variables and rows represent individuals. 

Cells take on the value 1 if the respective individual has the respective category and 0 otherwise. 
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11trace 


 
rcPDrcPD ,  

showing that the inertia is n
1  times the standard 2 -statistic associated with the data 

matrix N . The objective of MCA is to find a representation of the row profiles (column)  in 

standard Euclidean space with at most  tsk ,min  dimensions, such that the new row 

(column) points with coordinates sff
~

,...,
~

1  ( sgg ~,...,~
1 ), approximate the profiles in the original 

space in terms of their relative positions to each other. Formally, a matrix X  is sought that 

minimises     XrcPDXrcPD   T

c

T

r

11trace  among all matrices X  of rank k  or less. 

This can be obtained by singular value decomposition (SVD) of   2
1

2
1 

 c

T

r DrcPD . Let this 

SVD be   T

c

T

r VUDDrcPD 
 2

1
2

1

 where U  and V  are orthogonal matrices and D is a 

diagonal matrix with diagonal elements 0...21  K  and  tsK ,min . Let *U and 

*V be the matrices with the first k  columns of U and V and ),...,,(diag 21

*

k D . Then 

the minimising matrix is given by 
T***

VDUX   and the coordinates sff
~

,...,
~

1   and sgg ~,...,~
1  

(called ‘principle coordinates’) are given by the rows of **2
1

DUDF


 r   and **2
1

DVDG


 c  

respectively.  

In the new representation, the weighted (by point masses) sum of squares of the 

coordinates with respect to a given axis l  is 
2

l  which can be expressed as a proportion of 

total inertia  


K

l lI
1

2
 . The axes are therefore ordered by the size of their contribution to 

“explaining” the total inertia. Some contributions to total inertia are not “interesting” 

because they are artefacts of redundancies in the data table N  and the extent of such 

contributions differs for contingency tables, indicator or Burt matrices. Therefore 

adjustments are made to compute the relative contributions of each axis to the “interesting” 

inertia (see p. 144-5 in [72]) . 

 

A.5.3 Latent variable modelling 

Latent variable models comprise a broad group of models which emerged separately in 

various fields of application, particularly in the social sciences and psychology. These 
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‘traditional’ latent variable models include latent class models [73], common factor models 

[74-75], mixed or random effect models and various others. Their common ingredient is the 

inclusion of unobservable random variables, i.e. ‘latent variables’, in the model. Traditional 

latent variables models can be classified by the measurement scale (continuous or 

categorical) of the observed and latent variables as shown in Table 1. An extensive survey of 

these traditional models and their history and of modern latent variable modelling 

frameworks can be found in [76].   

 

Table 1: Traditional latent variable models 

 Latent variable(s) 

Observed variables Continuous Categorical 

Continuous Common factor model 

Structural equation model 

Linear mixed model 

Covariate measurement model 

Latent profile model 

 

Categorical Latent trait model Latent class model 

Reproduced from Table 1 in [76] 

 

The recognition that these models have a similar mathematical structure has lead to a 

gradual convergence of latent variable models in the past decades [76]. Unifying frameworks 

for latent variable modelling have been developed including the ‘Generalised Linear Latent 

and Mixed Models’ (GLLAMM), implemented in the Stata program gllamm [77], and the 

framework developed by Muthén [78-79], implemented in the program Mplus [80]. The 

model presented here and used in this project is based on the latter.  

The general framework consists of two parts, a measurement part, linking the observed 

variables to the underlying latent variables and observed covariates, and a structural part 

relating the latent variables with each other and to the covariates. The observed variables 

are y , a 1p  vector of continuous outcomes,  u , a 1q  vector of categorical outcomes, 

and x , a 1r  vector of covariates. The latent variables are c  and η , c  denoting a 
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categorical variable with g categories (‘latent classes’),   gc ,...,1 , and η  a 1d  vector of 

continuous variables (‘factors’).  

The measurement part defines the conditional distributions of y  and u  given c  and η :  

i) εxΓηΒαy  ccc   and  c,N~ Θ0ε ;  

ii) the probability density (mass) functions ),,|( xηcup l of the categorical variables quu ,...,1  

are modelled as logistic (binary, ordinal or multinomial) regressions on η  and x  with slope 

parameters collected in uclβ  and uclγ  respectively and intercepts in uclα ; 

iii) conditional on the latent variables the outcomes are assumed to be independent 

(assumption of local independence), i.e. cΘ  is diagonal matrix and 

 


r

l l cupcpcp
1

),,|(),,|(),,|,( xηxηyxηyu .  

The structural part defines the probability distributions of the latent variables:  

iv) ξxΜηΛκη  ccc  and  c,N~ Ψ0ξ ; 

v) )|( xcp  is modelled as a multinomial regression on x  with intercepts and slopes collected 

in the vectors 0κ  and 0μ  respectively.   

Additionally,  

vi) the random errors ξ  and ε  are assumed to be independent.  

The applications in this project assume independence among latent variables. Furthermore, 

there are various indeterminacies in the model, e.g. the factor loadings cΒ  are not identified 

because pre-multiplication of the factors with a non-singular dd   matrix and post-

multiplication of cΒ  with the inverse of the same matrix leaves (i) unchanged (a treatment 

of these indeterminacies in FMs is given [74]). Also, cΨ  and cΒ  are not jointly identified if 

not further restricted. For our purposes, we simplify the structural part (iv) to 

iv.a) ξxΜη  c  and  I0ξ ,N~ , 

where I  is the identity matrix. The intercepts cκ are redundant if η  is taken out of the right 

hand side of (iv). There is still an indeterminacy of factor loadings due to pre-multiplication 
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of the factors with orthogonal matrices [74]. Typically further restrictions are placed on 

elements of the factors loadings cΒ  and uclβ  to reach identification.  

 

Figure 3: Path diagram of modelling framework 

 

Variables in boxes are observed and variables in circles are unobserved. Arrows linking variables 

represent regressions (linear or logistic) and are labelled with the parameters of effect size. The 

dotted arrows leading away from the latent class indicator c to other arrows indicate that the 

parameters of those regressions can vary over classes.   

 

The model specified by i), ii), iii), iv.a) v), and iv) is represented in Figure 3.  In the present 

PhD project only dependent observed variables were used, i.e.  u  and y  (phenotypic data). 

However, in the future the model could include potential predictors of the latent variables 

such as genetic or environmental factors.  

The unconditional joint distribution of the observed variables (without covariate effects) u  

and y  is given by:  

  


 












g

c

r

l lc
d

dcupcpp
1

1
)(),|(),|(),(

R

ηηηηyyu   (1) 

Where )(cpc  , gc ,...,1 , ( )(cp  is constant in the absence of covariates in (iv)) 

represents the class membership probabilities, also called ‘mixing proportions’, )(η  is the 

c  

Observed dependent variables 

Latent variables 

Observed independent variables  

  

  0  
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  
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probability density function of the d-dimensional normal distribution  I0,N .  This is a so-

called factor mixture model (FMM) [81]. If there are no continuous factors, model (1) 

reduces to a latent class model (LCM), given by 

  





g

c

r

l lc cupcpp
1

1
)|()|(),( yyu  . (2) 

If there is no population heterogeneity, i.e. only one class, model (1) reduces to a factor 

model (FM), given by 

  


d

r

l l duppp

R

ηηηηyyu
1

)()|()|(),(  . (3) 

A major issue in specifying model (1) or (2) is choosing the appropriate number of classes. A 

large number of criteria has been suggested to deal with this problem (a review of such 

methods can be found in chapter 6 of [82]). These include standard model selection criteria 

such as Akaike’s information criterion (AIC), or the Bayesian information criterion (BIC). 

Although the model with g classes is nested in a model with g+1 one classes, the likelihood 

ratio (LR) test does not have the usual asymptotic chi-squared distribution under the null-

hypothesis of g classes [82-83]. A common method is to bootstrap sampling the LR statistic 

to obtain approximate p-values for this test .   

Comparably little attention has been given to the problem of discerning more fundamental 

structural differences such as those existing between model (1), (2) and (3).  This is the main 

focus of article B.5 in this thesis.  

 

A.5.4 Model estimation and computer programs 

Model (1) can be fitted by ML estimation but there are a number of issues related to the 

estimation of such models, some of which are briefly discussed here.   

The LCM has some problem in common with the more general finite mixture models (a 

thorough discussion of these is given in [82]). These models are difficult to estimate as the 

parameters of the class distributions depend on the classes. The commonly used fitting 

algorithm is the expectation maximisation (EM) algorithm [84]. This algorithm was designed 

to fit models with incomplete data, which the case of a LCM are the unknown class 
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memberships. Beginning with a set of starting values for the parameters, the algorithm 

alternates between forming the expectation of the log-likelihood function given the 

observed data and current parameters by integrating out over the missing data (E-step), and 

maximising this expected log-likelihood with respect to the parameters (M-step). The EM 

algorithm generally converges to a (local) maximum. A problem is that the likelihood 

function of the LCM, as of the more general finite mixture models, tends to have numerous 

local maxima [82]. In order to find the global maximum the algorithm must be repeatedly 

run for different sets of starting values of the parameters, which can be selected randomly 

[82]. As the EM is a relatively slow algorithm this can greatly increase computation time 

needed for fitting a LCM. An advantage of the EM algorithm is the possibility of handling 

missing data [85]. This is done by integrating out over the missing data components in the E-

step.  

A further complication of model (1) is the presence of the combination of categorical 

outcomes and continuous latent variables.  The M-step essentially consists of fitting a model 

of type (3). Without categorical outcomes the posterior distribution )(yp  has a closed form 

expression – in fact, it is a multivariate normal distribution. However, with categorical 

outcomes, there is no closed form expression and therefore numerical approximation of the 

integration is required; this can be computationally heavy particularly when d>1 [80].   

In the first phase of this PhD project I used the FORTRAN 77 program MULTIMIX2 [86] which 

is designed to fit mixtures of mixed mode (continuous and categorical data). I made several 

extensions to this program which include the handling of missing data [87], looping over 

numerous repetitions of the EM algorithm with randomly sampled parameter starting 

values, and dealing with data arising from conditional questions (article B.2).  For more 

general modelling in phase 2, I used the program Mplus (Muthén & Muthén, CA) [79-80].   

I used R (The R Foundation for Statistical Computing)3 to compute and display the multiple 

correspondence analyses. R was also frequently used for various other computations and 

tasks such as reading in and presenting results from latent variable modelling. I also used 

Stata (StataCorp LP, TX) for data handling and preparation and various standard analyses. 

                                                      
2 Available at: http://www.stats.waikato.ac.nz/Staff/maj/multimix/ (accessed on the 5. Jan. 2010) 

3 Available at: http://www.r-project.org/ (accessed on the 5. Jan. 2010) 

http://www.stats.waikato.ac.nz/Staff/maj/multimix/
http://www.r-project.org/
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Abstract

Factor models and latent class models are widely used in behavioral research. Recently

factor mixture models have been proposed which represent a combination of these two

models. Often substantive theory cannot inform on which model is most appropriate and

one would like to make this selection based on model fit to observed data. This simulation

study investigates, for dichotomous outcomes, how well these models can approximate

each other and thus become indistinguishable. We simulate datasets under each of the

three models using different levels of separation between the classes of the latent class

model. For a given level of separation, the parameters of simulation models were chosen

such that the Kullback-Leibler divergence between the models was minimal. Visualization

of the simulated datasets using multiple correspondence analysis showed that models

approximate each other well even at high separation levels. Using standard model

selection criteria, such as the AIC and BIC, models of different latent structure but

similar number of parameters were well distinguishable at moderate separation levels and

sample sizes. Results suggest that with categorical indicators and limited sample sizes a

parsimonious parameterization of these models is crucial for their distinguishability.
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Distinguishing Latent Classes, Continuous Factors and Their

Combinations with Dichotomous Indicators

In the past decades, traditional latent variable models have been embedded in larger

modeling frameworks (Skrondal & Rabe-Hesketh, 2007). These general models have been

implemented in various software programs and such as Mplus (Muthén, 2002) or glamm

(Rabe-Hesketh, Skrondal, & Pickles, 2004). Such general modeling approaches allow

exploring new models which are generalizations of traditional models, for instance factor

mixture models which are a combination of traditional latent class and factor models

(G. H. Lubke & Múthen, 2005).

Models with discrete or with continuous latent variables follow a different modeling

rationale. Continuous latent variables, i.e. factors (also called latent traits in the case of

categorical indicators), are commonly used in measurement problems where it is assumed

that the observed indicator variables measure an underlying gradient which is not directly

observable. Discrete latent variables are commonly used in problems of typology where it

is assumed that the population consists of distinct, but not directly observed,

subpopulations, i.e. latent classes (also called latent profiles in the case of continuous

indicators). However in many situations, which of these two models is more appropriate

cannot be inferred from substantive theory and one would like this choice to be based on

observed data.

The problem of differentiating between categorical and dimensional latent structure

is frequently encountered in behavioral research and a number of specialized techniques

have been developed to address it (see e.g. (Ruscio & Kaczetow, 2009), (Ruscio & Walters,

2009), (Meehl, 1995)). These techniques rely on detecting bimodality or discontinuities in

certain transformations of the data that would indicate the existence of distinct

subpopulations. They have mainly been developed for situations where the indicators are
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measured on a continuous scale. Recently, Lubke and Neale have investigated the problem

of distinguishing between models with different latent structures including latent class

models, factor models, and factor mixture models using standard model selection criteria.

They found that this distinction was unproblematic with continuous indicators (G. Lubke

& Neale, 2006) but more difficult with categorical indicators (G. Lubke & Neale, 2008).

It is known that latent class and factor models can approximate each other well. For

instance in the the case of continuous indicators it can been shown that a g-class model

and a (g-1)-factor model are structurally equivalent with respect the model implied

covariance matrix of the indicators (Molenaar & Eye, 1994). Also a single factor model is

well approximated by a g class model taking on as class distributions the distributions

implied by the factor model at g distinct points along the factor (Markon & Krueger,

2006). The degree to which these models can approximate each other depends heavily the

separation of the latent classes or, analogously, on the impact of the factors on the

indicators (factor loadings).

In this simulation study we investigated how well latent class models, factor models,

and factor mixture models approximate each other with dichotomous indicators and what

level of separation between latent classes is needed for them to become distinguishable

using standard model selection criteria. Three levels of separation of the classes in the

latent class model were assumed. For each level of the three simulation models factor

models and factor mixture models were approximated to the latent class model by

minimizing the Kullback-Leibler divergence between them. These models were used to

generate datasets to which a set of models is fitted including the models used for data

generation. The proportion of times the true model was selected over all replications was

computed and compared across separation levels. We also visualize the data from the

different models for a given separation level using multiple correspondence analysis.
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Models

Model families

We consider following general model

p(x) = pr(X = x) =
g∑

i=1

πi

∫
Rd

{
p∏

l=1

[
exp(λil + βT

il u)
]xl

1 + exp(λil + βT
il u)

}
︸ ︷︷ ︸

=pi(x|u)

φd(u)du (1)

where X is a p-dimensional random vector of dichotomous indicators with values 0 or 1,

φd is the probability density function of the d-dimensional standard normal distribution

Nd(0, Id) (Id is the identity matrix), d < p, and the πi are mixing proportions or class

membership probabilities (
∑g

i=1 πi = 1). For d = 0, we set R0 = {0} and φ0(0) = 1. Model

(1) can be interpreted as a latent variable model with a categorical latent variable C

taking on values i = 1, ..., g with probabilities π1, ..., πg respectively and a vector of

continuous factors U distributed as Nd(0, Id). Conditional on C = i and U = u, X is

distributed as pi(x|u) which assumes that the individual indicators X1, ..., Xp are

independent (local independence) and models them as logistic regressions on u with

intercept λil and slope βil.

Based on this general model we define the the following families of models: (a)

latent class models (LCM) with g > 1 and d = 0 (b) factor models (FM) with g = 1 and

d > 0 (c) factor mixture models (FMM) with g > 1 and d > 0. Note that the factor

loadings of a FMM, βil, can differ over classes, that is we do not assume measurement

invariance. Obviously, for LCMs the factor loadings are obsolete and are not included

among the model parameters. We will use the the notation cifj to denote a model with i

latent classes and j factors. Thus for instance c3f0 refers to a 3-class LCM, c1f2 to a

2-factor model and c2f1 to FMM with 2 classes and 1 factor.
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Mutual approximation of model families

The extent to which the defined model families can be distinguished from each other

when applied to data, depends on how well they can mutually approximate each other. If

for instance the data are generated by a FMM, members of the FM or a LCM families

that can approximate the true FMM closely may have a similar fit and be preferred for

their parsimony.

It is clear that LCMs, FMs and FMMs are not strictly separate families, rather they

overlap. For instance LCMs with up to g classes are nested in g-class FMMs - these are

obtained by setting the factor loadings to zero. Similarly FMs with up to d factors are

nested in d-factor FMMs - obtained by requiring factor loadings and logit intercepts λil to

be equal across classes. More generally, if the models are represented by a

two-dimensional array where rows and columns represent the number of factors and

classes respectively, as in Figure 1, then any given model is nested in the models situated

vertically downward and/or horizontally to the right of its location in the array.

Furthermore, the overlap between any two models ci1fj1, ci2fj2 consists of the model at

the intersection between row j∗ = min{j1, j2} and column i∗ = min{i1, i2}, that is model

ci∗fj∗. Clearly, if the data are truly from model ci∗fj∗, a pairwise comparison with a more

complex model cifj, where i > i∗ and/or j > j∗, using standard model selection criteria

that penalize the number of parameters should result in rejection of cifj in favor of ci∗fj∗.

In the present study we are interested in non-nested comparisons. Assume that data

are generated by an unknown model which may or may not be from the general model 1.

Suppose that for each of the model families LCMs, FMMs, and LCMs, we find a model

that fits the data well and is not excessively parameterized. Compared to the LCM the

FMM will tend to have fewer classes because it can partially compensate for this reduced

flexibility by including factors. Similarly, compared to the FMM, the FM will have more

factors because it needs to compensate for the complete lack of classes. In the
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two-dimensional array of models, the interesting competitors for a well fitting model will

be those situated downward toward the left or upward toward the right because only these

can maintain model fit while keeping the number of parameters at a similar level. How

well these competing models can be distinguished depends on the extent to which they

can approximate each other, which essentially depends on how well discrete latent

variability can be compensated through continuous latent variability and vice versa.

A LCM is a finite mixture of probability distributions identified by the distinct

vectors λ1, ..., λg (assuming these are distinct is no loss of generality). A FM is an infinite

mixture of distributions which can be indexed by the set {λ + βu : u ∈ Rd}, where the

rows of β are the βl, l = 1, ..., p (the subscript i can be dropped because there is only one

class). If β is of full rank then this set is a d-dimensional affine space. Obviously, it is

possible to approximate a FM with a LCM by choosing an increasing number of class

distributions that populate this space. However adding classes greatly increases the

number parameters of the LCM model, in our case with binary variables by p + 1 for each

added class. Similarly a FM can approximate a LCM if sufficient factor dimensions are

added such that the class distributions are included in FM’s space of distributions. In our

case the number of parameters of the FM increases by p for each added dimension. If the

approximation is good, the choice between the two models will essentially depend on the

degree with which the number of parameters is penalized.

We will measure proximity between two distributions p and q using the

Kullback-Leibler divergence:

DKL(p‖q) =
∫

p(x)log
p(x)
q(x)

dx

=
∫

p(x)logp(x)dx−
∫

p(x)logq(x)dx (2)

This measure of divergence is convenient because maximum likelihood (ML)

estimation of q corresponds to minimizing it. Suppose that P and Q are different models
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and there is a distribution q∗ ∈ Q that approximates p ∈ P by minimizing DKL(p‖q). Let

q̂n denote the ML estimator obtained by fitting model Q to a sample Xn of n independent

draws from the distribution p. Under weak conditions, given e.g. in (Vuong, 1989), q̂n

exists and is a consistent estimator for q∗ and 1/n times the likelihood ratio statistic

LRn(p, q̂n) = logL(p|Xn) − logL(q̂n|Xn), where logL(·|Xn) is the log-likelihood function

given the data Xn, is a consistent estimator for DKL(p‖q∗). Therefore q̂n represents an

approximation to p in terms of the Kullback-Leibler divergence.

Design of simulation study

Data Generation and Fitted Models

We generated datasets for p = 10 from three different models: a LCM wit 3 classes

(c3f0), a FMM with 2 classes and 1 factor (c2f1) and a FM with 2 factors (c1f2) (Table 1).

These models were parameterized for 3 different levels of separation between the classes of

the LCM. The logit intercepts λi of the LCM were set such that the vectors of class

specific probabilities, pi = logit(λi), were equally spaced from each other and from the

vector p0 = (0.5, ..., 0.5)T by Euclidean distance (see Appendix). This ensured that the

marginal probability of each indicator was 0.5. We refer to the Euclidean distance

between the pi and p0 as the level of separation and denote it with r. The chosen levels of

separation were r = 04, 0.6 and 0.8. The maximum separation that can be achieved in a

4-class model while keeping the marginal probabilities at 0.5 is r = 0.82 (fitted models

included LCMs up to 4 classes). We decided to keep within this boundary. The

parameters for the FM and FMM models were chosen such that these models

approximated the LCM for a given level of separation. To do this we generated a dataset

of 105 independent draws from the LCM and fitted the FM and FMM models to this data

by ML estimation. For each model and each separation level 500 datasets (4500 in all) of

sample size 500 were generated.
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In order to visualize the degree of separation we applied multiple correspondence

analysis (Greenacre, 1984) to one of the datasets generated from each of the models.

Figure 1 displays the data points for the LCM and FM at a separation of r = 0.8 along

the two main axis. A clustering caused by the latent classes is vaguely visible in the

periphery of the point cloud (left figure), while the data from the approximated FM are

more evenly spread (right figure). Thus, the models are barely distinguishable by visual

inspection at the largest separation level considered in this study. For lower levels the are

visually indistinguishable.

To each of the generated datasets we fitted the following six models: c1f1, c1f2, c2f0,

c2f1, c3f0, c4f0 (Table 1). To ensure identifiability of factor loadings, the model c1f2 was

fitted with restriction of one of the factor loading parameters to zero. We did not fit more

complex models such as c2f3, c2f2, or c3f1 because these required much more computation

time. Table 2 shows estimated Kullback-Leibler divergence between the true models and

the fitted models. To put these values into relation, consider that the Kullback-Leibler

divergence between two normal distributions with variance 1 and means shifted relative to

each other by θ is given by DKL(N(0, 1),N(θ, 1)) = θ2/2. A divergence of 0.02 therefore

corresponds to a shift in means by θ = 0.2. This is the order of divergence with which the

LCM c3f0 and the FM c1f2 approximate each other at a separation level of r = 0.6. For a

given separation level, the FMM c2f1 approximates the two other models used for data

generation more closely than these approximate each other.

Model Selection

We used two standard model selection criteria (formulae in the Appendix) the

Akaike Information Criterion (AIC) (Akaike, 1974) and the Bayesian Information

Criterion (BIC) (Schwarz, 1978) and two variants of these previously used in a similar

study, namely the sample size adjusted BIC (BICsa) and the consistent AIC (AICc) (see
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(Sclove, 1987)).

We also applied Voung’s LR-tests for pairwise comparisons of unnested models

(Vuong, 1989). These were only computed for comparisons between the models used for

data generation (which are non-nested), that is for the model pairs c3f0 vs. c1f2, c3f0 vs.

c2f1 and c1f2 vs. c2f1. For a pair of models P vs. Q this test tests the following

hypotheses:

H0 : E

[
log

p∗(x)
q∗(x)

]
= 0 (3)

Hp : E

[
log

p∗(x)
q∗(x)

]
> 0 (4)

Hq : E

[
log

p∗(x)
q∗(x)

]
< 0 (5)

where the expectation is with respect to the true distribution which may or may not be

contained in P or Q, and p∗ ∈ P and q∗ ∈ Q are the best approximations by the

Kullback-Leibler divergence to the true distribution. The null-hypothesis H0 means that

both models approximate the true model equally well and are therefore indistinguishable,

while Hp (respectively Hq) means that the models p∗ (q∗) is the better approximation.

The test statistic is given by 1/
√

n times likelihood ratio LRn(p̂n, q̂n), where p̂n and q̂n are

ML solutions, normalized by a standard error which is easy to compute. Vuong shows that

under regularity conditions which are satisfied by our models, the test statistic has,

asymptotically, a standard normal distribution. Values above the upper or below the

lower critical value (two-sided) lead to rejection the H0 in favor of Hp and Hq respectively.

Vuong also proposed and adjusted LR-test which allows to include a penalty on the

number of parameters (Vuong, 1989). We compute both the unadjusted LR-test and the

adjusted LR-test using a penalty term corresponding to the BIC. We chose the 0.025 and

0.925 quantiles of the standard normal distribution as lower and upper critical values

(α-level of 0.05).
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The mentioned LR test assumes that the models are non-overlapping, i.e. that

P ∩Q is empty. As discussed above, this is not true for our models. However, for all 3

tested model pairs the overlap is not a region of interest as it neither contains the true

distribution nor the best approximations p∗ and q∗. It can therefore conveniently be

excluded for our applications. Note that the test does not require any of the models P or

Q to be the true one. In fact, because the models are non-overlapping, both are

necessarily misspecified under H0 (If either p∗ or q∗ is true, the Kullback-Leibler

divergence between them must be zero under H0 which can only be the case if p∗ = q∗

meaning that the models overlap). Therefore, whenever one of the tested models is true,

H0 will tend to be rejected in favor of the true model.

Results

Latent Class Model

At the lowest separation level (r = 0.4), model selection criteria rarely selected the

true model (c3f0) as the model of choice (Table 3). The BIC, BICsa, AICc which penalize

number of parameters more heavily than the AIC tended to prefer a lower dimensional

FM (f1f1) or LCM (c2f1) while the AIC frequently selected the FMM (c2f1). At medium

separation (r = 0.6) the true model was recognized most of the times by the BIC, BICsa,

and AICc. At highest separation (r = 0.8) the true model was almost always selected by

the BIC, BICsa, and AICc, while the AIC, though recognizing the discrete class structure,

was indifferent between a 3 or 4-class model. Averaged over all separation levels, the

percentage of times the true model was selected was 66%, 57%, 53% and 34% for the

BICsa, BIC, AICc and AIC respectively.

In pairwise comparisons using Voungs LR-test the true model (c3f0) was usually

selected at medium and high separation when in competition with the FM (c1f2), but not

when in competition with FMM (c2f1), which was poorly distinguishable from the true
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model as indicated by frequent selection of the null-hypothesis (Table 4). When adjusting

for the number of model parameters, the test was clearly in favor of the true LCM rather

than the more complex FMM, but distinguishable from the FM only at the highest level

of separation. When comparing the two false models, FM vs. FMM, the unadjusted test

usually selected the FMM, while the adjusted test preferred the more parsimonious FM at

lower levels of separation and was indifferent between the two at the highest separation.

Factor model

At the lowest level of separation the true FM (c1f2) was rarely selected by any of

the selection criteria (Table 5). The BIC, BICsa, AICc tended to prefer the lower

dimensional single-factor model (c1f1), while the AIC often selected the FMM. At medium

separation, the true model was preferred by all criteria, particularly by the the BIC and

the BICsa. At high separation, preference for the true model was unequivocal with

selection probabilities above 90% for all criterion. Average percentages of selecting the

true model over all separation levels were 69%, 64%, 60% and 54% for the BICsa, BIC,

AICc and AIC respectively.

In pairwise testing the unadjusted LR-test was indifferent between the true FM and

the LCM except at high separation where the true model was clearly preferred (Table 6).

In comparison with the FMM the true model was never preverred. After adjusting the

LR-test more clearly favored the true model over the LCM and was unequivically in favor

of the true model when compared with the FMM. In a comparison of the false models,

LCM and FMM, the FMM tended to be preferred by the unadjusted test and the LCM by

the adjusted test, except at high separation where the adjusted test was indifferent

between the two.
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Factor mixture model

The true model (c2f1) was rarely selected at any level of separation by the BIC and

the AICc which tended to prefer a single-factor model at low separation and a 3-class

model at high separation (Table 7). The true model tended to be the preferred model by

the AIC at all levels of separation. At high separation, the true model was selected almost

90% of the times by the AIC and was also preferred, though less clearly by the BICsa.

Average percentages of selecting the true model over all separation levels were 71%, 39%,

0%, and 0% for the AIC, BICsa, BIC and AICc respectively.

In pairwise comparisons with the LCM and FM, the true FMM tended to be

preferred by the unadjusted test, particularly at medium and high separation (Table 8).

However, the unadjusted test almost always rejected the FMM, preferring the less heavily

parameterized LCM or FM at low separation, or the null-hypothesis of indifference at high

separation. In a comparison of the false models the unadjusted test tended to be

indifferent at low separation and in favor of the LCM at high separation, while the

adjusted test tended to be indifferent at all levels of separation.

Discussion

In summary we found that LCM and FM with dichotomous indicators were well

distinguishable with standard model selection criteria except at very low separation levels

of the latent classes. Conservative criteria that place a greater penalty on the number of

parameters, such as the BIC and the BICsa, tended to recover these models better than

the more liberal AIC. However, the FMM was poorly distinguishable from the more simple

LCM and FM, particularly by the conservative criterion. Pairwise non-nested comparisons

using Vuong’s LR-test did not improve recognition of the true model over that attained by

standard model selection criteria. The unadjusted test showed a tendency to favor the

more complex FMM even when it was not the true model. The adjusted test, however was
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clearly in favor of more parsimonious models LCM and FM even when these were not true.

These results demonstrate that for moderate to high levels of separation between

latent classes, LCMs and their approximating FMs are easily distinguishable using

standard model selection criteria. By ’moderate’ separation we refer to our medium level

of separation, r = 0.6, a level at which a visual representation of the data does not yet

show a clear clustering. Only at higher levels, e.g r = 0.8, did the clustering become

apparent (Figure 1). At the medium level of separation the FM and the LCM mutually

approximated each other with a Kullback-Leibler divergence of about 0.02 which

corresponds to the divergence between two standard normal distributions mean shifted by

0.2, whereas the approximation at the high separation, r = 0.8, corresponded to a shift in

means between two normals by about 0.4. Using a standard one-sample test for

differences in means assuming normality, detecting a shift in means by 0.2 and 0.4 with a

power of 90% and an α-level of 0.05 would require sample sizes of approximately 260 and

70 respectively. Despite the lack of an analoguous parametric test, it might therefore be

expected that latent classes of moderate separation are distinguishable from continuous

factor with the sample size used in this study (n=500).

A crucial requirement for being able to distinguish latent classes from continuous

factors appears to be a comparable parameterization of the competing models. In the

present study the LCM c3f0 and its approximating FM c1f2 had 32 and 29 parameters to

be estimated respectively. The penalties on the number parameters were therefore similar

for both models, allowing the choice between the two to be based primarily on model fit.

A previous study using 5-point Likert indicators found that the more conservative model

selection criteria BIC, BICsa, and AICc tended to prefer FMs even when the true models

were LCMs (G. Lubke & Neale, 2008). A likely reason for this is the imbalance in the

number of parameter between the two models. For ordinal indicators a separate logit

thresholds (for 5-point Likert indicators 4 thresholds per indicator) is needed for each
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latent class, while FMs require one set of the less numerous factor loadings (1 per ordinal

indicator) per included factor and only one set of thresholds. LCMs for ordinal variables

with more than two categories will therefore be much more heavily parameterized than

FMs of similar dimensionality.

Compared with LCMs and FMs, FMMs have the added flexibility of combining

discrete and continuous latent variables. However this added flexibility may come at the

cost of many additional parameters. Because the models used in the present study for

data generation were all approximated to each other the FM and the LCM achieved a

similar model fit as did the FMM, however with fewer parameters: 29 and 32 for the FM

and LCM compared to 41 for the FMM. The additional parameters of the FMM were thus

’invested’ poorly which made it difficult to recognize it as the true model, particularly by

conservative criterion. We cannot, however, conclude that FMMs in general are poorly

distinguishable from LCMs or FMs. Further simulation studies would be needed to

investigate whether arbitrary FMMs (not approximated to the more simple structure of

an LCM or FM) are distinguishable from LCMs or FMs of similar parameterization. In

the present study we wanted to compare models of similar separability level when

approximated by a LCM.

The present study suggests that models for categorical indicators with differing

latent structures (discrete and/or continuous) can approximate each other well, such that

their distinguishability crucially depends on a parsimonious parameterization. Incautious

use of flexible models such as FMMs can inflate the number of parameters with only

minor improvement of model fit. A careful parameterization should be sought by placing

plausible restrictions on the parameters. These could e.g. include measurement invariance

across classes, or setting certain factor loadings to zero. The results of this study shows

that, at moderate levels of class separation and moderate sample sizes (here n=500),

competing factor and class models of comparable parameterization are easily
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distinguishable by standard model selection criteria.
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Appendix

Parameterization of Models Used for Generating Data

Let k = bp/gc, i.e. the largest integer not greater than p/g (p is the number of

indicators and g the number of classes). The probability vectors p1, ..., pg of the g-LCM

were set to as follows:

pi = c(ei − ē) + e0

where ei is a vector with ones in the positions (i− 1)k, (i− 1)k + 1, ..., ik and zeros

otherwise, ē = 1/m
∑g

i=1 ei, e0 = [0.5, ..., 0.5]T and c is a scalar determining the separation

between the pi. This implies that the Euclidean distance between any two probability

vectors pi and pj , i 6= j has the constant value c
√

2k and the distance of any pi, i 6= 0,

from p0 the value r = c
√

k g−1
g .

The probability vectors were computed for separation levels r =0.4, 0.6 and 0.8.

These vectors were then transformed to logits λ1, ..., λg. For instance the parameters of
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the 3-class models at separation r = 0.4 were as follows:

λ1 = [0.793, 0.793, 0.793,−0.382,−0.382,−0.382,−0.382,−0.382,−0.382, 0]T

λ2 = [−0.382,−0.382,−0.382, 0.793, 0.793, 0.793,−0.382,−0.382,−0.382, 0]T

λ3 = [−0.382,−0.382,−0.382,−0.382,−0.382,−0.382, 0.793, 0.793, 0.793, 0]T

Parameters for the FMM and FM were obtained by fitting these models to data generated

by these LCMs as described in the main text.

Models Selection Criteria

The formulae for the four model selection criteria used are as follows:

AIC = −2logL + 2m

BIC = −2logL + mlog(n)

BICsa = −2logL + mlog
(

n + 2
24

)
AICc = −2logL + m{log(n) + 1}

where logL is the log-likelihood and m is the number of parameters in the model.
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Table 1

Design of Study: True Models Used for Sampling and Fitted Models

Latent Classes

Factors 1 2 3 4

0 × � ×

1 × �

2 �

Note: Symbol � represents true models used for generating data and × models fitted to

data from each of the true models.
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Table 2

Estimated Kullback Leibler Distance Between True and Fitted Models

Fitted Model

True model Separation (r) c1f1 c1f2 c2f0 c2f1 c3f0 c4f0

c3f0 0.4 0.021 0.003 0.020 0.000 0.000 0.000

0.6 0.111 0.023 0.101 0.003 0.000 0.000

0.8 0.347 0.092 0.310 0.017 0.000 0.000

c2f1 0.4 0.021 0.003 0.020 0.000 0.000 0.000

0.6 0.097 0.016 0.092 0.000 0.003 0.001

0.8 0.318 0.064 0.288 0.000 0.016 0.007

c1f2 0.4 0.017 0.000 0.017 0.000 0.001 0.000

0.6 0.089 0.000 0.086 0.001 0.016 0.003

0.8 0.245 0.000 0.252 0.009 0.069 0.022

Note: Data are estimated Kullback-Leibler divergences between true models and their

approximation by the fitted models. Approximations are obtained by fitting the models to

large random (n = 105) samples generated by the true models. Estimated Kullback-Leibler

divergence is 1/n times the LR statistic between the true and fitted model. Negative values

- which can occur in finite samples - were set to zero. These did not exceed 0.0015 in

absolute value.
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Table 3

Percentage of Model Choice in 500 Replications: True Model is c3f0

Fitted Model

Separation (r) Criterion c1f1 c1f2 c2f0 c2f1 c3f0 c4f0

0.4 AIC 4 7 7 50b 20 12

BIC 81 0 19 0b 0 0

BICsa 40 12 34 2b 12 0

AICc 85 0 15 0b 0 0

0.6 AIC 0 1 0 37 34 28a

BIC 2 22 3 0 72 0a

BICsa 0 5 0 5 89 1a

AICc 10 25 7 0 58 0a

0.8 AIC 0 0 0 3a 49 48a

BIC 0 0 0 0a 100 0a

BICsa 0 0 0 1a 98 1a

AICc 0 0 0 0a 100 0a

Note: Abbreviations are as follows: r = level of separation (see Appendix); AIC = Akaike

Information Criterion; BIC = Bayesian Information Criterion; BICsa = sample size adjusted

BIC; AICc = Consistent AIC (formulae see Appendix). Models are denoted as cifj where i

indicates the number of classes (i = 1 indicates a conventional factor model) and j indicates

the number factors (j = 0 indicates a conventional latent class model). Data are the

percentage (rounded to integers) of replications for which the fitted model was the first

choice.

amodel did not converge for 1 replication.

bmodel did not converge for 4 replications.
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Table 4

Percentage of hypothesis choice in pairwise testing of models c3f0, c1f2 and c2f1 by Vuong’s

LR-Test: True Model is c3f0

Tested Hypotheses Pair

c3f0 vs. c1f2 c3f0 vs. c2f1 c1f2 vs. c2f1

Separation (r) Hf H0 Hg Hf H0 Hg Hf H0 Hg

Unadjusted LR-Test

0.4 3 97 0 0 79 21 0 16 84

0.6 70 30 0 0 74 26 0 1 99

0.8 100 0 0 0 99 1 0 0 100

Adjusted LR-Test

0.4 0 92 8 96 4 0 97 3 0

0.6 9 91 0 97 3 0 56 44 0

0.8 99 1 0 99 1 0 0 70 30

Note: For a pair of tested models F vs. G, Hf is the hypothesis that F is closer to the true

model, Hg that G is closer to the true model and H0 that F and G are equally close to the

true model by the Kullback-Leibler Criterion. Abbreviations and model labels are the same

as in Table 3; Data are the percentage (rounded to integers) of replications for which the

hypothesis was selected among the replications for which all 3 models converged (496, 500

and 499 of 500 for r=0.4, 0.6 and 0.8 respectively). Selection was based on Vuong’s LR-test

unadjusted and adjusted for the number of model parameters using the same penalty term

as the BIC.
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Table 5

Percentage of Model Choice in 500 Replications: True Model is c1f2

Fitted Model

Separation (r) Criterion c1f1 c1f2 c2f0 c2f1 c3f0 c4f0

0.4 AIC 7 11a 6 50b 16 9

BIC 87 0a 13 0b 0 0

BICsa 49 16a 28 1b 6 0

AICc 89 0a 11 0b 0 0

0.6 AIC 0 60 0 33 1 5a

BIC 6 93 1 0 0 0a

BICsa 0 93 0 3 4 0a

AICc 19 79 1 0 0 0a

0.8 AIC 0 91 0 8 0 1

BIC 0 100 0 0 0 0

BICsa 0 99 0 1 0 0

AICc 0 100 0 0 0 0

Note: Abbreviations and model labels are the same as in Table 3. Data are the percentage

(rounded to integers) of replications (500 in total) for which the fitted model was the first

choice.

amodel did not converge for 1 replication.

bmodel did not converge for 16 replications.
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Table 6

Percentage of hypothesis choice in pairwise testing of models c3f0, c1f2 and c2f1 by Vuong’s

LR-Test: True Model is c1f2

Tested Hypotheses Pair

c1f2 vs. c3f0 c1f2 vs. c2f1 c3f0 vs. c2f1

Separation (r) Hf H0 Hg Hf H0 Hg Hf H0 Hg

Unadjusted LR-Test

0.4 0 98 2 0 22 78 0 80 20

0.6 0 99 1 0 59 41 0 25 75

0.8 84 15 0 0 90 10 0 0 100

Adjusted LR-Test

0.4 16 84 0 98 2 0 95 5 0

0.6 61 39 1 99 1 0 68 32 0

0.8 98 1 0 100 0 0 0 99 1

Note: Abbreviations and labels for models and hypotheses are the same as in Table 4;

Data are the percentage (rounded to integers) of replications for which the hypothesis was

selected among the replications for which all 3 models converged (483, 500 and 500 of 500

for r=0.4, 0.6 and 0.8 respectively). Selection was based on Vuong’s LR-test unadjusted

and adjusted for the number of model parameters using the same penalty term as the BIC.
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Table 7

Percentage of Model Choice in 500 Replications: True Model is c2f1

Fitted Model

Separation (r) Criterion c1f1 c1f2 c2f0 c2f1 c3f0 c4f0

0.4 AIC 4 4 6 56a 18 12

BIC 80 0 20 0a 0 0

BICsa 41 8 35 3a 13 0

AICc 86 0 14 0a 0 0

0.6 AIC 0 3 0 66 16 15

BIC 2 53 3 0 42 0

BICsa 0 17 0 15 67 1

AICc 12 50 10 0 27 0

0.8 AIC 0 0 0 89 4 7

BIC 0 3 0 1 96 0

BICsa 0 0 0 69 29 1

AICc 0 5 0 0 95 0

Note: Abbreviations and model labels are the same as in Table 3. Data are the percentage

(rounded to integers) of replications (500 in total) for which the fitted model was the first

choice.

amodel did not converge for 10 replications.
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Table 8

Percentage of hypothesis choice in pairwise testing of models c3f0, c1f2 and c2f1 by Vuong’s

LR-Test: True Model is c2f1

Tested Hypotheses Pair

c2f1 vs. c3f0 c2f1 vs. c1f2 c3f0 vs. c1f2

Separation (r) Hf H0 Hg Hf H0 Hg Hf H0 Hg

Unadjusted LR-Test

0.4 19 81 0 85 15 0 4 96 0

0.6 55 45 0 96 4 0 32 68 0

0.8 82 18 0 100 0 0 77 23 0

Adjusted LR-Test

0.4 0 6 94 0 5 95 0 92 8

0.6 0 9 91 0 27 73 1 97 2

0.8 0 53 47 4 95 0 38 62 0

Note: Abbreviations and labels for models and hypotheses are the same as in Table 4;

Data are the percentage (rounded to integers) of replications for which the hypothesis was

selected among the replications for which all 3 models converged (490, 500 and 500 of 500

for r=0.4, 0.6 and 0.8 respectively). Selection was based on Vuong’s LR-test unadjusted

and adjusted for the number of model parameters using the same penalty term as the BIC.
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Figure Captions

Figure 1. Visual display of 500 data points generated by a latent class model (LCM) with

three classes (c3f0)(left) and a factor model (FM) with 2 factors (c1f2) (right) at

separation level r = 0.8. The data are shown by their first two principle coordinates from

a multiple correspondence analysis with some added noise to avoid perfect superimposition

of data points. The hexagonal shape of the point cloud and the grid-like clustering are

artefacts of the discrete nature of the data (each point represents a value combination of

10 binary variables). The factor model was chosen as close as possible to the latent class

model by the Kullback-Leibler divergence. The two models which are easily distinguished

by standard model selection criteria are difficult to distinguish visually. The 3 latent

classes are vaguely recognizable as clusters in the periphery of the point cloud of the LCM

data, while the data from the FM are more evenly spread. Numbers in brackets represent

the contributions of axes to the total relevant inertia. The first two axes explain almost all

inertia because the latent structure of both models occupies two dimensions.
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C.1. Discussion  

C.1.1 Phenotypic variation in childhood wheeze 

In the first phase of this project, the focus was on identifying discrete phenotypes of 

childhood wheezing. We wanted to identify these in an exploratory manner using a wide 

range of features. We also included children with chronic cough but no wheezing. 

Application of LCA to data from Leicester 1990 cohort yielded 2 phenotypes of cough and 3 

phenotypes of wheeze which differed in later outcomes (article B.1). The identified 

phenotypes of wheeze appear to confirm that dimensions which have previously been 

considered important for defining phenotypes, namely, the short term wheezing variability, 

particularly triggers of wheeze [50], and the symptom history throughout early childhood [6] 

are indeed relevant. The fact that two phenotypes characterised by atopic persistent wheeze 

and transient viral wheeze respectively were identified in data-driven manner underlines the 

importance of these dimensions. However, the model also yielded some unsuspected 

findings, in particular the finding of a persistent cough phenotype resembling an entity 

referred to as ‘cough variant asthma’. 

In a second phase, more general models (FMM) were applied that would allow for 

combinations of discrete (e.g. distinct phenotypes) and continuous latent variability (e. g. 

severity gradients).  This work is ongoing and not yet published, however, preliminary results 

based on cross-sectional data suggest that the variability among children of wheeze related 

symptoms is dominated by one or two continuous disease gradients (perhaps ‘symptom 

severity’ and ‘atopy’), rather than by distinct clusters (see abstract in appendix iii.). That a 

severity gradient does exist in observed symptom data and that it correlates with the 

presence of non-viral triggers is almost certain and was also repeatedly confirmed by 

numerous applications of MCA (see example in appendix iv.). However, whether there is also 

discrete latent variability needs to be investigated using more comprehensive datasets that 

include symptom history and physiological measurements.  

These findings may appear conflicting. However, in the first study the model could not 

account for continuous gradients. The only possibility for the model to account for 

correlation between the observed variables was by fitting discrete latent classes. In the 

presence of a strong severity gradient it is likely that these classes would partly represent 
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different levels of severity. Possibly the identified phenotypes ‘atopic persistent wheeze’ and 

‘transient viral wheeze’ lie at two ends of a continuous spectrum. In order to detect the 

presence of distinct disease entities it is therefore important that the model can 

accommodate severity gradients within phenotypes, e.g. using a FMM.  

The findings of the present project do not provide an answer to the question of whether 

distinct disease entities exists within the spectrum of childhood wheezing or whether these 

rather represent a single disease continuum. This question is problematic as it requires a 

definition of disease entities (see section C.1.3). The methods used here can only address 

the more accessible question, which model structure best describes the observed 

phenotypic data. Latent classes may be indicative of distinct diseases and factors indicate 

the gradient of a single disease, however, they cannot provide confirmation of this. 

     

C.1.2 Tools for studying phenotypic variation 

The first phase of this project demonstrated some of the strengths of a model-based 

clustering approach for application to real-life epidemiological data. These include the 

possibility of combining data of different scales, of adapting the model to various other 

particular data structures (such as conditional questions) and of convenient and statistically 

proper [85] handling of missing data. Although having a statistical model should facilitate the 

choosing between different hypotheses, selecting the appropriate number of groups 

remains problematic. In our simulation studies (article B.5) frequently used model selection 

criteria were able to identify the right number of classes when the data were from a LCM 

and the classes were well separated. However, in a real situation, the true model is not 

known. It is unclear whether these criteria can detect the right number of classes when 

there is clustering of the data but the LCM is misspecified, i.e. is not the true model. In our 

application there was a large discrepancy between the number of groups chosen by the BIC 

(only 2 groups) and the bootstrapped LR test (5 groups) which assumes that the null-model 

is correctly specified. Discrepancy between the two may therefore be an indication of 

misspecification, but this remains to be investigated.  

We proposed a method that allows including the information obtained through conditional 

questions without having to exclude subjects to whom the questions did not apply from the 
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analysis (article B.2). In our study, this allows combining detailed symptom information with 

long-term disease course. Subjects remain in the analysis whether or not they are 

symptomatic at the time points of data collection. Also, it allowed including the symptom 

data on wheeze together with cough symptoms without requiring all children to have 

wheezed. This method can be implemented using commercially available software and can 

be generalised to other multivariate models including the FMs and FMMs used in the second 

phase.  

Using simulated binary data, we showed that the different latent variable models, LCM, FM, 

and FMM can approximate each other well, particularly when the classes are not well 

separated or factor loadings are modest (article B.5). At the medium level of separation 

considered in the simulations the FM and LCM were well distinguishable using the BIC or the 

sample size adjusted BIC. The FMM was more difficult to distinguish because of the greater 

number of parameters and the fact that the particular model we used could well be 

approximated by a LCM with fewer parameters. This demonstrates the importance of 

parsimonious parameterisation when comparing such models. We have not yet tested 

model selection procedures using data from a plausible model of wheezing diseases (article 

B.3). Judging from these first simulation results, the ability to identify disease entities will 

depend largely on the degree of separation between the corresponding phenotypes. FMMs 

should be used with caution as the number of model parameters increases rapidly with the 

number of classes. Plausible restrictions on the parameters should be implemented, such as 

setting factor loadings to zero on variables that are not thought to be important indicators of 

underlying gradients.  

This project also showed some limitations of latent variable modelling. Latent variables 

models can be time consuming to fit. Models with many classes require many repeated runs 

of the EM algorithm using different starting values due to numerous local maxima. Factor 

models with categorical outcomes require numerical integration for evaluation of the 

likelihood function. The combination of factors and classes in the FMM can be particularly 

heavy on computation. For fitting a single model to one data set this is not a major 

limitation, however, if bootstrapping is required, computation times may be prohibitive. 

Running the bootstrap LR tests for the LCM in initial study required several days. As all 

parametric models, latent variable models require specification. Assumptions are made 
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regarding the distribution of the variables, such as the assumption of local independence. 

These assumptions may be unrealistic and restrictive. However, they are transparent and 

can, in some cases, be tested. Also, having a parametric model allows incorporating prior 

information about the data into the model (such as the conditional questions). We did not 

explore other methods for exploring the underlying structure of data (such as those 

reviewed in [56]) and cannot say how these would compare with latent variable modelling. 

What can be said for all these exploratory methods, is that, although more objective than 

expert opinion, they are not entirely objective. All stages require subjective decisions, such 

as the selection of variables and appropriate variable transformations, the choice of the 

methodological approach, of the optimisation criteria and solving algorithm.  

Throughout this project MCA was used to visualise data. One tends to have greater 

confidence in the existence of structure in the data if this structure can perceived by one’s 

own senses. Categorical (nominal and ordinal) data are particularly difficult to visualise as 

they lack a unit of measurement. Although the categories of a variable can be assigned to 

distinct points on the real axis, the positions of these points are completely arbitrary for 

nominal data, and arbitrary up to their order for ordinal data. The shape of a point cloud of 

multivariate categorical data would not be meaningful if such coordinates were used. In 

MCA, more meaningful coordinates are computed such that the point cloud reflects the 

essential associations in the data matrix. In this project, MCA was useful for variable 

selection prior to modelling because it allowed identifying groups of similar categories from 

different variables that might be well represented by the categories of just one variable. It 

also revealed structures such as gradients of severity (see Figure 5 in appendix iv.). However, 

in many instances these structures were not easily recognisable in projections on the 2-

dimensional plane and the method frequently recovered artifactual structure. For instance, 

if children tended to have missing responses to similar questions and these were coded with 

a ‘missing’ category, this would create artificial associations which affected the shape and 

orientation of the point cloud. There are some remedies to this problem such as the 

reweighting ‘missing’ categories or imputing missing values [72]. Also, we found that MCA is 

of limited use for distinguishing between discrete and continuous latent variation as model 

selection criteria tend to detect these differences earlier (article B.5) 
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C.1.3 Validation of phenotypes 

If phenotypes are assumed to be real they require validation. The term phenotype is used in 

different ways in the literature on asthma and childhood wheeze: While it is sometimes 

simply used as a synonym for an observable feature, it is often used to represent a 

hypothesized disease entity (review article B.4). The criteria by which one could verify 

whether a phenotype does represent a real disease entity are unclear. A strong criterion for 

considering a disease as a separate entity is, if it has a distinct aetiology. This is, for example, 

spelled out in the following citations: “Classification of disease usually proceeds from the 

general to the specific, from the phenotypic classification […] to a pathogenetic classification 

[…] and eventually to an aetiologic classification.” (p. 56 in [88])  and  “[…] the characteristics 

specifying the population of interest may be an etiologic agent, a specified disorder of 

structure and function, or a consistent syndrome. These four levels indicate progressively 

decreasing knowledge of the disease and therefore decreasing priority as defining 

characteristics: aetiology has highest priority, altered structure or function, respectively, 

have intermediate priority, and clinical features have the lowest priority.”  (p. 679 in [89]).  

The aetiology and pathophysiology of childhood wheezing or asthma are poorly understood 

and therefore disease classification occurs on the phenotypic level. Various criteria have 

been used to justify proposed phenotypic classifications, such as whether the phenotypes 

are associated with other clinical features not used to define them, with long term prognosis 

or with distinctive risk factors (review article B.4).  

The implicit assumption of such ‘validation’ attempts is that certain phenotypes are, in some 

way, more ‘true’ than others. What could be meant by ‘true phenotypes’ is illustrated in 

Figure 4. The white plane (B) represents the feature space measured in a particular study, 

i.e. all the disease related features on which data was collected, and each of the points 

(circles and crosses) represents the particular combination of features measured in a 

subject. To state that there are true ‘true phenotypes’ implies the existence of some feature 

space (A) that, if measured, would reveal two obviously distinct groups indicated by the 

ovals in (A) (circles and crosses are used to represent the true classification). We would call 

these entities ‘true’ because everybody would agree to their distinction if shown the feature 

space (A). Because the true structure is not perfectly mapped into the observed space the 

clustering is less distinct in (B). Based on the clusters observed in (B) the subjects might be 
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grouped into two phenotypes as indicated by the ovals. Although there is some 

misclassification, the proposed phenotypes reflect the true classification to some extent. The 

proposed phenotypes are in this sense ‘more true’ than other arbitrarily defined groupings.  

 

Figure 4: Schematic illustration of true phenotypes 

 

The observed feature space (B) consists of all the disease related features (e.g. symptoms and 

measurements) on which data are collected in a particular study. The two clusters observed in (B) 

could be used to define two phenotypes (ovals). The statement that these are ‘true phenotypes’ 

suggests that there is some feature space (A) in which this separation would be obvious if that 

space were observed (circles and crosses represent the true classification). Feature space (A) 

might consists of disease markers revealing two distinct biological pathways. In the observed 

feature space (B) this distinction is blurred. If among all feature spaces, there is no self-evident 

separation as in (A), then the existence of phenotypes and their definitions can always be 

disputed.  

 

Validation, in a strong sense, would mean to find and measure variables with respect to 

which the distinction between phenotypes is self-evident. This can be thought of as finding a 

space (A). The features of (A) could be the particular environmental and genetic factors at 

disease inception or at the time point when the different entities begin to diverge combined 

with the phenotypic features revealing the different disease course. If these features are 

found these would become the disease defining characteristics. 

Unobserved 

feature space A 

Observed  

feature space B 
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Validation, in a weak sense, would mean to find indications for the existence of a feature 

space (A). The feature space (A) may be unknown or difficult to measure. However one can 

attempt to measure other spaces (different from (B)), e.g. long term outcomes, or response 

to treatment, to see if in these new spaces the subjects are similarly clustered. Or one could 

sample new subjects in the same feature space (B), i.e. make the same measurements in a 

different sample, to see whether there is again a clustering suggestive of the same 

phenotypes. A clustering into similar phenotypes repeatedly observed in different spaces or 

in different samples is not likely to happen by chance. If the causes for this separation into 

phenotypes were known and the different pathways observed a clear picture as in (A) would 

emerge.  

In the first study we compared differences in prognosis among children at later follow-up 

(article B.1). We have not yet performed any external validation studies using different 

cohorts. Both of these approaches would be examples of weak validation. A more promising 

approach may be to search for new feature spaces that may reveal clearer structure 

(approaching features space (A)). This would mean to identify markers of the distinguishing 

mechanisms and pathways.  
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C.2. Outlook 

C.2.1 Identifying phenotypes of wheeze 

This project is still ongoing. Several further steps are planned or underway:  

- Simulation studies using artificial data from a plausible model of childhood wheeze 

(article B.3) 

- Application of modelling approach to data from the Leicester cohort 1998(b). This cohort 

has a better resolution of symptom data and physiological measurements are becoming 

available for large subsamples of children. This will also allow external validation of the 

phenotypes identified in the first study using data from the 1990 cohort 

- Validation of findings in other European cohorts. The Leicester cohorts study is 

participating in the Global Allergy and Asthma European network (GA2LEN) initiative on 

cohort studies [90-91]. A main aim of this initiative is to combine research activities 

between all European birth cohorts on asthma and allergy. It therefore provides an 

excellent platform for comparison of findings across different cohorts. 

There is a need for new cohort studies that contribute new information relevant for 

understanding disease heterogeneity. Exploratory methods such as the ones used in this 

project are limited by the available data. If the measured features poorly distinguish 

between different underlying disease entities the latter will be difficult to detect, i.e. there 

will be a strong overlap between phenotypes. Therefore, markers need to be identified that 

would distinguish between different mechanisms and pathways.  This can follow either a) a 

hypothesis-free (or black-box) approach in which a large number of signals are tested for 

association with disease (e.g. genome wide association studies, exhaled volatile organic 

compounds [92]) or b) a hypothesis-driven approach (article B.3) in which measurements 

targeting specific hypothesised mechanisms (e.g. candidate gene association studies, 

exhaled nitric oxide [93]).  
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C.2.2 Genetic association studies 

Improved phenotype definitions could help improve precision in genetic studies. Candidate 

gene studies and, in recent years, genome wide association studies (GWAS) have identified a 

number of new genes that appear to be implicated in the development of asthma [30-31, 

35-40]. However the measured effect sizes are small and many findings could not be 

replicated [31-34]. Phenotype definition is one among a number of factors that complicate 

the discovery of causal genetic variants [41, 94]. If phenotypes used in genetic studies well 

reflect the main underlying disease processes they will be more specific for the effects of 

causative variants. To correct for multiple testing, GWAS typically adopt low significance 

levels for individual tests [95]. Detecting effects at these levels requires large sample sizes. If 

the measured effects are diluted due to poor definition of the outcome the requirements on 

sample size and costs are greatly increased. In such a situation, investing resources into 

improved measurement of phenotypes may be more cost-effective than increasing sample 

size.   

Latent variable modelling may be a useful method for defining phenotypes in large studies 

that measure numerous phenotypic features. Instead of selecting a single feature as 

outcome or subjectively defining an outcome based on a combination of features, the 

estimated values of the latent variables (factor scores for factors, and class membership for 

latent classes) of an appropriate model could be used. In a well specified model, these 

variables explain the associations between the measured features and may therefore better 

reflect the underlying disease processes that give rise to these features. Model selection 

methods (article B.5) could help determining the appropriate latent structure of the model. 

If a FM is more appropriate than a LCM, factor scores should be used instead of discrete 

phenotypes. Classifying subjects into discrete phenotypes in this situation could greatly 

reduce precision.  

Another approach would be to extend the modelling framework to include covariate effects 

(see Figure 3). Thus genetic (only a selection of variants could be included) or environmental 

factors could be included in the model. The latent classes of factors would then represent 

mediating variables between risk factors and outcomes. These might reflect actual disease 

processes.  
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C.2.3 Clinical relevance 

In clinical practice there is a strong demand for a reliable phenotypic classification, 

particularly for preschool children. As the panel study carried out in this project showed, 

there is wide agreement among clinicians that wheezing disorders in childhood comprise 

different disease entities, but a range of different concepts for classifying them exists (article 

B.3). A popular phenotypic classification distinguishes between episodic (viral) wheeze 

occurring only during colds and multiple trigger wheeze (as proposed in recent treatment 

recommendations [96]). It is possible that these phenotypes do in fact reflect different 

underlying diseases [50]. However, it is unlikely that there is an exact correspondence 

between underlying diseases and this uni-dimensional phenotypic definition.  

Exploratory analysis of multivariate phenotypic data could help identify important other 

features to be included in the clinical definitions. As discussed in the review article (B.4) 

including more features in a definition can be problematic as the definition may become too 

exclusive. Softer diagnostic tools, perhaps based on a probabilistic classification or on 

decision trees might be a solution. However, the clinical benefits (response to treatment, 

predicting long term outcome) of such tools would have to be shown.  

Ultimately, classification of wheezing in childhood needs to move from the phenotypic level 

to a pathophysiological and aetiological level. The approach developed in this project can 

contribute to this process by improving precision in studies on mechanisms and causes of 

disease.  As the picture becomes clearer, phenotypic labels are likely to be replaced by a 

diagnosis based on specific markers of the underlying disease processes.   
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iv.  Example of multiple correspondence analysis 

 

Figure 5: Example of MCA using data on symptoms of wheeze 

The Figures show relative positions of response categories related to severity of wheeze (A) 

and triggers of wheeze (B) from a single MCA analysis of symptoms listed below in 241 

children aged 4 years from the 1998(a) Leicester cohort. The U-shape pattern is the so-called 

“horseshoe-effect” (ch. 8.3 in [72]) indicating the presence of an underlying gradient. The 

sizes of the circles are proportional to the prevalences of the corresponding response 

categories. Missing values have been imputed by iteration of correspondence analysis using 

the procedure proposed in ch. 8.5 in [72]. 

Variables:  

 Frequency of attacks: During the past 12 months, how many attacks of wheezing has 

he/she had? None ; 1-2 ; 3-5 ; 6-10 ; 10-20; more than 20  

 Shortness of breath (SOB): Do these attacks cause him/her to be short of breath? yes, 

always; yes, occasionally; no, never 

 Sleep disturbed: In the last 12 months, how often, on average, has your child’s sleep been 

disturbed due to wheezing? Never woken with wheezing; less than one night per week; 

one or more nights per week 

 Activities disturbed: In the last 12 months, how much did wheezing interfere with your 

child’s daily activities? not at all; a little; a moderate amount; a lot 

 Triggers: Do these attacks occur: (answer all please)  

- when he/she is running or playing? yes ; no 

- with drinking or eating? yes ; no       

- when he/she is near animals, dust or grass? yes ; no 

 Wheeze with cold: In the last 12 months, has your child had wheezing or whistling in the 

chest during or soon after a cold or flu? yes; no 

 Wheeze without cold: In the last 12 months, has your child had wheezing or whistling in 

the chest even without having a cold or flu? yes; no 
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